Araştırma Makalesi
BibTex RIS Kaynak Göster

ARI KOVANLARININ ÇEVRESEL VE AKUSTİK VERİLERE DAYALI DURUM ANALİZİ: NORMAL VE ÖZEL KOŞULLARIN KARŞILAŞTIRILMASI

Yıl 2025, Cilt: 28 Sayı: 1, 414 - 429, 03.03.2025

Öz

Arı kolonilerinin sağlık ve faaliyetlerine ilişkin sürekli ve doğru bilgi elde etmek, arı popülasyonlarının korunması ve sürdürülebilir tarım uygulamalarının desteklenmesi için hayati öneme sahiptir. Çalışmamız, çevresel ve akustik sensör verilerini bütünleştirerek arı kolonilerinin durumunu etkin şekilde izlemeyi hedeflemektedir. Özellikle çalışmada CO2 konsantrasyonu, TVOC konsantrasyonu, sıcaklık ve nem gibi çevresel parametrelerin yanı sıra akustik verilerin analizi de yer almaktadır. Kullanılan yöntem, çeşitli çevresel sensörlerden elde edilen verilerin zaman serisi analizi ve ses dosyalarından spektral özelliklerin çıkarılmasını içermektedir. Analiz sürecinde, normal ve özel koşulları ayırt etmek için aykırı değer analizi uygulanmıştır. Sonuçlarımız, çevresel parametrelerde zamanla önemli değişiklikler olduğunu göstermektedir. Özellikle, özel koşullarda CO2 ve TVOC konsantrasyonlarında önemli artışlar gözlemlenmiştir (CO2: 1200 ppm'den 1450 ppm'ye, TVOC: 0 ppb'den 450 ppb'ye). Ayrıca, ses analizi, iki koşul arasında belirgin spektral özellik farkları göstermiştir. Sonuç olarak, araştırmamız, çevresel ve akustik sensör verilerinin birleşiminin arı kolonilerinin durumunu kapsamlı ve doğru izlememize olanak sağladığını doğrulamaktadır. Bulgular, bu tür bir yaklaşımın izleme uygulamaları için değerli bir araç olabileceğini önermektedir.

Kaynakça

  • Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y., & Basuny, N. K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64(4), 455–463. https://doi.org/10.1007/s00040-017-0573-8
  • Amsalem, E., & Grozinger, C. M. (2017). Evaluating the molecular, physiological and behavioral impacts of CO2 narcosis in bumble bees (Bombus impatiens). Journal of Insect Physiology, 101, 57–65. https://doi.org/10.1016/j.jinsphys.2017.06.014
  • Anwar, O., Keating, A., Cardell-Oliver, R., Datta, A., & Putrino, G. (2022). Design and development of low-power, long-range data acquisition system for beehives - BeeDAS. Computers and Electronics in Agriculture, 201, 107281. https://doi.org/10.1016/j.compag.2022.107281
  • Ayton, S., Tomlinson, S., Phillips, R. D., Dixon, K. W., & Withers, P. C. (2016). Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. Journal of Experimental Biology, 219(10), 1552–1562. https://doi.org/10.1242/jeb.137588
  • Bahreini, R., & Currie, R. W. (2015). The Potential of Bee-Generated Carbon Dioxide for Control of Varroa Mite (Mesostigmata: Varroidae) in Indoor Overwintering Honey bee (Hymenoptera: Apidae) Colonies. Journal of Economic Entomology, 108(5), 2153–2167. https://doi.org/10.1093/jee/tov202
  • Bencsik, M., McVeigh, A., Tsakonas, C., Kumar, T., Chamberlain, L., & Newton, M. (2023). A Monitoring System for Carbon Dioxide in Honeybee Hives: An Indicator of Colony Health. Sensors (Basel, Switzerland), 23. https://doi.org/10.3390/s23073588
  • Braga, A. R., Gomes, D. G., Rogers, R., Hassler, E. E., Freitas, B. M., & Cazier, J. A. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 169, 105161.
  • Bretzlaff, T., Kerr, J. T., & Darveau, C. A. (2023). High temperature sensitivity of bumblebee castes and the colony-level costs of thermoregulation in Bombus impatiens. Journal of Thermal Biology, 117, 103710. https://doi.org/10.1016/j.jtherbio.2023.103710
  • Bromenshenk, J. J., Henderson, C. B., Seccomb, R. A., Welch, P. M., Debnam, S. E., & Firth, D. R. (2015). Bees as biosensors: Chemosensory ability, honey bee monitoring systems, and emergent sensor technologies derived from the pollinator syndrome. Içinde Biosensors (C. 5, Sayı 4, ss. 678–711). MDPI. https://doi.org/10.3390/bios5040678
  • Cane, J. H., & Love, B. G. (2021). Hygroscopic larval provisions of bees absorb soil water vapor and release liquefied nutrients. Apidologie, 52(6), 1002–1016. https://doi.org/10.1007/s13592-021-00883-5
  • Cecchi, S., Spinsante, S., Terenzi, A., & Orcioni, S. (2020). A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring. Sensors 2020, Vol. 20, Page 2726, 20(9), 2726. https://doi.org/10.3390/S20092726
  • Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. A., & Paxton, R. J. (2015). Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 17(4), 969–983. https://doi.org/10.1111/1462-2920.12426
  • Durgun, Y. (2021). Nesnelerin İnterneti Teknolojisinin Kümes Ortamına Uygulanması ve Etkileri. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1005685
  • Ferrari, S., Silva, M., Guarino, M., & Berckmans, D. (2008). Monitoring of swarming sounds in bee hives for early detection of the swarming period. Computers and Electronics in Agriculture, 64(1), 72–77. https://doi.org/10.1016/j.compag.2008.05.010
  • Genç, M., & Genç, F. (2019). Stress Factors on Honey Bees (Apis mellifera L.) and The Components of Their Defense System Against Diseases, Parasites, and Pests. Mellifera, 19(1), 7–20.
  • Gil-Lebrero, S., Quiles-Latorre, F. J., Ortiz-López, M., Sánchez-Ruiz, V., Gámiz-López, V., & Luna-Rodríguez, J. J. (2016). Honey Bee Colonies Remote Monitoring System. Sensors 2017, Vol. 17, Page 55, 17(1), 55. https://doi.org/10.3390/S17010055
  • Gorgeva, E., Robertson, J., Voss, S., & Hoogewerff, J. (2023). The potential of bioacoustics for surveying carrion insects. Içinde Australian Journal of Forensic Sciences (ss. 1–20). Taylor & Francis. https://doi.org/10.1080/00450618.2023.2295447
  • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined Stress from parasites, pesticides, and lack of flowers. Içinde Science (C. 347, Sayı 6229, s. 1255957). American Association for the Advancement of Science. https://doi.org/10.1126/science.1255957
  • Kauffeld, N. M. (1967). Seasonal colony activity and individual bee development. Beekeeping in the United States, 335, 5.
  • Kearns, C. A., & Inouye, D. W. (1997). Pollinators, Flowering Plants, and Conservation Biology. BioScience, 47(5), 297–307. https://doi.org/10.2307/1313191
  • Lin, Z., Zheng, M., Li, Z., & Ji, T. (2023). Editorial: Biotic and abiotic stresses on honeybee physiology and colony health. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1260547
  • Maxwell, J. T., & Knapp, P. A. (2012). Reconstructed tupelo-honey yield in northwest Florida inferred from Nyssa Ogeche tree-ring data: 1850-2009. Agriculture, Ecosystems and Environment, 149, 100–108. https://doi.org/10.1016/j.agee.2011.11.004
  • Meikle, W. G., & Holst, N. (2015). Application of continuous monitoring of honeybee colonies. Apidologie, 46(1), 10–22. https://doi.org/10.1007/S13592-014-0298-X/TABLES/1
  • Meikle, William G, Adamczyk, J. J., Weiss, M., Ross, J., Werle, C., & Beren, E. (2021). Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO2 concentration. Scientific Reports, 11(1), 4364. https://doi.org/10.1038/s41598-021-83958-8
  • Mirzaei, S. (2024). Smart Beehive System for Measuring Honey Level and Controlling Temperature.
  • Mitchell, D. (2019). Nectar, humidity, honey bees (Apis mellifera) and varroa in summer: A theoretical thermofluid analysis of the fate of water vapour from honey ripening and its implications on the control of Varroa destructor. Journal of the Royal Society Interface, 16(156), 20190048. https://doi.org/10.1098/rsif.2019.0048
  • Mobaraki, B., Komarizadehasl, S., Castilla Pascual, F. J., & Lozano-Galant, J. A. (2022). Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring. Buildings, 12(9), 1411. https://doi.org/10.3390/buildings12091411
  • Murray, T. E., Kuhlmann, M., & Potts, S. G. (2009). Conservation ecology of bees: Populations, species and communities. Içinde Apidologie (C. 40, Sayı 3, ss. 211–236). EDP Sciences. https://doi.org/10.1051/apido/2009015
  • Ozger, Z. B., Cihan, P., & Gokce, E. (2024). A Systematic Review of IoT Technology and Applications in Animals. Kafkas Universitesi Veteriner Fakultesi Dergisi, 411. https://doi.org/10.9775/kvfd.2024.31866
  • Papa, G., Maier, R., Durazzo, A., Lucarini, M., Karabagias, I. K., Plutino, M., Bianchetto, E., Aromolo, R., Pignatti, G., Ambrogio, A., Pellecchia, M., & Negri, I. (2022). file:///C:/Users/togu/Downloads/scholar (26).ris. Biology, 11(2), 233. https://doi.org/10.3390/biology11020233
  • Qandour, A., Ahmad, I., Habibi, D., & Leppard, M. (2014). Remote beehive monitoring using acoustic signals. Acoustics Australia, 42(3), 204–209.
  • Rafael Braga, A., G. Gomes, D., Rogers, R., E. Hassler, E., M. Freitas, B., & A. Cazier, J. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 169(7), 105161. https://doi.org/https://doi.org/10.1016/j.compag.2019.105161
  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Içinde Agronomy for Sustainable Development (C. 32, Sayı 1, ss. 273–303). Springer. https://doi.org/10.1007/s13593-011-0022-4
  • Rigakis, I., Potamitis, I., Tatlas, N. A., Psirofonia, G., Tzagaraki, E., & Alissandrakis, E. (2023). A Low-Cost, Low-Power, Multisensory Device and Multivariable Time Series Prediction for Beehive Health Monitoring. Sensors, 23(3), 1407. https://doi.org/10.3390/s23031407
  • Ruvinga, S., Hunter, G. J. A., Duran, O., & Nebel, J. C. (2021). Use of LSTM Networks to Identify “Queenlessness” in Honeybee Hives from Audio Signals. 2021 17th International Conference on Intelligent Environments, IE 2021 - Proceedings, 1–4. https://doi.org/10.1109/IE51775.2021.9486575
  • Schöning, C., Gisder, S., Geiselhardt, S., Kretschmann, I., Bienefeld, K., Hilker, M., & Genersch, E. (2012). Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. Journal of Experimental Biology, 215(2), 264–271. https://doi.org/10.1242/jeb.062562
  • Sharif, M. Z., Di, N., & Yu, B. (2023). Honeybee (Apis spp.) (Hymenoptera: Apidae) Colony Monitoring Using Acoustic Signals from the Beehive: An Assessment by Global Experts and Our Feedback. Agriculture (Switzerland), 13(4), 769. https://doi.org/10.3390/agriculture13040769
  • Szczurek, A., Maciejewska, M., & Batog, P. (2023). Monitoring System Enhancing the Potential of Urban Beekeeping. Applied Sciences (Switzerland), 13(1), 597. https://doi.org/10.3390/app13010597
  • Tang, J., Ji, C., Shi, W., Su, S., Xue, Y., Xu, J., Chen, X., Zhao, Y., & Chen, C. (2023). Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021). Insects, 14(6), 554. https://doi.org/10.3390/insects14060554
  • Terenzi, A., Cecchi, S., & Spinsante, S. (2020). On the importance of the sound emitted by honey bee hives. Veterinary Sciences, 7(4), 1–14. https://doi.org/10.3390/vetsci7040168
  • Thapa, R. (2006). Honeybees and other Insect Pollinators of Cultivated Plants: A Review. Journal of the Institute of Agriculture and Animal Science, 27, 1–23. https://doi.org/10.3126/jiaas.v27i0.691
  • Tien, J. M. (2017). Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Annals of Data Science, 4(2), 149–178. https://doi.org/10.1007/s40745-017-0112-5
  • vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. R., & Pettis, J. S. (2009). Colony collapse disorder: A descriptive study. PLoS ONE, 4(8), e6481. https://doi.org/10.1371/journal.pone.0006481
  • VanEngelsdorp, D., Traynor, K. S., Andree, M., Lichtenberg, E. M., Chen, Y., Saegerman, C., & Cox-Foster, D. L. (2017). Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS ONE, 12(7), e0179535. https://doi.org/10.1371/journal.pone.0179535
  • Wardhany, V. A., Hidayat, A., Subono, & Jhoswanda, M. (2020). Temperature and Humidity Control of Smart Cage Bee Honey Based on Internet of Things. 2020 3rd International Conference on Computer and Informatics Engineering, IC2IE 2020, 467–472. https://doi.org/10.1109/IC2IE50715.2020.9274620
  • Zaman, A., & Dorin, A. (2023). A framework for better sensor-based beehive health monitoring. Içinde Computers and Electronics in Agriculture (C. 210, s. 107906). Elsevier. https://doi.org/10.1016/j.compag.2023.107906

ENVIRONMENTAL AND ACOUSTIC DATA-BASED STATUS ANALYSIS OF THE HONEYBEE COLONIES: A COMPARİSON OF NORMAL AND SPECIAL CONDITIONS

Yıl 2025, Cilt: 28 Sayı: 1, 414 - 429, 03.03.2025

Öz

The continuous and accurate monitoring of bee colony health and activity is crucial for the conservation of bee populations and the support of sustainable agricultural practices. Our study aims to effectively monitor the status of bee colonies by integrating environmental and acoustic sensor data. This includes the analysis of environmental parameters such as CO2 and Total Volatile Organic Compounds (TVOC) concentrations, temperature, and humidity, along with the analysis of acoustic data. The methodology employed involves the time-series analysis of data obtained from various environmental sensors and the extraction of spectral features from audio files. An outlier analysis is applied during the analytical process to distinguish between normal and special conditions. Our results indicate significant temporal changes in environmental parameters. Notably, substantial increases in CO2 and TVOC concentrations were observed under special conditions (CO2: from 1200 ppm to 1450 ppm, TVOC: from 0 ppb to 450 ppb). Additionally, acoustic analysis revealed distinct spectral feature differences between the two conditions. In conclusion, our research confirms that the combination of environmental and acoustic sensor data enables comprehensive and accurate monitoring of bee colony status. The findings suggest that this integrated approach can be a valuable tool for monitoring applications.

Kaynakça

  • Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y., & Basuny, N. K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64(4), 455–463. https://doi.org/10.1007/s00040-017-0573-8
  • Amsalem, E., & Grozinger, C. M. (2017). Evaluating the molecular, physiological and behavioral impacts of CO2 narcosis in bumble bees (Bombus impatiens). Journal of Insect Physiology, 101, 57–65. https://doi.org/10.1016/j.jinsphys.2017.06.014
  • Anwar, O., Keating, A., Cardell-Oliver, R., Datta, A., & Putrino, G. (2022). Design and development of low-power, long-range data acquisition system for beehives - BeeDAS. Computers and Electronics in Agriculture, 201, 107281. https://doi.org/10.1016/j.compag.2022.107281
  • Ayton, S., Tomlinson, S., Phillips, R. D., Dixon, K. W., & Withers, P. C. (2016). Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. Journal of Experimental Biology, 219(10), 1552–1562. https://doi.org/10.1242/jeb.137588
  • Bahreini, R., & Currie, R. W. (2015). The Potential of Bee-Generated Carbon Dioxide for Control of Varroa Mite (Mesostigmata: Varroidae) in Indoor Overwintering Honey bee (Hymenoptera: Apidae) Colonies. Journal of Economic Entomology, 108(5), 2153–2167. https://doi.org/10.1093/jee/tov202
  • Bencsik, M., McVeigh, A., Tsakonas, C., Kumar, T., Chamberlain, L., & Newton, M. (2023). A Monitoring System for Carbon Dioxide in Honeybee Hives: An Indicator of Colony Health. Sensors (Basel, Switzerland), 23. https://doi.org/10.3390/s23073588
  • Braga, A. R., Gomes, D. G., Rogers, R., Hassler, E. E., Freitas, B. M., & Cazier, J. A. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 169, 105161.
  • Bretzlaff, T., Kerr, J. T., & Darveau, C. A. (2023). High temperature sensitivity of bumblebee castes and the colony-level costs of thermoregulation in Bombus impatiens. Journal of Thermal Biology, 117, 103710. https://doi.org/10.1016/j.jtherbio.2023.103710
  • Bromenshenk, J. J., Henderson, C. B., Seccomb, R. A., Welch, P. M., Debnam, S. E., & Firth, D. R. (2015). Bees as biosensors: Chemosensory ability, honey bee monitoring systems, and emergent sensor technologies derived from the pollinator syndrome. Içinde Biosensors (C. 5, Sayı 4, ss. 678–711). MDPI. https://doi.org/10.3390/bios5040678
  • Cane, J. H., & Love, B. G. (2021). Hygroscopic larval provisions of bees absorb soil water vapor and release liquefied nutrients. Apidologie, 52(6), 1002–1016. https://doi.org/10.1007/s13592-021-00883-5
  • Cecchi, S., Spinsante, S., Terenzi, A., & Orcioni, S. (2020). A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring. Sensors 2020, Vol. 20, Page 2726, 20(9), 2726. https://doi.org/10.3390/S20092726
  • Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. A., & Paxton, R. J. (2015). Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 17(4), 969–983. https://doi.org/10.1111/1462-2920.12426
  • Durgun, Y. (2021). Nesnelerin İnterneti Teknolojisinin Kümes Ortamına Uygulanması ve Etkileri. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1005685
  • Ferrari, S., Silva, M., Guarino, M., & Berckmans, D. (2008). Monitoring of swarming sounds in bee hives for early detection of the swarming period. Computers and Electronics in Agriculture, 64(1), 72–77. https://doi.org/10.1016/j.compag.2008.05.010
  • Genç, M., & Genç, F. (2019). Stress Factors on Honey Bees (Apis mellifera L.) and The Components of Their Defense System Against Diseases, Parasites, and Pests. Mellifera, 19(1), 7–20.
  • Gil-Lebrero, S., Quiles-Latorre, F. J., Ortiz-López, M., Sánchez-Ruiz, V., Gámiz-López, V., & Luna-Rodríguez, J. J. (2016). Honey Bee Colonies Remote Monitoring System. Sensors 2017, Vol. 17, Page 55, 17(1), 55. https://doi.org/10.3390/S17010055
  • Gorgeva, E., Robertson, J., Voss, S., & Hoogewerff, J. (2023). The potential of bioacoustics for surveying carrion insects. Içinde Australian Journal of Forensic Sciences (ss. 1–20). Taylor & Francis. https://doi.org/10.1080/00450618.2023.2295447
  • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined Stress from parasites, pesticides, and lack of flowers. Içinde Science (C. 347, Sayı 6229, s. 1255957). American Association for the Advancement of Science. https://doi.org/10.1126/science.1255957
  • Kauffeld, N. M. (1967). Seasonal colony activity and individual bee development. Beekeeping in the United States, 335, 5.
  • Kearns, C. A., & Inouye, D. W. (1997). Pollinators, Flowering Plants, and Conservation Biology. BioScience, 47(5), 297–307. https://doi.org/10.2307/1313191
  • Lin, Z., Zheng, M., Li, Z., & Ji, T. (2023). Editorial: Biotic and abiotic stresses on honeybee physiology and colony health. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1260547
  • Maxwell, J. T., & Knapp, P. A. (2012). Reconstructed tupelo-honey yield in northwest Florida inferred from Nyssa Ogeche tree-ring data: 1850-2009. Agriculture, Ecosystems and Environment, 149, 100–108. https://doi.org/10.1016/j.agee.2011.11.004
  • Meikle, W. G., & Holst, N. (2015). Application of continuous monitoring of honeybee colonies. Apidologie, 46(1), 10–22. https://doi.org/10.1007/S13592-014-0298-X/TABLES/1
  • Meikle, William G, Adamczyk, J. J., Weiss, M., Ross, J., Werle, C., & Beren, E. (2021). Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO2 concentration. Scientific Reports, 11(1), 4364. https://doi.org/10.1038/s41598-021-83958-8
  • Mirzaei, S. (2024). Smart Beehive System for Measuring Honey Level and Controlling Temperature.
  • Mitchell, D. (2019). Nectar, humidity, honey bees (Apis mellifera) and varroa in summer: A theoretical thermofluid analysis of the fate of water vapour from honey ripening and its implications on the control of Varroa destructor. Journal of the Royal Society Interface, 16(156), 20190048. https://doi.org/10.1098/rsif.2019.0048
  • Mobaraki, B., Komarizadehasl, S., Castilla Pascual, F. J., & Lozano-Galant, J. A. (2022). Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring. Buildings, 12(9), 1411. https://doi.org/10.3390/buildings12091411
  • Murray, T. E., Kuhlmann, M., & Potts, S. G. (2009). Conservation ecology of bees: Populations, species and communities. Içinde Apidologie (C. 40, Sayı 3, ss. 211–236). EDP Sciences. https://doi.org/10.1051/apido/2009015
  • Ozger, Z. B., Cihan, P., & Gokce, E. (2024). A Systematic Review of IoT Technology and Applications in Animals. Kafkas Universitesi Veteriner Fakultesi Dergisi, 411. https://doi.org/10.9775/kvfd.2024.31866
  • Papa, G., Maier, R., Durazzo, A., Lucarini, M., Karabagias, I. K., Plutino, M., Bianchetto, E., Aromolo, R., Pignatti, G., Ambrogio, A., Pellecchia, M., & Negri, I. (2022). file:///C:/Users/togu/Downloads/scholar (26).ris. Biology, 11(2), 233. https://doi.org/10.3390/biology11020233
  • Qandour, A., Ahmad, I., Habibi, D., & Leppard, M. (2014). Remote beehive monitoring using acoustic signals. Acoustics Australia, 42(3), 204–209.
  • Rafael Braga, A., G. Gomes, D., Rogers, R., E. Hassler, E., M. Freitas, B., & A. Cazier, J. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 169(7), 105161. https://doi.org/https://doi.org/10.1016/j.compag.2019.105161
  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Içinde Agronomy for Sustainable Development (C. 32, Sayı 1, ss. 273–303). Springer. https://doi.org/10.1007/s13593-011-0022-4
  • Rigakis, I., Potamitis, I., Tatlas, N. A., Psirofonia, G., Tzagaraki, E., & Alissandrakis, E. (2023). A Low-Cost, Low-Power, Multisensory Device and Multivariable Time Series Prediction for Beehive Health Monitoring. Sensors, 23(3), 1407. https://doi.org/10.3390/s23031407
  • Ruvinga, S., Hunter, G. J. A., Duran, O., & Nebel, J. C. (2021). Use of LSTM Networks to Identify “Queenlessness” in Honeybee Hives from Audio Signals. 2021 17th International Conference on Intelligent Environments, IE 2021 - Proceedings, 1–4. https://doi.org/10.1109/IE51775.2021.9486575
  • Schöning, C., Gisder, S., Geiselhardt, S., Kretschmann, I., Bienefeld, K., Hilker, M., & Genersch, E. (2012). Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. Journal of Experimental Biology, 215(2), 264–271. https://doi.org/10.1242/jeb.062562
  • Sharif, M. Z., Di, N., & Yu, B. (2023). Honeybee (Apis spp.) (Hymenoptera: Apidae) Colony Monitoring Using Acoustic Signals from the Beehive: An Assessment by Global Experts and Our Feedback. Agriculture (Switzerland), 13(4), 769. https://doi.org/10.3390/agriculture13040769
  • Szczurek, A., Maciejewska, M., & Batog, P. (2023). Monitoring System Enhancing the Potential of Urban Beekeeping. Applied Sciences (Switzerland), 13(1), 597. https://doi.org/10.3390/app13010597
  • Tang, J., Ji, C., Shi, W., Su, S., Xue, Y., Xu, J., Chen, X., Zhao, Y., & Chen, C. (2023). Survey Results of Honey Bee Colony Losses in Winter in China (2009–2021). Insects, 14(6), 554. https://doi.org/10.3390/insects14060554
  • Terenzi, A., Cecchi, S., & Spinsante, S. (2020). On the importance of the sound emitted by honey bee hives. Veterinary Sciences, 7(4), 1–14. https://doi.org/10.3390/vetsci7040168
  • Thapa, R. (2006). Honeybees and other Insect Pollinators of Cultivated Plants: A Review. Journal of the Institute of Agriculture and Animal Science, 27, 1–23. https://doi.org/10.3126/jiaas.v27i0.691
  • Tien, J. M. (2017). Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Annals of Data Science, 4(2), 149–178. https://doi.org/10.1007/s40745-017-0112-5
  • vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. R., & Pettis, J. S. (2009). Colony collapse disorder: A descriptive study. PLoS ONE, 4(8), e6481. https://doi.org/10.1371/journal.pone.0006481
  • VanEngelsdorp, D., Traynor, K. S., Andree, M., Lichtenberg, E. M., Chen, Y., Saegerman, C., & Cox-Foster, D. L. (2017). Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS ONE, 12(7), e0179535. https://doi.org/10.1371/journal.pone.0179535
  • Wardhany, V. A., Hidayat, A., Subono, & Jhoswanda, M. (2020). Temperature and Humidity Control of Smart Cage Bee Honey Based on Internet of Things. 2020 3rd International Conference on Computer and Informatics Engineering, IC2IE 2020, 467–472. https://doi.org/10.1109/IC2IE50715.2020.9274620
  • Zaman, A., & Dorin, A. (2023). A framework for better sensor-based beehive health monitoring. Içinde Computers and Electronics in Agriculture (C. 210, s. 107906). Elsevier. https://doi.org/10.1016/j.compag.2023.107906
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nöral Ağlar
Bölüm Bilgisayar Mühendisliği
Yazarlar

Yeliz Durgun 0000-0003-3834-5533

Mahmut Durgun 0000-0002-5010-687X

Yayımlanma Tarihi 3 Mart 2025
Gönderilme Tarihi 1 Kasım 2024
Kabul Tarihi 26 Aralık 2024
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 1

Kaynak Göster

APA Durgun, Y., & Durgun, M. (2025). ARI KOVANLARININ ÇEVRESEL VE AKUSTİK VERİLERE DAYALI DURUM ANALİZİ: NORMAL VE ÖZEL KOŞULLARIN KARŞILAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 414-429.