Araştırma Makalesi
BibTex RIS Kaynak Göster

THE INFLUENCE OF EARTHQUAKE CHARACTERISTICS ON THE BEHAVIOUR OF NAILED WALLS: 3D NUMERICAL ANALYSES

Yıl 2025, Cilt: 28 Sayı: 2, 763 - 784, 03.06.2025

Öz

Soil-nail walls can endure significant deformations during earthquakes. Their design often relies on pseudo-static methods like the Mononobe-Okabe approach, based on limit equilibrium principles. However, these methods have limitations, as they cannot fully capture soil-nail interactions or the influence of structural elements. Numerical analyses are essential for a deeper understanding of soil-nail behavior under dynamic conditions. Most studies focus on pseudo-static analyses, with limited research on real-time seismic effects. This study used FLAC3D software to analyze the dynamic behavior of soil-nail reinforced slopes under ten different earthquake motions. The results showed that peak ground acceleration influenced low deformation levels, while Arias Intensity became significant at high deformation levels. Under dynamic loads, maximum nail forces were concentrated in the lower nail rows, with minimal contribution from upper nail rows. These findings enhance understanding of soil-nail system dynamics and support advancements in seismic design and analysis.

Kaynakça

  • Alver, O. (2023). Development Of Lateral Load Resistance-Deflection Curves For Piles In Cohesionless Soils Under Earthquake Excitation. Istanbul Technical University.
  • Ardiaca, D. . (2009). Mohr-Coulomb parameters for modelling of concrete structures. Içinde Plaxis Bulletin (s. No. Spring, ss. 12–15).
  • Arias, A. (1979). A Measure of Earthquake Intensity. Içinde Seismic Design for Nuclear Power Plants, (R.J. Hansen, ed.) (R.J. Hanse, ss. 483–83). MIT Press.
  • Barar, O., Felio, G. Y., Vucetic, M., & Chapman, R. (1990). Performance of soil nailed walls during the October 17, 1989, Loma Prieta earthquake. Proceedings of the forty-third Canadian geotechnical conference, 73–165.
  • Başbuğ, E., Cengiz, C., & Güler, E. (2021). 1-g Shaking table tests to determine the behavior of geosynthetic reinforced soil walls under seismic loads. Transportation Geotechnics, 30(November 2020). https://doi.org/10.1016/j.trgeo.2021.100597
  • Baziar, M. H., Ghadamgahi, A., & Brennan, A. J. (2021). Centrifuge study of seismic response of soil-nailed walls supporting a footing on the ground surface. Geotechnique. https://doi.org/10.1680/jgeot.21.00157
  • Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. The university of Texas at Austin.
  • Fan, C., Liu, H., Cao, J., & Ling, H. I. (2020). Responses of reinforced soil retaining walls subjected to horizontal and vertical seismic loadings. Soil Dynamics and Earthquake Engineering, 129(May 2019), 105969. https://doi.org/10.1016/j.soildyn.2019.105969
  • FHWA. (2015). Soil Nail Walls Reference Manual. Soil Nail Walls Reference Manual. FHWA-NHI-14-007: No. 132085, 132085, 425. https://www.fhwa.dot.gov/engineering/geotech/pubs/nhi14007.pdf
  • Ghadamgahi, A., Baziar, M. H., & Brennan, A. J. (2019). International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, 536–537. https://doi.org/10.1007/978-3-319-73568-9_174
  • Giri, D., & Sengupta, A. (2009). Dynamic behavior of small scale nailed soil slopes. Geotechnical and Geological Engineering, 27(6), 687–698. https://doi.org/10.1007/s10706-009-9268-x
  • Giri, D., & Sengupta, A. (2010a). Dynamic behavior of small-scale model of nailed steep slopes. Geomechanics and Geoengineering, 5(2), 99–108. https://doi.org/10.1080/17486020903497415
  • Giri, D., & Sengupta, A. (2010b). Dynamic behavior of small-scale model slopes in shaking table tests. International Journal of Geotechnical Engineering, 4(1), 1–11. https://doi.org/10.3328/IJGE.2010.04.01.1-11
  • Gökgöz, A. (2021). Zemin Çivisi İle Güçlendirilmiş Şevlerin Gerilme-Deformasyon Esaslı Yöntemler İle Değerlendirilmesi. Cerrahpaşa, İstanbul Ünİversİtesİ-Lisansüstü Eğitim Enstitüsü.
  • Gokgoz, A., & Kelesoglu, M. K. (2024). Three Dimensional Finite Difference Analysis of Key Parameters. Içinde KSCE Journal of Civil Engineering. Elsevier Inc. https://doi.org/10.1016/j.kscej.2024.100027
  • Halabian, A. M., Sheikhbahaei, A. M., & Hashemolhosseini, S. H. (2010). Analysis of soil nailed walls under seismic excitations using finite difference method. 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium, 7(1350), 5745–5754.
  • Halabian, A. M., Sheikhbahaei, A. M., & Hashemolhosseini, S. H. (2012). Three dimensional finite difference analysis of soil-nailed walls under static conditions. Geomechanics and Geoengineering, 7(3), 183–196. https://doi.org/10.1080/17486025.2012.661468
  • Itasca. (2019). FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions (6.0). Itasca Consulting Group, Inc. http://docs.itascacg.com/flac3d700/contents.html#
  • Jennings, P. (1985). Ground Motion parameters that influence structural damage. Içinde Scholl RE, King JL (eds) Strong ground motion simulation and engineering applications. EERI Publication 85-02, Earthquake Engineering Research Institute.
  • Jones, A. M. C. (1999). Soil nailing: an investigation of lifetime performance. University of Wales.
  • Joyner, W., & Boore, D. M. (1988). Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics II - Recent Advances in Ground-Motion Evaluation: Proceedings of the Specialty Conference, 43–102.
  • Kayen, R., & Mitchell, R. (1997). Assessment of liquefaction potential during earthquakes by Arias Intensity. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 123(12), 1162–1174.
  • Kiran, A. (2021). Yüzeysel temelli yapılarda sıvılaşmaya bağlı oturmaların sayısal analizi. İstanbul University-Cerrahpasa.
  • Kramer, S. (1996). Geotechnical Earthquake Engineering. Prentice-Hall.
  • Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite Element Method Accuracy for Wave Propagation Problems. Journal of the Soil Dynamics Division, 99, 421–427.
  • Lin, P., Bathurst, R. J., & Liu, J. (2017). Statistical Evaluation of the FHWA Simplified Method and Modifications for Predicting Soil Nail Loads. Journal of Geotechnical and Geoenvironmental Engineering.
  • Liu, H., Hung, C., & Cao, J. (2018). Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions. Soil Dynamics and Earthquake Engineering, 111(November 2017), 160–168. https://doi.org/10.1016/j.soildyn.2018.04.022
  • Lysmer, J., & Kuhlemeyer, R., L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4), 859–877. https://doi.org/10.1061/JMCEA3.0001144
  • Maleki, M., Khezri, A., Nosrati, M., & Hosseini, S. M. M. M. (2023). Seismic amplification factor and dynamic response of soil-nailed walls. Modeling Earth Systems and Environment, 9(1), 1181–1198. https://doi.org/10.1007/s40808-022-01543-y
  • Marzionna, J. D., Maffei, C. E. M., Ferreira, A. A., & Caputo, A. N. (1998). Análise, projeto e execução de escavações e contenções. Hachich, W., Falconi, FF, Saes, J. L.
  • Mejia, L. H., & Dawson, E. M. (2006). Earthquake deconvolution for FLAC. 4th International FLAC symposium on numerical modeling in geomechanics.
  • Mesrabadi, M., Ardakani, A., & Lashgari, A. (2023). Investigation of seismic displacement of nailed wall under near field earthquakes using hardening soil with small strain behavioral model. Journal of Science and Engineering Elites, 12(47), 84–92.
  • Mokhtari, M., Barkhordari, K., & Abbasi, S. (2020). A comparative study of the seismic response of soil-nailed walls under the effect of near-fault and far-fault ground motions. Journal of Engineering Geology, 13(5), 121–146. https://www.sid.ir/FileServer/JE/101052020S0503
  • Panah, A. K., & Majidian, S. (2013). 2D numerical modelling of soil-nailed structures for seismic improvement. Geomechanics and Engineering, 5(1), 37–55. https://doi.org/10.12989/gae.2013.5.1.037
  • Sahoo, S., Manna, B., & Sharma, K. G. (2015). Stability analysis of steep nailed slopes under seismic condition using 3-D finite element method. International Journal of Geotechnical Engineering, 9(5), 536–540. https://doi.org/10.1179/1939787914Y.0000000084
  • Sahoo, S., Manna, B., & Sharma, K. G. (2016). Seismic Stability Analysis of Un-Reinforced and Reinforced Soil Slopes. Geo-China 2016, 3, 74–81. https://doi.org/10.1061/9780784480007.009
  • Sahoo, S., Manna, B., & Sharma, K. G. (2021). Shaking Table Tests to Evaluate the Seismic Performance of Soil Nailing Stabilized Embankments. International Journal of Geomechanics, 21(4), 1–14. https://doi.org/10.1061/(asce)gm.1943-5622.0001981
  • Seed, H. B., & Idriss, I. M. (1970). Soil Moduli and Damping Factors for Dynamic Response Analyses [Report No. EERC 70-10]. Earthquake engineering reserach center, December, 48.
  • Sheikhbahaei, A. M., Halabian, A. M., & Hashemolhosseini, S. H. (2010). Analysis of soil nailed walls under harmonic dynamic excitations using finite difference method. 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium, 7, 5745–5754.
  • Tavakoli, H., Kutanaei, S. S., & Hosseini, S. H. (2019). Assessment of seismic amplification factor of excavation with support system. Earthquake Engineering and Engineering Vibration, 18(3), 555–566. https://doi.org/10.1007/s11803-019-0521-x
  • Zamiran, S., Ghojavand, H., & Saba, H. (2012). Numerical analysis of soil nail walls under seismic condition in 3D form excavations. Applied Mechanics and Materials, 204–208(Iran 1990), 2671–2676. https://doi.org/10.4028/www.scientific.net/AMM.204-208.2671
  • Zhang, Y., Chen, G., Wu, J., Zheng, L., & Zhuang, X. (2012). Numerical simulation of seismic slope stability analysis based on tension-shear failure mechanism. Geotechnical Engineering, 43(2), 18–28.

DEPREM KARAKTERİSTİK ÖZELLİKLERİNİN ZEMİN ÇİVİLİ DUVARLARIN DİNAMİK DAVRANIŞINA ETKİSİ: 3 BOYUTLU SAYISAL ANALİZ

Yıl 2025, Cilt: 28 Sayı: 2, 763 - 784, 03.06.2025

Öz

Zemin çivili duvarlar deprem yükleri altında önemli deformasyonları karşılayabilmektedir. Bu sistemlerin tasarımında, limit denge yöntemlerine dayanan Mononobe-Okabe yöntemi gibi pseudo-statik yaklaşımlar tercih edilmektedir. Ancak, bu yöntemlerin sınırlamaları bulunmakta; zemin-çivi etkileşimi ve yapı elemanlarının etkileri tam olarak incelenememektedir. Dinamik koşullar altında zemin çivili sistemlerin davranışının derinlemesine anlaşılması için sayısal analizlerin önemi büyüktür. Bu bağlamda, mevcut çalışmaların çoğu pseudo-statik limit denge analizlerine dayanmakta olup, gerçek zaman tanımlı sismik etkiler altında yapılan sayısal çalışmaların sınırlı olduğu tespit edilmiştir. Bu çalışmada, zemin çivileriyle güçlendirilmiş şev modellerinin dinamik analizi FLAC3D yazılımı kullanılarak gerçekleştirilmiştir. On ayrı deprem hareketi altında incelenen şev sisteminin dinamik davranışı, çeşitli deprem karakteristiklerinin etkilerini ortaya koymuştur. Özellikle, pik yer ivmesinin, düşük deformasyon seviyelerinde belirleyici olduğu, ancak yüksek deformasyon koşullarında Arias Şiddetinin önemli bir etken haline geldiği gözlemlenmiştir. Ayrıca, çivilerde meydana gelen maksimum kuvvetlerin alt sıra çivilerde meydana geldiği, üst sıralardaki çivilerin sisteme katkısının sınırlı kaldığı belirlenmiştir. Çalışma sonuçları, sismik tasarım ve analiz disiplinlerine katkı sağlayacak nitelikte olup, zemin çivili sistemlerin dinamik davranışlarının daha iyi anlaşılmasına yönelik önemli veriler sunmaktadır.

Kaynakça

  • Alver, O. (2023). Development Of Lateral Load Resistance-Deflection Curves For Piles In Cohesionless Soils Under Earthquake Excitation. Istanbul Technical University.
  • Ardiaca, D. . (2009). Mohr-Coulomb parameters for modelling of concrete structures. Içinde Plaxis Bulletin (s. No. Spring, ss. 12–15).
  • Arias, A. (1979). A Measure of Earthquake Intensity. Içinde Seismic Design for Nuclear Power Plants, (R.J. Hansen, ed.) (R.J. Hanse, ss. 483–83). MIT Press.
  • Barar, O., Felio, G. Y., Vucetic, M., & Chapman, R. (1990). Performance of soil nailed walls during the October 17, 1989, Loma Prieta earthquake. Proceedings of the forty-third Canadian geotechnical conference, 73–165.
  • Başbuğ, E., Cengiz, C., & Güler, E. (2021). 1-g Shaking table tests to determine the behavior of geosynthetic reinforced soil walls under seismic loads. Transportation Geotechnics, 30(November 2020). https://doi.org/10.1016/j.trgeo.2021.100597
  • Baziar, M. H., Ghadamgahi, A., & Brennan, A. J. (2021). Centrifuge study of seismic response of soil-nailed walls supporting a footing on the ground surface. Geotechnique. https://doi.org/10.1680/jgeot.21.00157
  • Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. The university of Texas at Austin.
  • Fan, C., Liu, H., Cao, J., & Ling, H. I. (2020). Responses of reinforced soil retaining walls subjected to horizontal and vertical seismic loadings. Soil Dynamics and Earthquake Engineering, 129(May 2019), 105969. https://doi.org/10.1016/j.soildyn.2019.105969
  • FHWA. (2015). Soil Nail Walls Reference Manual. Soil Nail Walls Reference Manual. FHWA-NHI-14-007: No. 132085, 132085, 425. https://www.fhwa.dot.gov/engineering/geotech/pubs/nhi14007.pdf
  • Ghadamgahi, A., Baziar, M. H., & Brennan, A. J. (2019). International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, 536–537. https://doi.org/10.1007/978-3-319-73568-9_174
  • Giri, D., & Sengupta, A. (2009). Dynamic behavior of small scale nailed soil slopes. Geotechnical and Geological Engineering, 27(6), 687–698. https://doi.org/10.1007/s10706-009-9268-x
  • Giri, D., & Sengupta, A. (2010a). Dynamic behavior of small-scale model of nailed steep slopes. Geomechanics and Geoengineering, 5(2), 99–108. https://doi.org/10.1080/17486020903497415
  • Giri, D., & Sengupta, A. (2010b). Dynamic behavior of small-scale model slopes in shaking table tests. International Journal of Geotechnical Engineering, 4(1), 1–11. https://doi.org/10.3328/IJGE.2010.04.01.1-11
  • Gökgöz, A. (2021). Zemin Çivisi İle Güçlendirilmiş Şevlerin Gerilme-Deformasyon Esaslı Yöntemler İle Değerlendirilmesi. Cerrahpaşa, İstanbul Ünİversİtesİ-Lisansüstü Eğitim Enstitüsü.
  • Gokgoz, A., & Kelesoglu, M. K. (2024). Three Dimensional Finite Difference Analysis of Key Parameters. Içinde KSCE Journal of Civil Engineering. Elsevier Inc. https://doi.org/10.1016/j.kscej.2024.100027
  • Halabian, A. M., Sheikhbahaei, A. M., & Hashemolhosseini, S. H. (2010). Analysis of soil nailed walls under seismic excitations using finite difference method. 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium, 7(1350), 5745–5754.
  • Halabian, A. M., Sheikhbahaei, A. M., & Hashemolhosseini, S. H. (2012). Three dimensional finite difference analysis of soil-nailed walls under static conditions. Geomechanics and Geoengineering, 7(3), 183–196. https://doi.org/10.1080/17486025.2012.661468
  • Itasca. (2019). FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions (6.0). Itasca Consulting Group, Inc. http://docs.itascacg.com/flac3d700/contents.html#
  • Jennings, P. (1985). Ground Motion parameters that influence structural damage. Içinde Scholl RE, King JL (eds) Strong ground motion simulation and engineering applications. EERI Publication 85-02, Earthquake Engineering Research Institute.
  • Jones, A. M. C. (1999). Soil nailing: an investigation of lifetime performance. University of Wales.
  • Joyner, W., & Boore, D. M. (1988). Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics II - Recent Advances in Ground-Motion Evaluation: Proceedings of the Specialty Conference, 43–102.
  • Kayen, R., & Mitchell, R. (1997). Assessment of liquefaction potential during earthquakes by Arias Intensity. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 123(12), 1162–1174.
  • Kiran, A. (2021). Yüzeysel temelli yapılarda sıvılaşmaya bağlı oturmaların sayısal analizi. İstanbul University-Cerrahpasa.
  • Kramer, S. (1996). Geotechnical Earthquake Engineering. Prentice-Hall.
  • Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite Element Method Accuracy for Wave Propagation Problems. Journal of the Soil Dynamics Division, 99, 421–427.
  • Lin, P., Bathurst, R. J., & Liu, J. (2017). Statistical Evaluation of the FHWA Simplified Method and Modifications for Predicting Soil Nail Loads. Journal of Geotechnical and Geoenvironmental Engineering.
  • Liu, H., Hung, C., & Cao, J. (2018). Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions. Soil Dynamics and Earthquake Engineering, 111(November 2017), 160–168. https://doi.org/10.1016/j.soildyn.2018.04.022
  • Lysmer, J., & Kuhlemeyer, R., L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4), 859–877. https://doi.org/10.1061/JMCEA3.0001144
  • Maleki, M., Khezri, A., Nosrati, M., & Hosseini, S. M. M. M. (2023). Seismic amplification factor and dynamic response of soil-nailed walls. Modeling Earth Systems and Environment, 9(1), 1181–1198. https://doi.org/10.1007/s40808-022-01543-y
  • Marzionna, J. D., Maffei, C. E. M., Ferreira, A. A., & Caputo, A. N. (1998). Análise, projeto e execução de escavações e contenções. Hachich, W., Falconi, FF, Saes, J. L.
  • Mejia, L. H., & Dawson, E. M. (2006). Earthquake deconvolution for FLAC. 4th International FLAC symposium on numerical modeling in geomechanics.
  • Mesrabadi, M., Ardakani, A., & Lashgari, A. (2023). Investigation of seismic displacement of nailed wall under near field earthquakes using hardening soil with small strain behavioral model. Journal of Science and Engineering Elites, 12(47), 84–92.
  • Mokhtari, M., Barkhordari, K., & Abbasi, S. (2020). A comparative study of the seismic response of soil-nailed walls under the effect of near-fault and far-fault ground motions. Journal of Engineering Geology, 13(5), 121–146. https://www.sid.ir/FileServer/JE/101052020S0503
  • Panah, A. K., & Majidian, S. (2013). 2D numerical modelling of soil-nailed structures for seismic improvement. Geomechanics and Engineering, 5(1), 37–55. https://doi.org/10.12989/gae.2013.5.1.037
  • Sahoo, S., Manna, B., & Sharma, K. G. (2015). Stability analysis of steep nailed slopes under seismic condition using 3-D finite element method. International Journal of Geotechnical Engineering, 9(5), 536–540. https://doi.org/10.1179/1939787914Y.0000000084
  • Sahoo, S., Manna, B., & Sharma, K. G. (2016). Seismic Stability Analysis of Un-Reinforced and Reinforced Soil Slopes. Geo-China 2016, 3, 74–81. https://doi.org/10.1061/9780784480007.009
  • Sahoo, S., Manna, B., & Sharma, K. G. (2021). Shaking Table Tests to Evaluate the Seismic Performance of Soil Nailing Stabilized Embankments. International Journal of Geomechanics, 21(4), 1–14. https://doi.org/10.1061/(asce)gm.1943-5622.0001981
  • Seed, H. B., & Idriss, I. M. (1970). Soil Moduli and Damping Factors for Dynamic Response Analyses [Report No. EERC 70-10]. Earthquake engineering reserach center, December, 48.
  • Sheikhbahaei, A. M., Halabian, A. M., & Hashemolhosseini, S. H. (2010). Analysis of soil nailed walls under harmonic dynamic excitations using finite difference method. 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium, 7, 5745–5754.
  • Tavakoli, H., Kutanaei, S. S., & Hosseini, S. H. (2019). Assessment of seismic amplification factor of excavation with support system. Earthquake Engineering and Engineering Vibration, 18(3), 555–566. https://doi.org/10.1007/s11803-019-0521-x
  • Zamiran, S., Ghojavand, H., & Saba, H. (2012). Numerical analysis of soil nail walls under seismic condition in 3D form excavations. Applied Mechanics and Materials, 204–208(Iran 1990), 2671–2676. https://doi.org/10.4028/www.scientific.net/AMM.204-208.2671
  • Zhang, Y., Chen, G., Wu, J., Zheng, L., & Zhuang, X. (2012). Numerical simulation of seismic slope stability analysis based on tension-shear failure mechanism. Geotechnical Engineering, 43(2), 18–28.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Geoteknik Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Burcu Dışkaya 0000-0002-6170-3856

Akın Gökgöz 0000-0001-6777-5351

Mustafa Kubilay Keleşoğlu 0000-0003-1721-7946

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 3 Ocak 2025
Kabul Tarihi 4 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Dışkaya, B., Gökgöz, A., & Keleşoğlu, M. K. (2025). DEPREM KARAKTERİSTİK ÖZELLİKLERİNİN ZEMİN ÇİVİLİ DUVARLARIN DİNAMİK DAVRANIŞINA ETKİSİ: 3 BOYUTLU SAYISAL ANALİZ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 763-784.