Araştırma Makalesi
BibTex RIS Kaynak Göster

RESEARCH ON THE USE OF WOOD FLOUR AND CHICKEN FEATHER AS FILLER IN HIGH DENSITY POLYETHYLENE BASED COMPOSITES

Yıl 2025, Cilt: 28 Sayı: 2, 690 - 701, 03.06.2025

Öz

In this study, the effects of wood flour addition and chicken feather usage rate on physical, mechanical and combustion properties in high-density (HDPE) based composites were investigated. Wood flour was used at a 0-15% rate and chicken feather at a 0-5-10-15% rate in composite production. Maleic anhydride-treated polyethyleneIn this study, the effects of wood flour addition and chicken feather usage rate on physical, mechanical and combustion properties in high-density polyethylene (HDPE) based composites were investigated. Wood flour was used at a 0-15% rate and chicken feather at a 0-5-10-15% rate in composite production. Maleic anhydride-treated polyethylene (MAPE) was used as a compatibilizer. Composite production was carried out in a total of 8 different combinations. The density value, tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, impact strength and horizontal burning rate values of the sample groups were determined. According to the test results, an increase occurred in the density value, tensile modulus, flexural strength and flexural modulus with the use of wood flour. An increase was observed in tensile strength, elastic modulus and flexural strength values with the increase in the chicken feather usage rate. It was determined that the horizontal burning rates of the samples decreased with the addition of wood flour and the increase in the chicken feather usage rate. In particular, the flexural modulus in composites containing 15% wood flour and 15% chicken feather increased by more than 40% compared to the control group. This result shows that the mechanical performance of composite materials can be optimized with the synergistic effect of wood flour and chicken feather. (MAPE) was used as a compatibilizer. Composite production was carried out in a total of 8 different combinations. Density value, tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, impact strength and horizontal burning rate values of sample groups were determined. According to the test results, an increase occurred in the density value, tensile modulus, flexural strength and flexural modulus with the use of wood flour. An increase was observed in tensile strength, elastic modulus and flexural strength values with the increase in the chicken feather usage rate. It was determined that the horizontal burning rates of the samples decreased with the addition of wood flour and the increase in the chicken feather usage rate.

Kaynakça

  • Ardyati, T., Sutoyo, S., & Suharjano, (2019). Screening of keratinolytic fungi for biodegradation agent of keratin from chicken feather waste. In IOP Conference Series: Earth and Environmental Science, vol. 391, 012027, 1. doi:10.1088/1755-1315/391/1/012027.
  • ASTM D256, (2010). Standard test for determining the Izod pendulum impact resistance of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D638, (2010). Standard test for tensile properties of plastics. ASTM International, West Conshohocken, PA, USA.
  • ASTM D790, (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, USA.
  • ASTM D792-20 (2020). Standard Test Methods for density and specific gravity (Relativedensity) of Plastics by displacement. ASTM International, West Conshohocken, PA.
  • Atar, İ., Başboğa, İ.H., Karakuş, K., & Mengeloğlu F. (2021). Efect of waste tea (camellia sinensis) wood fibers and MAPE on some properties of high density polyethylene (HDPE) based polymer composites. Turkish Journal of Forest Science, 5(2), 606-619. https://doi.org/10.32328/turkjforsci.991612
  • Baba, B. O., & Özmen, U. (2017). Preparation and mechanical characterization of chicken feather/PLA composites. Polymer Composites, 38(5), 837-845. https://doi.org/10.1002/pc.23644
  • Başboğa, İ.H., Atar, İ., Karakuş, K., & Mengeloğlu, F. (2020). Determination of Some Technological Properties of Injection Molded Pulverized‑HDPE Based Composites Reinforced with Micronized Waste Tire Powder and Red Pine Wood Wastes. Journal of Polymers and the Environment, 28, 1776–1794. https://doi.org/10.1007/s10924-020-01726-7
  • Başboğa, H. İ., Kılıç, İ., Atar, İ., & Mengeloğlu, F. (2022). The usage of wood of dahoma (Piptadeniastrum africanum), a tropic tree, in the production of wood plastic composite. Turkish Journal of Forestry Research, 9 (Special Issue), 271-280. https://doi.org/10.17568/ogmoad.1091247
  • Başboğa, H. I. (2023). Polypropylene-based composites reinforced with waste tropic wood flours: Determination of accelerated weathering resistance, tribological, and thermal properties. BioResources, 18(4), 7251-7294. DOI: 10.15376/biores.18.4.7251-7294
  • Beaugranda, J., Nottez, M., Konnerth, J., and Bourmaud, A. (2014). “Multi-scale analysis of the structure and mechanical performance of woody hemp core and the dependence on the sampling location,” Industrial Crops and Products 60, 193-204. DOI: 10.1016/j.indcrop.2014.06.019
  • Bledzki, A., & Faruk, O. (2003). Wood fibre reinforced polypropylene composites: Effect of fibre geometry and coupling agent on physico-mechanical properties. Applied Composite Materials, 10, 365-379. DOI: 10.1023/A:1025741100628
  • Brostow, W., Datashvili, T., & Miller, H. (2010). Wood and Wood Derived Materials. J. Mater. Educ., Vol. 32, pp.125–138.
  • Borysiak, S., Paukszta, D., Batkowska, P., and Mankowski, J. (2011). “The structure, morphology, and mechanical properties of thermoplastic composites with ligncellulosic fiber,” in: Cellulose Fibers: Bio- and Nano-Polymer Composites, S. Kalia, B. S. Kaith, and I. Kaur (eds.), Springer Heidelberg, Dordrecht, Netherlands, pp. 263-290. DOI: 10.1007/978-3-642-17370-7
  • Cheng, S., Lau, K., Liu, T., Zhao, Y., Lam, PM., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites: Part B. 40, 650-654. https://doi.org/10.1016/j.compositesb.2009.04.011
  • Çavdar, A. D., Kalaycıoğlu, H., & Mengeloğlu, F. (2011). Tea mill waste fibers filled thermoplastic composites: The effects of plastic type and fiber loading. Journal of Reinforced Plastics and Composites, 30(10), 833-844. DOI: 10.1177/0731684411408752
  • Çavuş, V. (2020). Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP). BioResources, 15(2), 2227-2236. DOI: 10.15376/biores.15.2.2227-2236
  • Çavuş, V., & Mengeloğlu, F. (2020). Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites. BioResources, 15(2), 3427-3442. DOI: 10.15376/biores.15.2.3427-3442
  • Çetin, N. S., Alma, M. H., & Baştürk, M. A. (2000). Yeni kompozitler üretmek amacıyla doğal lignoselülozik lifler ile sentetik polimerler arasında uyum sağlayan birleştirici maddeler ve metotlar. Fen ve Mühendislik Dergisi, 3(2), 58-68.
  • Espinach, F. X., Julian, F., Verdaguer, N., Torres, L., Pelach, M. A., Vilaseca, F., & Mutje, P. (2013). Analysis of tensile and flexural modulus in hemp strands/ polypropylene composites. Composites Part B: Engineering, 47, 339-343. DOI: 10.1016/j.compositesb.2012.11.021
  • Evazynajad, A., Kar, A., Veluswamy, S., McBride, H., & George, B. R. (2002). Production and characterization of yarns and fabrics utilizing Turkey feather fibers. Materials Research Society Symposium Proceedings, 702, 5–16. https://doi.org/10.1557/PROC-702-U1.2.1
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Hong, C.K., & Wool, R.P. (2005). Development of a Bio-Based Composite Material from Soybean Oil and Keratin Fibers. Journal of Applied Polymer Science. Vol. 95: pp.1524–1538. https://doi.org/10.1002/app.21044
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., & Mengeloğlu, F. (2023). Using furniture factory waste sawdust in wood plastic composite production and prototype sample production. BioResources, 18(4), 7212-7229. DOI: 10.15376/biores.18.4.7212-7229
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., & Mengeloğlu, F. (2024). Utilization of flours from hemp stalks as reinforcement in polypropylene matrix. Bioresources, 19(1), 1494-1516. DOI: 10.15376/biores.19.1.1494-1516
  • Kim, J. K., and Pal, K. (2010). Recent Advances in the Processing of Wood–Plastic Composites, Springer-Verlag Berlin, Germany. DOI: 10.1007/978-3-642-14877-4
  • Korley, L. T. J., Epps, T. H., Helms, B. A., & Ryan, A. J. (2021). Toward polymer upcycling—Adding value and tackling circularity. Science, 373(6550), 66–69. https://doi.org/10.1126/science.abg4503
  • Li, Q. & Matuana, L.M. (2003). Effectiveness of maleated and acryclic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. Journal of Thermoplastic Composite Materials. 16, 551-564; DOI 10.1177/089270503033340.
  • Martínez-Hernández, A.L., Velasco-Santos, C., De Icaza, M., & Castaño, V.M. (2005a) Microstructural Characterization of Keratin Fibres from Chicken Feathers. International Journal of Environment and Pollution. Vol. 23: pp.162–178. https://doi.org/10.1504/IJEP.2005.006858
  • Martínez-Hernández, A.L., Velasco-Santos, C., De Icaza, M., & Castaño, V.M. (2005b) Mechanical Properties Evaluation of New Composites with Protein Biofibers Reinforcing Poly (Methyl Methacylate). Polymer, Vol. 46: pp.8233–8238. https://doi.org/10.1016/j.polymer.2005.06.093
  • Maziero, R., Soares, K., Filho, A. I., Franco, A. R., & Rubio, J. C. C. (2019). Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and pinus particles. BioResources, 14(2), 4774-4791. DOI: 10.15376/biores.14.2.4774-4791
  • Meandro, N. A. (2010). Waste chicken feather as reinforcement in cement-bonded composites. Philippine Journal of Science, 139, 161-166.
  • Mengeloǧlu, F., & Karakuş, K., 2008. Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32:537–546. https ://doi.org/10.3906/tar-0801-7
  • Mengeloglu, F., and Karakuş, K. (2012). “Mechanical properties of injection-molded foamed wheat straw filled HDPE biocomposites: The effects of filler loading and coupling agent contents,” BioResources 7(3), 3293-3305. DOI: 10.15376/biores.7.3.3293-3305
  • Mengeloglu, F., Matuana, LM. & King, J. (2000). Effect of impact modifiers on properties of rigid PVC/ wood-fiber composites. Journal of Vinyl and Additive Technology. 6: 153–157. https://doi.org/10.1002/vnl.10244
  • Meyers, M. A., Chen, P. Y., Lin, A. Y. M., & Seki, Y. (2008). Biological Materials: Structure and Mechanical Properties. Progress in Materials Science, Vol. 53: pp.1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002
  • Mohanty, A. K., Misra, M., and Drzal, L. T., (2002). “Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world,” Journal of Polymers and the Environment 10, 19-26
  • Salhi, S. S. A. B. A. (2012). Development of bio-composites based on polymer matrix and keratin fibres: Contribution to poultry biomass recycling. Materials Science Forum, 237-243.
  • Shih, J. C. H. (1993). Recent development in poultry waste digestion and feather utilization: A review. Poultry Science 72 (9), 1617–20. doi:10.3382/ps.0721617.
  • Soubhagya, M., A. Champati, H. K. Popalghat, P. Patel, & Sneha. K. R. (2019). Poultry waste management: an approach for sustainable development. International Journal of Advanced Scientific Research 4 (1):8–14.
  • Stark, N., & Berger, M. J., (1997). Effect of species and particle size on properties of wood-flour-filled polypropylene composites. Symposium of Functional Fillers for Thermoplastics and Thermosets, San Diego, CA, USA, pp. 1-20.
  • Subramani, T., Krishnan, S., Ganesan, S. K., & Nagarajan, G. (2014). Investigation of mechanical properties in polyester and phenyl-ester composites reinforced with chicken feather fiber. International Journal of Engineering Research and Applications (IJERA), 4(12), 93-104.
  • Summerscales, J., Dissanayake, P. J., Virk, A. S., and Hall, W. (2010). “A review of bast fibres and their composites. Part 1- Fibres as reinforcements,” Composites Part A: Applied Science and Manufacturing 41(10), 1329-1335. DOI: 10.1016/j.compositesa.2010.06.001
  • UL 94, (2021). Tests for Flammability of Plastic Materials for Parts in Devices and Appliances. American National Standard.
  • Williams, C. M. (2013). Poultry waste management in developing countries. The Role of Poultry in Human Nutrition 46.
  • Winandy, J. E., Muehl, J. H., Micaels, J. A., & Raina, A. (2014). Potential of chicken feather fibre in Wood mdf Composites. Available online: http://www.fpl.fs.fed.us/documnts/pdf2003/winan03d.pdf (accessed on 4 FEB 2016).
  • Yang, H.-S., Kim, H.-J., Son, J., Park, H. J., Lee, B. J., & Hwang, T. S. (2004). Rice- husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63, 305-312. DOI: 10.1016/S0263-8223(03)00179-X
  • Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2007). Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures, 77, 45-55. DOI: 10.1016/j.compstruct.2005.06.005
  • Yuan, Q., Wu, D., Gotama, J., & Bateman, S. (2008). Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. Journal of Thermoplastic Composite Materials, 21(3), 195-208. DOI: 10.1177/0892705708089472
  • Zaini, M. J., Fuad, M. Y. A., Ismail, Z., Mansor, M. S., & Mustafah, J. (1996). The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40, 51-55. DOI: 10.1002/(SICI)1097-0126(199605)
  • Zhan, M., & Wool, R.P. (2016). Mechanical properties of composites with chicken feather and glass fibers. Journal of Applied Polymer science. 133, 44013. https://doi.org/10.1002/app.44013

YÜKSEK YOĞUNLUKLU POLİETİLEN ESASLI KOMPOZİTLERDE DOLGU MADDESİ OLARAK ODUN UNU VE TAVUK TÜYÜ KULLANIMININ ARAŞTIRILMASI

Yıl 2025, Cilt: 28 Sayı: 2, 690 - 701, 03.06.2025

Öz

Bu çalışmada yüksek yoğunluklu polietilen (YYPE) esaslı kompozitlerde odun unu ilavesi ve tavuk tüyü kullanım oranının fiziksel, mekanik ve yanma özellikleri üzerine etkisi araştırılmıştır. Kompozit üretimlerinde odun unu %0-15 oranında, tavuk tüyü %0-5-10-15 oranlarında kullanılmıştır. Uyumlaştırıcı ajan olarak maleik anhidritle muamele edilmiş polietilen (MAPE) kullanılmıştır. Toplam 8 farklı kombinasyonda kompozit üretimi gerçekleştirilmiştir. Örnek gruplarının yoğunluk değeri, çekme direnci, çekmede elastikiyet modülü, kopmada uzama, eğilme direnci, eğilmede elastikiyet modülü, darbe direnci ve yatay yanma hızı değerleri tespit edilmiştir. Test sonuçlarına göre odun unu kullanımı ile yoğunluk değeri, çekmede elastikiyet modülü, eğilme direnci ve eğilmede elastikiyet modülü değerlerinde artış meydana gelmiştir. Tavuk tüyü kullanım oranının artması ile çekme direnci, elastikiyet modülü ve eğilme direnci değerlerinde artış görülmüştür. Odun unu ilavesi ve tavuk tüyü kullanım oranının artması ile örneklerin yatay yanma hızlarında düşüş olduğu tespit edilmiştir. Bu çalışmada, odun unu ve tavuk tüyü dolgu maddelerinin farklı oranlarda kullanımı, kompozit malzemelerin performansını önemli ölçüde etkilemiştir. Özellikle, %15 odun unu ve %15 tavuk tüyü içeren kompozitlerde eğilmede elastikiyet modülü, kontrol grubuna kıyasla %40’tan fazla artış göstermiştir. Bu sonuç, odun unu ve tavuk tüyünün sinerjik etkisiyle kompozit malzemelerin mekanik performansının optimize edilebileceğini göstermektedir.

Kaynakça

  • Ardyati, T., Sutoyo, S., & Suharjano, (2019). Screening of keratinolytic fungi for biodegradation agent of keratin from chicken feather waste. In IOP Conference Series: Earth and Environmental Science, vol. 391, 012027, 1. doi:10.1088/1755-1315/391/1/012027.
  • ASTM D256, (2010). Standard test for determining the Izod pendulum impact resistance of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D638, (2010). Standard test for tensile properties of plastics. ASTM International, West Conshohocken, PA, USA.
  • ASTM D790, (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, USA.
  • ASTM D792-20 (2020). Standard Test Methods for density and specific gravity (Relativedensity) of Plastics by displacement. ASTM International, West Conshohocken, PA.
  • Atar, İ., Başboğa, İ.H., Karakuş, K., & Mengeloğlu F. (2021). Efect of waste tea (camellia sinensis) wood fibers and MAPE on some properties of high density polyethylene (HDPE) based polymer composites. Turkish Journal of Forest Science, 5(2), 606-619. https://doi.org/10.32328/turkjforsci.991612
  • Baba, B. O., & Özmen, U. (2017). Preparation and mechanical characterization of chicken feather/PLA composites. Polymer Composites, 38(5), 837-845. https://doi.org/10.1002/pc.23644
  • Başboğa, İ.H., Atar, İ., Karakuş, K., & Mengeloğlu, F. (2020). Determination of Some Technological Properties of Injection Molded Pulverized‑HDPE Based Composites Reinforced with Micronized Waste Tire Powder and Red Pine Wood Wastes. Journal of Polymers and the Environment, 28, 1776–1794. https://doi.org/10.1007/s10924-020-01726-7
  • Başboğa, H. İ., Kılıç, İ., Atar, İ., & Mengeloğlu, F. (2022). The usage of wood of dahoma (Piptadeniastrum africanum), a tropic tree, in the production of wood plastic composite. Turkish Journal of Forestry Research, 9 (Special Issue), 271-280. https://doi.org/10.17568/ogmoad.1091247
  • Başboğa, H. I. (2023). Polypropylene-based composites reinforced with waste tropic wood flours: Determination of accelerated weathering resistance, tribological, and thermal properties. BioResources, 18(4), 7251-7294. DOI: 10.15376/biores.18.4.7251-7294
  • Beaugranda, J., Nottez, M., Konnerth, J., and Bourmaud, A. (2014). “Multi-scale analysis of the structure and mechanical performance of woody hemp core and the dependence on the sampling location,” Industrial Crops and Products 60, 193-204. DOI: 10.1016/j.indcrop.2014.06.019
  • Bledzki, A., & Faruk, O. (2003). Wood fibre reinforced polypropylene composites: Effect of fibre geometry and coupling agent on physico-mechanical properties. Applied Composite Materials, 10, 365-379. DOI: 10.1023/A:1025741100628
  • Brostow, W., Datashvili, T., & Miller, H. (2010). Wood and Wood Derived Materials. J. Mater. Educ., Vol. 32, pp.125–138.
  • Borysiak, S., Paukszta, D., Batkowska, P., and Mankowski, J. (2011). “The structure, morphology, and mechanical properties of thermoplastic composites with ligncellulosic fiber,” in: Cellulose Fibers: Bio- and Nano-Polymer Composites, S. Kalia, B. S. Kaith, and I. Kaur (eds.), Springer Heidelberg, Dordrecht, Netherlands, pp. 263-290. DOI: 10.1007/978-3-642-17370-7
  • Cheng, S., Lau, K., Liu, T., Zhao, Y., Lam, PM., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites: Part B. 40, 650-654. https://doi.org/10.1016/j.compositesb.2009.04.011
  • Çavdar, A. D., Kalaycıoğlu, H., & Mengeloğlu, F. (2011). Tea mill waste fibers filled thermoplastic composites: The effects of plastic type and fiber loading. Journal of Reinforced Plastics and Composites, 30(10), 833-844. DOI: 10.1177/0731684411408752
  • Çavuş, V. (2020). Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP). BioResources, 15(2), 2227-2236. DOI: 10.15376/biores.15.2.2227-2236
  • Çavuş, V., & Mengeloğlu, F. (2020). Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites. BioResources, 15(2), 3427-3442. DOI: 10.15376/biores.15.2.3427-3442
  • Çetin, N. S., Alma, M. H., & Baştürk, M. A. (2000). Yeni kompozitler üretmek amacıyla doğal lignoselülozik lifler ile sentetik polimerler arasında uyum sağlayan birleştirici maddeler ve metotlar. Fen ve Mühendislik Dergisi, 3(2), 58-68.
  • Espinach, F. X., Julian, F., Verdaguer, N., Torres, L., Pelach, M. A., Vilaseca, F., & Mutje, P. (2013). Analysis of tensile and flexural modulus in hemp strands/ polypropylene composites. Composites Part B: Engineering, 47, 339-343. DOI: 10.1016/j.compositesb.2012.11.021
  • Evazynajad, A., Kar, A., Veluswamy, S., McBride, H., & George, B. R. (2002). Production and characterization of yarns and fabrics utilizing Turkey feather fibers. Materials Research Society Symposium Proceedings, 702, 5–16. https://doi.org/10.1557/PROC-702-U1.2.1
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Hong, C.K., & Wool, R.P. (2005). Development of a Bio-Based Composite Material from Soybean Oil and Keratin Fibers. Journal of Applied Polymer Science. Vol. 95: pp.1524–1538. https://doi.org/10.1002/app.21044
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., & Mengeloğlu, F. (2023). Using furniture factory waste sawdust in wood plastic composite production and prototype sample production. BioResources, 18(4), 7212-7229. DOI: 10.15376/biores.18.4.7212-7229
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., & Mengeloğlu, F. (2024). Utilization of flours from hemp stalks as reinforcement in polypropylene matrix. Bioresources, 19(1), 1494-1516. DOI: 10.15376/biores.19.1.1494-1516
  • Kim, J. K., and Pal, K. (2010). Recent Advances in the Processing of Wood–Plastic Composites, Springer-Verlag Berlin, Germany. DOI: 10.1007/978-3-642-14877-4
  • Korley, L. T. J., Epps, T. H., Helms, B. A., & Ryan, A. J. (2021). Toward polymer upcycling—Adding value and tackling circularity. Science, 373(6550), 66–69. https://doi.org/10.1126/science.abg4503
  • Li, Q. & Matuana, L.M. (2003). Effectiveness of maleated and acryclic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. Journal of Thermoplastic Composite Materials. 16, 551-564; DOI 10.1177/089270503033340.
  • Martínez-Hernández, A.L., Velasco-Santos, C., De Icaza, M., & Castaño, V.M. (2005a) Microstructural Characterization of Keratin Fibres from Chicken Feathers. International Journal of Environment and Pollution. Vol. 23: pp.162–178. https://doi.org/10.1504/IJEP.2005.006858
  • Martínez-Hernández, A.L., Velasco-Santos, C., De Icaza, M., & Castaño, V.M. (2005b) Mechanical Properties Evaluation of New Composites with Protein Biofibers Reinforcing Poly (Methyl Methacylate). Polymer, Vol. 46: pp.8233–8238. https://doi.org/10.1016/j.polymer.2005.06.093
  • Maziero, R., Soares, K., Filho, A. I., Franco, A. R., & Rubio, J. C. C. (2019). Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and pinus particles. BioResources, 14(2), 4774-4791. DOI: 10.15376/biores.14.2.4774-4791
  • Meandro, N. A. (2010). Waste chicken feather as reinforcement in cement-bonded composites. Philippine Journal of Science, 139, 161-166.
  • Mengeloǧlu, F., & Karakuş, K., 2008. Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32:537–546. https ://doi.org/10.3906/tar-0801-7
  • Mengeloglu, F., and Karakuş, K. (2012). “Mechanical properties of injection-molded foamed wheat straw filled HDPE biocomposites: The effects of filler loading and coupling agent contents,” BioResources 7(3), 3293-3305. DOI: 10.15376/biores.7.3.3293-3305
  • Mengeloglu, F., Matuana, LM. & King, J. (2000). Effect of impact modifiers on properties of rigid PVC/ wood-fiber composites. Journal of Vinyl and Additive Technology. 6: 153–157. https://doi.org/10.1002/vnl.10244
  • Meyers, M. A., Chen, P. Y., Lin, A. Y. M., & Seki, Y. (2008). Biological Materials: Structure and Mechanical Properties. Progress in Materials Science, Vol. 53: pp.1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002
  • Mohanty, A. K., Misra, M., and Drzal, L. T., (2002). “Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world,” Journal of Polymers and the Environment 10, 19-26
  • Salhi, S. S. A. B. A. (2012). Development of bio-composites based on polymer matrix and keratin fibres: Contribution to poultry biomass recycling. Materials Science Forum, 237-243.
  • Shih, J. C. H. (1993). Recent development in poultry waste digestion and feather utilization: A review. Poultry Science 72 (9), 1617–20. doi:10.3382/ps.0721617.
  • Soubhagya, M., A. Champati, H. K. Popalghat, P. Patel, & Sneha. K. R. (2019). Poultry waste management: an approach for sustainable development. International Journal of Advanced Scientific Research 4 (1):8–14.
  • Stark, N., & Berger, M. J., (1997). Effect of species and particle size on properties of wood-flour-filled polypropylene composites. Symposium of Functional Fillers for Thermoplastics and Thermosets, San Diego, CA, USA, pp. 1-20.
  • Subramani, T., Krishnan, S., Ganesan, S. K., & Nagarajan, G. (2014). Investigation of mechanical properties in polyester and phenyl-ester composites reinforced with chicken feather fiber. International Journal of Engineering Research and Applications (IJERA), 4(12), 93-104.
  • Summerscales, J., Dissanayake, P. J., Virk, A. S., and Hall, W. (2010). “A review of bast fibres and their composites. Part 1- Fibres as reinforcements,” Composites Part A: Applied Science and Manufacturing 41(10), 1329-1335. DOI: 10.1016/j.compositesa.2010.06.001
  • UL 94, (2021). Tests for Flammability of Plastic Materials for Parts in Devices and Appliances. American National Standard.
  • Williams, C. M. (2013). Poultry waste management in developing countries. The Role of Poultry in Human Nutrition 46.
  • Winandy, J. E., Muehl, J. H., Micaels, J. A., & Raina, A. (2014). Potential of chicken feather fibre in Wood mdf Composites. Available online: http://www.fpl.fs.fed.us/documnts/pdf2003/winan03d.pdf (accessed on 4 FEB 2016).
  • Yang, H.-S., Kim, H.-J., Son, J., Park, H. J., Lee, B. J., & Hwang, T. S. (2004). Rice- husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63, 305-312. DOI: 10.1016/S0263-8223(03)00179-X
  • Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2007). Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures, 77, 45-55. DOI: 10.1016/j.compstruct.2005.06.005
  • Yuan, Q., Wu, D., Gotama, J., & Bateman, S. (2008). Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. Journal of Thermoplastic Composite Materials, 21(3), 195-208. DOI: 10.1177/0892705708089472
  • Zaini, M. J., Fuad, M. Y. A., Ismail, Z., Mansor, M. S., & Mustafah, J. (1996). The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40, 51-55. DOI: 10.1002/(SICI)1097-0126(199605)
  • Zhan, M., & Wool, R.P. (2016). Mechanical properties of composites with chicken feather and glass fibers. Journal of Applied Polymer science. 133, 44013. https://doi.org/10.1002/app.44013
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler, Polimerler ve Plastikler
Bölüm Malzeme Bilimi ve Mühendisliği
Yazarlar

Büşra Avcı 0000-0003-1710-2778

İlkay Atar 0000-0001-9527-1791

Fatih Mengeloğlu 0000-0002-2614-3662

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 5 Aralık 2024
Kabul Tarihi 13 Mart 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Avcı, B., Atar, İ., & Mengeloğlu, F. (2025). YÜKSEK YOĞUNLUKLU POLİETİLEN ESASLI KOMPOZİTLERDE DOLGU MADDESİ OLARAK ODUN UNU VE TAVUK TÜYÜ KULLANIMININ ARAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 690-701.