Derleme
BibTex RIS Kaynak Göster

ZEMİN İYİLEŞTİRME İÇİN MİKROBİYAL KALSİYUM KARBONAT ÇÖKELİMİ UYGULAMALARI: BİR İNCELEME

Yıl 2025, Cilt: 28 Sayı: 2, 1110 - 1122, 03.06.2025

Öz

Zemin iyileştirme dünyanın birçok yerinde önemli geoteknik mühendisliği konularından biridir. Geleneksel zemin iyileştirme tekniklerinin yaygın bir kullanım alanının olduğu belirtilebilir. Ancak günümüzde çevre ve sürdürülebilirlik algısının önemle etkin olması, sürekli artan ihtiyaçları karşılama da yeni çözümler ve tekniklerin aramasını zorunlu kılmaktadır. Son zamanlarda başarılı aynı zamanda sürdürülebilir ve çevre dostu potansiyele sahip mikrobiyal kalsiyum karbonat çökeltisi ile zeminler iyileştirilebilmesi birçok geoteknik sorununa çözüm sağlamak için umut vaat eden fırsatların ortaya çıkmasını sağlamıştır. Mikrobiyal kalsiyum karbonat çökeltisi doğal olarak oluşan ve biyolojik ve kimyasal metabolik aktivite süreçlerinin bir parçası olarak zeminlerin iyileştirilmesinde kullanılan ve dahası yoğun bilimsel araştırmalar ile önemli ilerlemeler kaydeden bir tekniktir. Bu çalışma mikrobiyal kalsiyum karbonat çökeltisinin zeminlerin mühendislik özelliklerine etkisine dair genel bir bakış sunmayı amaçlamaktadır. Bu çalışmada, öncelikle mikrobiyal kalsiyum karbonat oluşum mekanizmasına ve bu mekanizmayı etkileyen faktörlere genel bir bakış sunulmaktadır. İkinci olarak mikroorganizmalar ve zemin arasındaki etkileşim açıklanmaktadır. Üçüncü olarak ise literatürdeki güncel çalışmalar ayrıntılı olarak incelenmekte ve uygulamaları, avantajları ve uygulamasında karşılaşılabilecek zorlukları sunulmaktadır. Son olarak değerlendirmeleri ve önerileri içermektedir.

Kaynakça

  • Akoğuz, H., Çelik, S., & Barış, Ö. (2018). Zeminlerin biyolojik iyileştirilmesinde viridibacillus arenosi bakterisinin zemin ortamına olan etkisinin gözlemlenmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi, 1(1), 53-66, https://dergipark.org.tr/tr/download/article-file/604855.
  • Akoğuz, H., Çelik, S., & Baris, O. (2023). Effect of biocementation on the engineering properties of sand soils under different flow rates and treatment durations. International Journal of Environmental Science and Technology, 20(10), 11437-11450, https://doi.org/10.1007/s13762-023-05059-5.
  • Akyıldız, M. H. (2019). Zemin iyileştirme yöntemleri. Mühendislik ve Multidisipliner Yaklaşımlar, Güven Plus Grup A.Ş. Yayınları: Aralık 2019, Yayıncı Sertifika No: 36934, E-ISBN: 978-605-7594-39-6, 147-165.
  • Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
  • Ali, N. A., & Karkush, M. O. (2021). Improvement of unconfined compressive strength of soft clay using microbial calcite precipitates. Journal of Engineering, 27(3), 67-75, https://doi.org/10.31026/j.eng.2021.03.05.
  • Amin, M., Zomorodian, S. M. A., & O'Kelly, B. C. (2017). Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 170(2), 112-122, https://doi.org/10.1680/jgrim.16.00028.
  • Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5, 1-26, https://doi.org/10.1186/s40064-016-1869-2.
  • Anitha, V., Abinaya, K., Prakash, S., Seshagiri Rao, A., & Vanavil, B. (2018). Bacillus cereus KLUVAA mediated biocement production using hard water and urea. Chemical and Biochemical Engineering Quarterly, 32(2), 257-266, https://doi.org/10.15255/CABEQ.2017.1096.
  • Bağrıaçık, B., Uslu, F. M., Yiğittekin, E. S., Delik, A., & Dinçer, S. (2021). Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 704-711, https://doi.org/10.28948/ngumuh.898554.
  • Behzadipour, H., & Sadrekarimi, A. (2023). Effect of microbial-induced calcite precipitation on shear strength of gold mine tailings. Bulletin of Engineering Geology and the Environment, 82(8), 331, https://doi.org/10.1007/s10064-023-03357-3.
  • Bozbeyoğlu Kart, N. N. (2021). Bakteriyel kalsiyum karbonat mineralizasyonunda üreolitik bakterikil etkileşimi: Paenibacillus Favisporus U3. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Canakci, H., Sidik, W., & Kilic, I. H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211-1221, https://doi.org/10.1016/j.sandf.2015.09.020.
  • Candoğan, T. Ş. (2015). Üreolitik bakteriler ile kalsiyum karbonat mineralizasyonu ve zemin iyileştirmede kullanımı. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Chittoori, B. C., Pathak, A., Burbank, M., & Islam, M. T. (2020, February). Application of bio-stimulated calcite precipitation to stabilize expansive soils: Field trials. In Geo-Congress 2020, pp. 111-120, Reston, VA: American Society of Civil Engineers, https://doi.org/10.1061/9780784482834.013.
  • Chu, J., Ivanov, V., He, J., Maeimi, M., & Wu, S. (2015). Use of biogeotechnologies for soil improvement. In Ground Improvement Case Histories, pp.571-589, Butterworth-Heinemann, https://doi.org/10.1016/B978-0-08-100191-2.00019-8.
  • Cuzman, O. A., Rescic, S., Richter, K., Wittig, L., & Tiano, P. (2015). Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. Journal of Biotechnology, 214, 49-56, https://doi.org/10.1016/j.jbiotec.2015.09.011.
  • De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36(2), 99-111, https://doi.org/10.1016/j.ecoleng.2009.03.025.
  • DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210, https://doi.org/10.1016/j.ecoleng.2008.12.029.
  • Demiröz, A., Karaduman, M. (2009). Zemin iyileştirme metotları. Selçuk-Teknik Dergisi, 8,(3), 176-192, https://hdl.handle.net/20.500.12395/10799.
  • Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314, https://doi.org/10.3389/fmicb.2013.00314.
  • Duo, L., Kan-liang, T., Hui-li, Z., Yu-yao, W., Kang-yi, N., & Shi-can, Z. (2018). Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Construction and Building Materials, 172, 251-262, https://doi.org/10.1016/j.conbuildmat.2018.03.255.
  • El Mountassir, G., Minto, J. M., van Paassen, L. A., Salifu, E., & Lunn, R. J. (2018). Applications of microbial processes in geotechnical engineering. Advances in Applied Microbiology, 104, 39-91, https://doi.org/10.1016/bs.aambs.2018.05.001.
  • Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), 100002, https://doi.org/10.1016/j.bgtech.2023.100002.
  • Hammes, F., & Verstraete*, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 3-7, https://doi.org/10.1023/A:1015135629155.
  • Kalantary, F., & Kahani, M. (2019). Optimization of the biological soil improvement procedure. International Journal of Environmental Science and Technology, 16, 4231-4240, https://doi.org/10.1007/s13762-018-1821-9.
  • Kantzas, A., Stehmeier, L., Marentette, D. F., Ferris, F. G., Jha, K. N., & Maurits, F. M. (1992, June). A novel method of sand consolidation through bacteriogenic mineral plugging. In PETSOC Annual Technical Meeting, pp. Petsoc-92, https://doi.org/10.2118/92-46.
  • Karol, R.H. (2003). Chemical grouting and soil stabilization, Revised and Expanded (3rd ed.). CRC Press. https://doi.org/10.1201/9780203911815.
  • Kim, G., Kim, J., & Youn, H. (2018). Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation. Applied Sciences, 8(8), 1277, https://doi.org/10.3390/app8081277.
  • Lian, J., Xu, H., He, X., Yan, Y., Fu, D., Yan, S., & Qi, H. (2019). Biogrouting of hydraulic fill fine sands for reclamation projects. Marine Georesources & Geotechnology, 37(2), 212-222, https://doi.org/10.1080/1064119X.2017.1420115.
  • Liu, B., Zhu, C., Tang, C. S., Xie, Y. H., Yin, L. Y., Cheng, Q., & Shi, B. (2020). Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 264, 105389, https://doi.org/10.1016/j.enggeo.2019.105389.
  • Madigan, M. T., Martinko, J. M., & Parker, J. (1997). Brock biology of microorganisms (Vol. 11). Upper Saddle River, NJ: Prentice Hall.
  • Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Factors affecting the bio-cementing process of coarse sand. Proceedings of the Institution of Civil Engineers-Ground Improvement, 172(1), 25-36, https://doi.org/10.1680/jgrim.17.00039.
  • Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., ... & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
  • Meng, H., Shu, S., Gao, Y., Yan, B., & He, J. (2021). Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement. Engineering Geology, 294, 106374, https://doi.org/10.1016/j.enggeo.2021.106374.
  • Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222-1233, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
  • Nagy, B., Baptist, S., & Kustermann, A. (2022). A novel approach for the consolidation of sand by MICP single treatment. In MATEC Web of Conferences, Vol.364, p.05003, EDP Sciences, https://doi.org/10.1051/matecconf/202236405003.
  • Naqi, A., & Jang, J. G. (2019). Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability, 11(2), 537, https://doi.org/10.3390/su11020537.
  • Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885, https://doi.org/10.1016/j.ecoleng.2020.105885.
  • Oliveira, P. J. V., Freitas, L. D., & Carmona, J. P. (2017). Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. Journal of Materials in Civil Engineering, 29(4), 04016263, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804.
  • Okwadha, G. D., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148, https://doi.org/10.1016/j.chemosphere.2010.09.066.
  • Özer, N. & Özgünler Acun, S. (2023). A research on natural cement as a sustainable hydraulic binder for buildings. In Ü.T. Arpacıoğlu & S. Akten, (Eds.). Architectural Sciences, Sustainable Materials and Built Environment, Chapter-3, ISBN:978-625-367-287-4, 104-134, Ankara:Iksad Publications.
  • Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Optimum condition for the application of enzyme-mediated calcite precipitation technique as soil improvement method. Int. J. Adv. Sci. Eng. Inf. Technol, 7(6), 2145-2151, DOI: 10.18517/ijaseit.7.6.3425.
  • PwC Türkiye - Dünyada ve Türkiye’de Çimento Sektörü (2024). https://www.pwc.com.tr/tr/sektorler/i%CC%87nsaat-ve-muhendislik/pdf/dunyada-ve-turkiyede-cimento-sektoru.pdf. Access date of:15.10.2024.
  • Ramakrishna, C., Thenepalli, T., Nam, S. Y., Kim, C., & Ahn, J. W. (2018). Oyster shell waste is alternative sources for calcium carbonate (CaCO3) instead of natural limestone. Journal of Energy Engineering, 27(1), 59-64, https://doi.org/10.5855/ENERGY.2018.27.1.059.
  • Riveros, G. A., & Sadrekarimi, A. (2020). Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation. Soil Dynamics and Earthquake Engineering, 131, 106034, https://doi.org/10.1016/j.soildyn.2020.106034.
  • Ryparova, P., Prošek, Z., Schreiberova, H., Bílý, P., & Tesarek, P. (2021). The role of bacterially induced calcite precipitation in self-healing of cement paste. Journal of Building Engineering, 39, 102299, https://doi.org/10.1016/j.jobe.2021.102299.
  • Sadjadi, M., Nikooee, E., & Habibagahi, G. (2014). Biological treatment of swelling soils using microbial calcite precipitation. Unsaturated Soils: Research and Applications, 917–922, DOI:10.1201/b17034-132.
  • Salifu, E., MacLachlan, E., Iyer, K. R., Knapp, C. W., & Tarantino, A. (2016). Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 201, 96-105, https://doi.org/10.1016/j.enggeo.2015.12.027.
  • Selçukhan, O., & Ekinci, A. (2021). Zemin iyileştirme yöntemleri ve yaygın kullanımına bağlı değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (23), 481-496, https://doi.org/10.31590/ejosat.881603.
  • Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D., & Li, Y. (2022). Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation. Soil Dynamics and Earthquake Engineering, 161, 107419, https://doi.org/10.1016/j.soildyn.2022.107419.
  • Sharaky, A. M., Mohamed, N. S., Elmashad, M. E., & Shredah, N. M. (2018). Application of microbial biocementation to improve the physico-mechanical properties of sandy soil. Construction and Building Materials, 190, 861-869, https://doi.org/10.1016/j.conbuildmat.2018.09.159.
  • Song, C., & Elsworth, D. (2024). Stress sensitivity of permeability in high-permeability sandstone sealed with microbially-induced calcium carbonate precipitation. Biogeotechnics, 2(1), 100063, https://doi.org/10.1016/j.bgtech.2023.100063.
  • Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17, 718-728, https://doi.org/10.1007/s12205-013-0149-8.
  • Su, F., Wang, Y., Liu, Y., Zhang, J., Liu, X., & Zhang, S. (2023). Factors affecting soil treatment with the microbially induced carbonate precipitation technique and its optimization. Journal of Microbiological Methods, 211, 106771, https://doi.org/10.1016/j.mimet.2023.106771.
  • Sun, X., Miao, L., Tong, T., & Wang, C. (2019). Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotechnica, 14, 627-638, https://doi.org/10.1007/s11440-018-0758-y.
  • Suresh, D., & Uday, K. V. (2024). A comparative study of various parameters influencing biocalcification via ureolysis mediated by enzyme and microbe: A comprehensive review. Geomicrobiology Journal, 41(1), 17-34, https://doi.org/10.1080/01490451.2023.2283419.
  • Tai, C. Y., & Chen, F. B. (1998). Polymorphism of CaCO3, precipitated in a constant‐composition environment. AIChE Journal, 44(8), 1790-1798, https://doi.org/10.1002/aic.690440810.
  • van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728, https://doi.org/10.1061/(ASCE)GT.1943-5606.00003.
  • Wani, K. S., & Mir, B. A. (2021). Effect of microbial stabilization on the unconfined compressive strength and bearing capacity of weak soils. Transportation Infrastructure Geotechnology, 8(1), 59-87, https://doi.org/10.1007/s40515-020-00110-1.
  • Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. Doctoral Dissertation, Murdoch University.
  • Whiffin, V. S., Van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423, https://doi.org/10.1080/01490450701436505.
  • Xiao, P., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849-1862, https://doi.org/10.1139/cgj-2018-057.
  • Xu, J., Yao, W., & Jiang, Z. (2014). Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. Journal of Materials in Civil Engineering, 26(5), 983-991, https://doi.org/10.1061/(ASCE)MT.1943-5533.00009.
  • Yıldırım, N., Gürtuğ, Y., & Sesal, C. (2016). Mikrobiyal kalsiyum karbonat oluşum mekanizmaları ve uygulama alanları. Marmara Fen Bilimleri Dergisi, 28(2), 70-80, https://doi.org/10.7240/mufbed.73209.
  • Yu, X., & Yang, H. (2023). One-phase MICP and two-phase MISP composite cementation. Construction and Building Materials, 409, 133724, https://doi.org/10.1016/j.conbuildmat.2023.133724.
  • Zhang, X., Wang, H., Wang, Y., Wang, J., Cao, J., & Zhang, G. (2024). Improved methods, properties, applications, and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review. Biogeotechnics, 100123, https://doi.org/10.1016/j.bgtech.2024.100123.

APPLICATIONS OF MICROBIAL CALCIUM CARBONATE PRECIPITATION FOR SOIL IMPROVEMENT: A REVIEW

Yıl 2025, Cilt: 28 Sayı: 2, 1110 - 1122, 03.06.2025

Öz

Soil improvement is one of the significant geotechnical engineering issues in many parts of the world. It can be stated that traditional soil improvement techniques are widely used. However, since the perception of the environment and sustainability is very effective today, meeting the ever-increasing needs requires searching for innovative solutions and techniques in this direction. Recently, the improvement of soils with microbial calcium carbonate precipitation, which is known for its successful, sustainable, and environmentally friendly potential, has provided promising opportunities to provide solutions to many geotechnical problems. Microbial calcium carbonate precipitation is a naturally occurring technique used in soil improvement as part of biological and chemical metabolic activity processes, and has made significant progress with scientific research. This study aims to provide an overview of the effect of microbial calcium carbonate precipitation on the engineering properties of soils. In this study, firstly, an overview of the microbial calcium carbonate formation mechanism and the factors influencing this mechanism are presented. Secondly, the interaction between microorganisms and soil is explained. Thirdly, current studies in the literature are reviewed in detail, and their applications, advantages, and the difficulties that may be encountered in their application are presented. Finally, it contains evaluations and recommendations.

Kaynakça

  • Akoğuz, H., Çelik, S., & Barış, Ö. (2018). Zeminlerin biyolojik iyileştirilmesinde viridibacillus arenosi bakterisinin zemin ortamına olan etkisinin gözlemlenmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi, 1(1), 53-66, https://dergipark.org.tr/tr/download/article-file/604855.
  • Akoğuz, H., Çelik, S., & Baris, O. (2023). Effect of biocementation on the engineering properties of sand soils under different flow rates and treatment durations. International Journal of Environmental Science and Technology, 20(10), 11437-11450, https://doi.org/10.1007/s13762-023-05059-5.
  • Akyıldız, M. H. (2019). Zemin iyileştirme yöntemleri. Mühendislik ve Multidisipliner Yaklaşımlar, Güven Plus Grup A.Ş. Yayınları: Aralık 2019, Yayıncı Sertifika No: 36934, E-ISBN: 978-605-7594-39-6, 147-165.
  • Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
  • Ali, N. A., & Karkush, M. O. (2021). Improvement of unconfined compressive strength of soft clay using microbial calcite precipitates. Journal of Engineering, 27(3), 67-75, https://doi.org/10.31026/j.eng.2021.03.05.
  • Amin, M., Zomorodian, S. M. A., & O'Kelly, B. C. (2017). Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 170(2), 112-122, https://doi.org/10.1680/jgrim.16.00028.
  • Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5, 1-26, https://doi.org/10.1186/s40064-016-1869-2.
  • Anitha, V., Abinaya, K., Prakash, S., Seshagiri Rao, A., & Vanavil, B. (2018). Bacillus cereus KLUVAA mediated biocement production using hard water and urea. Chemical and Biochemical Engineering Quarterly, 32(2), 257-266, https://doi.org/10.15255/CABEQ.2017.1096.
  • Bağrıaçık, B., Uslu, F. M., Yiğittekin, E. S., Delik, A., & Dinçer, S. (2021). Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 704-711, https://doi.org/10.28948/ngumuh.898554.
  • Behzadipour, H., & Sadrekarimi, A. (2023). Effect of microbial-induced calcite precipitation on shear strength of gold mine tailings. Bulletin of Engineering Geology and the Environment, 82(8), 331, https://doi.org/10.1007/s10064-023-03357-3.
  • Bozbeyoğlu Kart, N. N. (2021). Bakteriyel kalsiyum karbonat mineralizasyonunda üreolitik bakterikil etkileşimi: Paenibacillus Favisporus U3. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Canakci, H., Sidik, W., & Kilic, I. H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211-1221, https://doi.org/10.1016/j.sandf.2015.09.020.
  • Candoğan, T. Ş. (2015). Üreolitik bakteriler ile kalsiyum karbonat mineralizasyonu ve zemin iyileştirmede kullanımı. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Chittoori, B. C., Pathak, A., Burbank, M., & Islam, M. T. (2020, February). Application of bio-stimulated calcite precipitation to stabilize expansive soils: Field trials. In Geo-Congress 2020, pp. 111-120, Reston, VA: American Society of Civil Engineers, https://doi.org/10.1061/9780784482834.013.
  • Chu, J., Ivanov, V., He, J., Maeimi, M., & Wu, S. (2015). Use of biogeotechnologies for soil improvement. In Ground Improvement Case Histories, pp.571-589, Butterworth-Heinemann, https://doi.org/10.1016/B978-0-08-100191-2.00019-8.
  • Cuzman, O. A., Rescic, S., Richter, K., Wittig, L., & Tiano, P. (2015). Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. Journal of Biotechnology, 214, 49-56, https://doi.org/10.1016/j.jbiotec.2015.09.011.
  • De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36(2), 99-111, https://doi.org/10.1016/j.ecoleng.2009.03.025.
  • DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210, https://doi.org/10.1016/j.ecoleng.2008.12.029.
  • Demiröz, A., Karaduman, M. (2009). Zemin iyileştirme metotları. Selçuk-Teknik Dergisi, 8,(3), 176-192, https://hdl.handle.net/20.500.12395/10799.
  • Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314, https://doi.org/10.3389/fmicb.2013.00314.
  • Duo, L., Kan-liang, T., Hui-li, Z., Yu-yao, W., Kang-yi, N., & Shi-can, Z. (2018). Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Construction and Building Materials, 172, 251-262, https://doi.org/10.1016/j.conbuildmat.2018.03.255.
  • El Mountassir, G., Minto, J. M., van Paassen, L. A., Salifu, E., & Lunn, R. J. (2018). Applications of microbial processes in geotechnical engineering. Advances in Applied Microbiology, 104, 39-91, https://doi.org/10.1016/bs.aambs.2018.05.001.
  • Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), 100002, https://doi.org/10.1016/j.bgtech.2023.100002.
  • Hammes, F., & Verstraete*, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 3-7, https://doi.org/10.1023/A:1015135629155.
  • Kalantary, F., & Kahani, M. (2019). Optimization of the biological soil improvement procedure. International Journal of Environmental Science and Technology, 16, 4231-4240, https://doi.org/10.1007/s13762-018-1821-9.
  • Kantzas, A., Stehmeier, L., Marentette, D. F., Ferris, F. G., Jha, K. N., & Maurits, F. M. (1992, June). A novel method of sand consolidation through bacteriogenic mineral plugging. In PETSOC Annual Technical Meeting, pp. Petsoc-92, https://doi.org/10.2118/92-46.
  • Karol, R.H. (2003). Chemical grouting and soil stabilization, Revised and Expanded (3rd ed.). CRC Press. https://doi.org/10.1201/9780203911815.
  • Kim, G., Kim, J., & Youn, H. (2018). Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation. Applied Sciences, 8(8), 1277, https://doi.org/10.3390/app8081277.
  • Lian, J., Xu, H., He, X., Yan, Y., Fu, D., Yan, S., & Qi, H. (2019). Biogrouting of hydraulic fill fine sands for reclamation projects. Marine Georesources & Geotechnology, 37(2), 212-222, https://doi.org/10.1080/1064119X.2017.1420115.
  • Liu, B., Zhu, C., Tang, C. S., Xie, Y. H., Yin, L. Y., Cheng, Q., & Shi, B. (2020). Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 264, 105389, https://doi.org/10.1016/j.enggeo.2019.105389.
  • Madigan, M. T., Martinko, J. M., & Parker, J. (1997). Brock biology of microorganisms (Vol. 11). Upper Saddle River, NJ: Prentice Hall.
  • Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Factors affecting the bio-cementing process of coarse sand. Proceedings of the Institution of Civil Engineers-Ground Improvement, 172(1), 25-36, https://doi.org/10.1680/jgrim.17.00039.
  • Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., ... & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
  • Meng, H., Shu, S., Gao, Y., Yan, B., & He, J. (2021). Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement. Engineering Geology, 294, 106374, https://doi.org/10.1016/j.enggeo.2021.106374.
  • Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222-1233, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
  • Nagy, B., Baptist, S., & Kustermann, A. (2022). A novel approach for the consolidation of sand by MICP single treatment. In MATEC Web of Conferences, Vol.364, p.05003, EDP Sciences, https://doi.org/10.1051/matecconf/202236405003.
  • Naqi, A., & Jang, J. G. (2019). Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability, 11(2), 537, https://doi.org/10.3390/su11020537.
  • Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885, https://doi.org/10.1016/j.ecoleng.2020.105885.
  • Oliveira, P. J. V., Freitas, L. D., & Carmona, J. P. (2017). Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. Journal of Materials in Civil Engineering, 29(4), 04016263, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804.
  • Okwadha, G. D., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148, https://doi.org/10.1016/j.chemosphere.2010.09.066.
  • Özer, N. & Özgünler Acun, S. (2023). A research on natural cement as a sustainable hydraulic binder for buildings. In Ü.T. Arpacıoğlu & S. Akten, (Eds.). Architectural Sciences, Sustainable Materials and Built Environment, Chapter-3, ISBN:978-625-367-287-4, 104-134, Ankara:Iksad Publications.
  • Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Optimum condition for the application of enzyme-mediated calcite precipitation technique as soil improvement method. Int. J. Adv. Sci. Eng. Inf. Technol, 7(6), 2145-2151, DOI: 10.18517/ijaseit.7.6.3425.
  • PwC Türkiye - Dünyada ve Türkiye’de Çimento Sektörü (2024). https://www.pwc.com.tr/tr/sektorler/i%CC%87nsaat-ve-muhendislik/pdf/dunyada-ve-turkiyede-cimento-sektoru.pdf. Access date of:15.10.2024.
  • Ramakrishna, C., Thenepalli, T., Nam, S. Y., Kim, C., & Ahn, J. W. (2018). Oyster shell waste is alternative sources for calcium carbonate (CaCO3) instead of natural limestone. Journal of Energy Engineering, 27(1), 59-64, https://doi.org/10.5855/ENERGY.2018.27.1.059.
  • Riveros, G. A., & Sadrekarimi, A. (2020). Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation. Soil Dynamics and Earthquake Engineering, 131, 106034, https://doi.org/10.1016/j.soildyn.2020.106034.
  • Ryparova, P., Prošek, Z., Schreiberova, H., Bílý, P., & Tesarek, P. (2021). The role of bacterially induced calcite precipitation in self-healing of cement paste. Journal of Building Engineering, 39, 102299, https://doi.org/10.1016/j.jobe.2021.102299.
  • Sadjadi, M., Nikooee, E., & Habibagahi, G. (2014). Biological treatment of swelling soils using microbial calcite precipitation. Unsaturated Soils: Research and Applications, 917–922, DOI:10.1201/b17034-132.
  • Salifu, E., MacLachlan, E., Iyer, K. R., Knapp, C. W., & Tarantino, A. (2016). Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 201, 96-105, https://doi.org/10.1016/j.enggeo.2015.12.027.
  • Selçukhan, O., & Ekinci, A. (2021). Zemin iyileştirme yöntemleri ve yaygın kullanımına bağlı değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (23), 481-496, https://doi.org/10.31590/ejosat.881603.
  • Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D., & Li, Y. (2022). Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation. Soil Dynamics and Earthquake Engineering, 161, 107419, https://doi.org/10.1016/j.soildyn.2022.107419.
  • Sharaky, A. M., Mohamed, N. S., Elmashad, M. E., & Shredah, N. M. (2018). Application of microbial biocementation to improve the physico-mechanical properties of sandy soil. Construction and Building Materials, 190, 861-869, https://doi.org/10.1016/j.conbuildmat.2018.09.159.
  • Song, C., & Elsworth, D. (2024). Stress sensitivity of permeability in high-permeability sandstone sealed with microbially-induced calcium carbonate precipitation. Biogeotechnics, 2(1), 100063, https://doi.org/10.1016/j.bgtech.2023.100063.
  • Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17, 718-728, https://doi.org/10.1007/s12205-013-0149-8.
  • Su, F., Wang, Y., Liu, Y., Zhang, J., Liu, X., & Zhang, S. (2023). Factors affecting soil treatment with the microbially induced carbonate precipitation technique and its optimization. Journal of Microbiological Methods, 211, 106771, https://doi.org/10.1016/j.mimet.2023.106771.
  • Sun, X., Miao, L., Tong, T., & Wang, C. (2019). Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotechnica, 14, 627-638, https://doi.org/10.1007/s11440-018-0758-y.
  • Suresh, D., & Uday, K. V. (2024). A comparative study of various parameters influencing biocalcification via ureolysis mediated by enzyme and microbe: A comprehensive review. Geomicrobiology Journal, 41(1), 17-34, https://doi.org/10.1080/01490451.2023.2283419.
  • Tai, C. Y., & Chen, F. B. (1998). Polymorphism of CaCO3, precipitated in a constant‐composition environment. AIChE Journal, 44(8), 1790-1798, https://doi.org/10.1002/aic.690440810.
  • van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728, https://doi.org/10.1061/(ASCE)GT.1943-5606.00003.
  • Wani, K. S., & Mir, B. A. (2021). Effect of microbial stabilization on the unconfined compressive strength and bearing capacity of weak soils. Transportation Infrastructure Geotechnology, 8(1), 59-87, https://doi.org/10.1007/s40515-020-00110-1.
  • Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. Doctoral Dissertation, Murdoch University.
  • Whiffin, V. S., Van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423, https://doi.org/10.1080/01490450701436505.
  • Xiao, P., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849-1862, https://doi.org/10.1139/cgj-2018-057.
  • Xu, J., Yao, W., & Jiang, Z. (2014). Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. Journal of Materials in Civil Engineering, 26(5), 983-991, https://doi.org/10.1061/(ASCE)MT.1943-5533.00009.
  • Yıldırım, N., Gürtuğ, Y., & Sesal, C. (2016). Mikrobiyal kalsiyum karbonat oluşum mekanizmaları ve uygulama alanları. Marmara Fen Bilimleri Dergisi, 28(2), 70-80, https://doi.org/10.7240/mufbed.73209.
  • Yu, X., & Yang, H. (2023). One-phase MICP and two-phase MISP composite cementation. Construction and Building Materials, 409, 133724, https://doi.org/10.1016/j.conbuildmat.2023.133724.
  • Zhang, X., Wang, H., Wang, Y., Wang, J., Cao, J., & Zhang, G. (2024). Improved methods, properties, applications, and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review. Biogeotechnics, 100123, https://doi.org/10.1016/j.bgtech.2024.100123.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Geoteknik Mühendisliği
Bölüm Derleme
Yazarlar

Nurdan Baykuş 0000-0002-6199-3363

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 11 Aralık 2024
Kabul Tarihi 21 Mart 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Baykuş, N. (2025). APPLICATIONS OF MICROBIAL CALCIUM CARBONATE PRECIPITATION FOR SOIL IMPROVEMENT: A REVIEW. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 1110-1122.