Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THERMODYNAMIC PERFORMANCE OF TURBOFAN ENGINE AT DIFFERENT FAN PRESSURE AND BYPASS RATIOS PART A: ENERGY ANALYSIS

Yıl 2025, Cilt: 28 Sayı: 2, 630 - 643, 03.06.2025

Öz

This research is focused on analysing the thermodynamic performance results of the GE90 turbofan engine with different fan pressures and bypass air ratios. The paper analyses thrust force, thrust efficiency, thrust power, specific fuel consumption, heat input, fuel flow rate, fuel cost rates, emission amount, and cost. Accordingly, the thrust force of the turbofan engine increased as the fan pressure ratio increased, and the highest FBR is obtained as: 1.98 = 573.98 kN. While the highest thrust efficiency value is obtained at 37.22% at the FPR:1.66-BPR:7.4 ratios, the energy efficiency reached its maximum at 45.91% at the same values at the FPR:1.66-BPR:7.4 ratios. At the same rates, specific fuel consumption is calculated as 27.87 kg/kN.h, with its lowest value. The emission release amount of the turbofan engine and the cost of this amount are 49.48 tonCO2/h and 74.21 $/tonCO2.h at the highest FPR:1.98-BPR:4.4 rates.

Kaynakça

  • Akdeniz, H. Y., & Balli, O. (2021a). Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology, 143(12), 120905.
  • Akdeniz, H. Y., & Balli, O. (2021b). Energetic and exergetic assessment of operating biofuel, hydrogen and conventional JP-8 in a J69 type of aircraft turbojet engine. Journal of Thermal Analysis and Calorimetry, 146(4), 1709-1721.
  • Andriani, R., Gamma, F., & Ghezzi, U. (2011). Numerical analysis of intercooled and recuperated turbofan engine.
  • Arslan, O., Acikkalp, E., & Genc, G. (2022). A multi-generation system for hydrogen production through the high-temperature solid oxide electrolyzer integrated to 150 MW coal-fired steam boiler. Fuel, 315, 123201.
  • Artaş, S. B., Kocaman, E., Bilgiç, H. H., Tutumlu, H., Yağlı, H., & Yumrutaş, R. (2023). Why PV panels must be recycled at the end of their economic life span? A case study on recycling together with the global situation. Process Safety and Environmental Protection, 174, 63-78.
  • Asoliman, I. M., Ehab, M., Mahrous, A. M., El-Sayed, A., & Emeara, M. (2018, July). Performance Analysis of High Bypass Turbofan Engine Trent 1000-A. In 3rd IUGRC International Undergraduate Research Conference.
  • Atilgan, R., & Turan, O. (2020). Economy and exergy of aircraft turboprop engine at dynamic loads. Energy, 213, 118827.
  • Balli, O. (2017). Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138-155.
  • Balli, O., Ekici, S., & Karakoc, T. H. (2021a). TF33 Turbofan engine in every respect: Performance, environmental, and sustainability assessment. Environmental Progress & Sustainable Energy, 40(3), e13578.
  • Balli, O., & Caliskan, H. (2021b). Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 232, 121031.
  • Caliskan, H. (2015). Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy conversion and management, 89, 156-161.
  • Coban, K., Colpan, C. O., & Karakoc, T. H. (2017). Application of thermodynamic laws on a military helicopter engine. Energy, 140, 1427-1436.
  • Cengel, Y. A., & Boles, M. A. (2011). Thermodynamics: An Engineering Approach Seventh Edition in SI Units.
  • Çoban K. (2018). Energy, Exergy and Sustainability Analysis of Turbojet Engine Working with Different Fuels in Unmanned Aerial Vehicles. PhD Dissertation, Eskisehir Anadolu University Institute of Science August 2018.
  • Dankanich, A., & Peters, D. (2017). Turbofan engine bypass ratio as a function of thrust and fuel flow.
  • Dişlitaş, A. N., & Çeper, B. A. (2021). Examination of parametric cycle analysis of a turbofan engine with Python code. International Journal of Energy Applications and Technologies, 8(4), 203-210.
  • Ekrataleshian, A., Pourfayaz, F., & Ahmadi, M. H. (2021). Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. Journal of Thermal Analysis and Calorimetry, 145, 909-923.
  • Fetahi, K. (2020). A Parametric Analysis of a Turbofan Engine with an Auxiliary Bypass Combustion Chamber: The Turboaux Engine (Master's thesis, Old Dominion University).
  • GEnx-ib76 turbofan engine. General Electric/Aero-Engines: Usa. April 1997.
  • Kanbur, B. B., Xiang, L., Dubey, S., Choo, F. H., & Duan, F. (2018). Mitigation of carbon dioxide emission using liquefied natural gas cold energy in small scale power generation systems. Journal of Cleaner Production, 200, 982-995.
  • Kocaman, E., Karakuş, C., Yağlı, H., Koç, Y., Yumrutaş, R., & Koç, A. (2022). Pinch point determination and Multi-Objective optimization for working parameters of an ORC by using numerical analyses optimization method. Energy Conversion and Management, 271, 116301.
  • Koç, A., Yağlı, H., Bilgic, H. H., Koç, Y., & Özdemir, A. (2020). Performance analysis of a novel organic fluid filled regenerative heat exchanger used heat recovery ventilation (OHeX-HRV) system. Sustainable Energy Technologies and Assessments, 41, 100787.
  • Köse, Ö., Koç, Y., & Yağlı, H. (2021). Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine. Energy conversion and management, 227, 113604.
  • Özdemir Küçük, E., & Kılıç, M. (2023). Exergoeconomic and exergetic sustainability analysis of a combined dual-pressure organic rankine cycle and vapor compression refrigeration cycle. Sustainability, 15(8), 6987.
  • Marek, C. J., Liew, K. H., Urip, E., & Yang, S. L. (2005, June). A Parametric Cycle Analysis of a Separate-Flow Turbofan With Interstage Turbine Burner. In 41st Aerospace Sciences Meeting and Exhibit (No. NASA/CR-2005-213657).
  • Najjar, Y. S., & Balawneh, I. A. (2015). Optimization of gas turbines for sustainable turbojet propulsion. Propulsion and Power Research, 4(2), 114-121.
  • Oğur, E., Koç, A., Yağlı, H., Koç, Y., & Köse, Ö. (2024). Thermodynamic, economic, and environmental analysis of a hydrogen-powered turbofan engine at varying altitudes. International Journal of Hydrogen Energy, 55, 1203-1216.
  • Oğur, E., Koç, A., Köse, Ö., Koç, Y., & Yağlı, H. (2024). Performance assessment of ammonia as a turbofan engine fuel during various altitude levels. Energy, 308, 132714.
  • Oğur, E., Koç, A., Köse, Ö., Yağlı, H., & Koç, Y. (2025a). Energy, exergy, exergoeconomic, exergy sustainability and exergoenvironmental analyses (5E) of a turbofan engine: A comparative study of hydrogen and kerosene fuels. Fuel, 381, 133324.
  • Oğur, E., Koç, A., Yağlı, H., Köse, Ö., & Koç, Y. (2025b). Shifting to lower carbon emission for aircraft: An alternative fuel evaluation. Energy, 316, 134426.
  • Ping, X., Yao, B., Zhang, H., & Yang, F. (2021). Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery. Energy, 236, 121508.
  • Sabzehali, M., Rabiee, A. H., Alibeigi, M., & Mosavi, A. (2022). Predicting the energy and exergy performance of F135 PW100 turbofan engine via deep learning approach. Energy Conversion and Management, 265, 115775.
  • Su, L., Wen, F., Wang, S., & Wang, Z. (2022). Analysis of energy saving and thrust characteristics of rotating detonation turbine engine. Aerospace Science and Technology, 124, 107555.
  • Sürer, M. G., & Arat, H. T. (2024). Energy and exergy analysis of hydrogen production from seawater using waste heat recovery system on a model ship. International Journal of Exergy, 44(1), 53-64.
  • Tiwari, D. (2024). Improved evacuated and compound parabolic collector-driven ORC/VCR system: a thermodynamic analysis. Journal of Thermal Analysis and Calorimetry, 149(15), 8539-8553.
  • Type-certıfıcate data sheet. No. IM. E.002 for GE90 Series Engines Type Certificate Holder General Electric Company GE Aviation 1 Neumann Way Cincinnati, OH 45215-6310 USA. 18 December 2019.
  • Tuzcu, H., Sohret, Y., & Caliskan, H. (2021). Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environmental Progress & Sustainable Energy, 40(3), e13547.
  • Xue, R., Jiang, J., & Jackson, A. (2019). Effect of bypass ratio on optimal fan outer pressure ratio and performance for turbofan engines. International Journal of Aeronautical and Space Sciences, 20, 157-164.
  • Yapicioglu, A., & Dincer, I. (2018). Performance assesment of hydrogen and ammonia combustion with various fuels for power generators. International Journal of Hydrogen Energy, 43(45), 21037-21048.
  • Yucer, C. T. (2016). Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method. Energy, 111, 251-259.
  • Yuksel, B., Balli, O., Gunerhan, H., & Hepbasli, A. (2020). Comparative performance metric assessment of a military turbojet engine utilizing hydrogen and kerosene fuels through advanced exergy analysis method. Energies, 13(5), 1205.

FARKLI FAN BASINCI VE BYPASS ORANLARINDA TURBOFAN MOTORUNUN TERMODİNAMİK PERFORMANSININ İNCELENMESİ BÖLÜM A: ENERJİ ANALİZİ

Yıl 2025, Cilt: 28 Sayı: 2, 630 - 643, 03.06.2025

Öz

Bu araştırma, farklı fan basınçları ve baypas hava oranları ile GE90 turbofan motorunun termodinamik performans sonuçlarının analizine odaklanmıştır. Analizde itme kuvveti, itme verimliliği, itme gücü, özgül yakıt tüketimi, ısı girişi, yakıt akış hızı, yakıt maliyet oranları, emisyon miktarı ve maliyet analiz edilmiştir. Buna göre, turbofan motorunun itme kuvveti, fan basınç oranı arttıkça artmış ve en yüksek FBR; 1,98 = 573,98 kN olarak elde edilmiştir. En yüksek itme verimliliği değeri FPR:1,66-BPR:7,4 oranlarında %37,22 ile elde edilirken, enerji verimliliği aynı değerlerde FPR:1,66-BPR:7,4 oranlarında %45,91 ile maksimum değerine ulaşmıştır. Aynı oranlarda özgül yakıt tüketimi en düşük değeri ile 27,87 kg/kN.h olarak hesaplanmıştır. Turbofan motorunun emisyon salınım miktarı ve bu miktarın maliyeti en yüksek FPR:1.98-BPR:4.4 değerlerinde 49.48 tonCO2/h ve 74.21 $/tonCO2.h olarak gerçekleşmektedir.

Kaynakça

  • Akdeniz, H. Y., & Balli, O. (2021a). Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology, 143(12), 120905.
  • Akdeniz, H. Y., & Balli, O. (2021b). Energetic and exergetic assessment of operating biofuel, hydrogen and conventional JP-8 in a J69 type of aircraft turbojet engine. Journal of Thermal Analysis and Calorimetry, 146(4), 1709-1721.
  • Andriani, R., Gamma, F., & Ghezzi, U. (2011). Numerical analysis of intercooled and recuperated turbofan engine.
  • Arslan, O., Acikkalp, E., & Genc, G. (2022). A multi-generation system for hydrogen production through the high-temperature solid oxide electrolyzer integrated to 150 MW coal-fired steam boiler. Fuel, 315, 123201.
  • Artaş, S. B., Kocaman, E., Bilgiç, H. H., Tutumlu, H., Yağlı, H., & Yumrutaş, R. (2023). Why PV panels must be recycled at the end of their economic life span? A case study on recycling together with the global situation. Process Safety and Environmental Protection, 174, 63-78.
  • Asoliman, I. M., Ehab, M., Mahrous, A. M., El-Sayed, A., & Emeara, M. (2018, July). Performance Analysis of High Bypass Turbofan Engine Trent 1000-A. In 3rd IUGRC International Undergraduate Research Conference.
  • Atilgan, R., & Turan, O. (2020). Economy and exergy of aircraft turboprop engine at dynamic loads. Energy, 213, 118827.
  • Balli, O. (2017). Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138-155.
  • Balli, O., Ekici, S., & Karakoc, T. H. (2021a). TF33 Turbofan engine in every respect: Performance, environmental, and sustainability assessment. Environmental Progress & Sustainable Energy, 40(3), e13578.
  • Balli, O., & Caliskan, H. (2021b). Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 232, 121031.
  • Caliskan, H. (2015). Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy conversion and management, 89, 156-161.
  • Coban, K., Colpan, C. O., & Karakoc, T. H. (2017). Application of thermodynamic laws on a military helicopter engine. Energy, 140, 1427-1436.
  • Cengel, Y. A., & Boles, M. A. (2011). Thermodynamics: An Engineering Approach Seventh Edition in SI Units.
  • Çoban K. (2018). Energy, Exergy and Sustainability Analysis of Turbojet Engine Working with Different Fuels in Unmanned Aerial Vehicles. PhD Dissertation, Eskisehir Anadolu University Institute of Science August 2018.
  • Dankanich, A., & Peters, D. (2017). Turbofan engine bypass ratio as a function of thrust and fuel flow.
  • Dişlitaş, A. N., & Çeper, B. A. (2021). Examination of parametric cycle analysis of a turbofan engine with Python code. International Journal of Energy Applications and Technologies, 8(4), 203-210.
  • Ekrataleshian, A., Pourfayaz, F., & Ahmadi, M. H. (2021). Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. Journal of Thermal Analysis and Calorimetry, 145, 909-923.
  • Fetahi, K. (2020). A Parametric Analysis of a Turbofan Engine with an Auxiliary Bypass Combustion Chamber: The Turboaux Engine (Master's thesis, Old Dominion University).
  • GEnx-ib76 turbofan engine. General Electric/Aero-Engines: Usa. April 1997.
  • Kanbur, B. B., Xiang, L., Dubey, S., Choo, F. H., & Duan, F. (2018). Mitigation of carbon dioxide emission using liquefied natural gas cold energy in small scale power generation systems. Journal of Cleaner Production, 200, 982-995.
  • Kocaman, E., Karakuş, C., Yağlı, H., Koç, Y., Yumrutaş, R., & Koç, A. (2022). Pinch point determination and Multi-Objective optimization for working parameters of an ORC by using numerical analyses optimization method. Energy Conversion and Management, 271, 116301.
  • Koç, A., Yağlı, H., Bilgic, H. H., Koç, Y., & Özdemir, A. (2020). Performance analysis of a novel organic fluid filled regenerative heat exchanger used heat recovery ventilation (OHeX-HRV) system. Sustainable Energy Technologies and Assessments, 41, 100787.
  • Köse, Ö., Koç, Y., & Yağlı, H. (2021). Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine. Energy conversion and management, 227, 113604.
  • Özdemir Küçük, E., & Kılıç, M. (2023). Exergoeconomic and exergetic sustainability analysis of a combined dual-pressure organic rankine cycle and vapor compression refrigeration cycle. Sustainability, 15(8), 6987.
  • Marek, C. J., Liew, K. H., Urip, E., & Yang, S. L. (2005, June). A Parametric Cycle Analysis of a Separate-Flow Turbofan With Interstage Turbine Burner. In 41st Aerospace Sciences Meeting and Exhibit (No. NASA/CR-2005-213657).
  • Najjar, Y. S., & Balawneh, I. A. (2015). Optimization of gas turbines for sustainable turbojet propulsion. Propulsion and Power Research, 4(2), 114-121.
  • Oğur, E., Koç, A., Yağlı, H., Koç, Y., & Köse, Ö. (2024). Thermodynamic, economic, and environmental analysis of a hydrogen-powered turbofan engine at varying altitudes. International Journal of Hydrogen Energy, 55, 1203-1216.
  • Oğur, E., Koç, A., Köse, Ö., Koç, Y., & Yağlı, H. (2024). Performance assessment of ammonia as a turbofan engine fuel during various altitude levels. Energy, 308, 132714.
  • Oğur, E., Koç, A., Köse, Ö., Yağlı, H., & Koç, Y. (2025a). Energy, exergy, exergoeconomic, exergy sustainability and exergoenvironmental analyses (5E) of a turbofan engine: A comparative study of hydrogen and kerosene fuels. Fuel, 381, 133324.
  • Oğur, E., Koç, A., Yağlı, H., Köse, Ö., & Koç, Y. (2025b). Shifting to lower carbon emission for aircraft: An alternative fuel evaluation. Energy, 316, 134426.
  • Ping, X., Yao, B., Zhang, H., & Yang, F. (2021). Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery. Energy, 236, 121508.
  • Sabzehali, M., Rabiee, A. H., Alibeigi, M., & Mosavi, A. (2022). Predicting the energy and exergy performance of F135 PW100 turbofan engine via deep learning approach. Energy Conversion and Management, 265, 115775.
  • Su, L., Wen, F., Wang, S., & Wang, Z. (2022). Analysis of energy saving and thrust characteristics of rotating detonation turbine engine. Aerospace Science and Technology, 124, 107555.
  • Sürer, M. G., & Arat, H. T. (2024). Energy and exergy analysis of hydrogen production from seawater using waste heat recovery system on a model ship. International Journal of Exergy, 44(1), 53-64.
  • Tiwari, D. (2024). Improved evacuated and compound parabolic collector-driven ORC/VCR system: a thermodynamic analysis. Journal of Thermal Analysis and Calorimetry, 149(15), 8539-8553.
  • Type-certıfıcate data sheet. No. IM. E.002 for GE90 Series Engines Type Certificate Holder General Electric Company GE Aviation 1 Neumann Way Cincinnati, OH 45215-6310 USA. 18 December 2019.
  • Tuzcu, H., Sohret, Y., & Caliskan, H. (2021). Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environmental Progress & Sustainable Energy, 40(3), e13547.
  • Xue, R., Jiang, J., & Jackson, A. (2019). Effect of bypass ratio on optimal fan outer pressure ratio and performance for turbofan engines. International Journal of Aeronautical and Space Sciences, 20, 157-164.
  • Yapicioglu, A., & Dincer, I. (2018). Performance assesment of hydrogen and ammonia combustion with various fuels for power generators. International Journal of Hydrogen Energy, 43(45), 21037-21048.
  • Yucer, C. T. (2016). Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method. Energy, 111, 251-259.
  • Yuksel, B., Balli, O., Gunerhan, H., & Hepbasli, A. (2020). Comparative performance metric assessment of a military turbojet engine utilizing hydrogen and kerosene fuels through advanced exergy analysis method. Energies, 13(5), 1205.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gaz Dinamiği
Bölüm Makine Mühendisliği
Yazarlar

Emine Oğur 0000-0001-8020-9477

Ali Koç 0000-0002-7388-2628

Yıldız Koç 0000-0002-2219-645X

Özkan Köse 0000-0002-9069-1989

Hüseyin Yağlı 0000-0002-9777-0698

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 20 Kasım 2024
Kabul Tarihi 22 Nisan 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Oğur, E., Koç, A., Koç, Y., Köse, Ö., vd. (2025). INVESTIGATION OF THERMODYNAMIC PERFORMANCE OF TURBOFAN ENGINE AT DIFFERENT FAN PRESSURE AND BYPASS RATIOS PART A: ENERGY ANALYSIS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 630-643.