Araştırma Makalesi
BibTex RIS Kaynak Göster

POLİANİLİN İÇERİKLİ KATALİZÖRLERİN SENTEZİ: METİLEN MAVİSİNİN FOTOKATALİTİK DEGRADASYONU

Yıl 2025, Cilt: 28 Sayı: 2, 851 - 862, 03.06.2025

Öz

Günümüzde boyalar birçok endüstride kullanılmakta olup, insan sağlığı üzerinde olumsuz etkileri olan zararlı maddelerin çevreye salınması endişe yaratmaktadır. Bu nedenle, polimer içerikli katalizörlerin hazırlanması ve sudan boyaların uzaklaştırılmasında kullanımı özellikle fotokataliz alanında büyük ilgi çekmektedir. Polianilin CuO (PANI-CuO) katalizörleri eş-anlı kimyasal oksidasyon polimerizasyonu (PCI) ve mekaniksel-kimyasal (PCS) olmak üzere iki farklı yöntem ile hazırlanmıştır. Bu yöntemlerde, PANI/CuO mol oranları (1:8, 1:1 ve 8:1) olacak şekilde kompozitler sentezlenmiştir. PCS katalizörlerinde, PANI ve CuO varlığı FTIR, XRD ve SEM analizleri kullanılarak saptanmıştır. Ancak, PCI örneklerinde yüksek asidik ortamda CuO çözünmesine bağlı olarak, CuO tanecikleri tespit edilememiştir. İki farklı seri olarak hazırlanan PANI-CuO katalizörlerinin fotokatalitik etkinliği, metilen mavisi (MB) kullanılarak, karşılaştırmalı olarak test edilmiştir. PCI katalizörlerinin MB boyasının fotokatalitik degradasyonunda PCS örneklerine kıyasla daha etkili olduğu gözlenmiştir. PCI-18 örneği kullanılarak, MB boyası %56 degradasyonuna 300 dakikada sonunda ulaşılmıştır.

Kaynakça

  • Borgohain, K., Singh, J. B., Rama Rao, M. V., Shripathi, T., & Mahamuni, S. (2000). Quantum size effects in CuO nanoparticles. Physical Review B, 61(16), 11093-11096. doi:10.1103/PhysRevB.61.11093
  • Boucherdoud, A., Kherroub, D. E., Dahmani, K., Douinat, O., Seghier, A., Bestani, B., & Benderdouche, N. (2024). Polyaniline/cupric oxide organometallic nanocomposites as a sonocatalyst for the degradation of methylene blue: Experimental study, RSM optimization, and DFT analysis. Journal of Organometallic Chemistry, 1022, 123386. doi:https://doi.org/10.1016/j.jorganchem.2024.123386
  • Cui, Z., Yuan, R., Chen, H., Zhou, B., Zhu, B., & Zhang, C. (2024). Application of polyaniline-based photocatalyst in photocatalytic degradation of micropollutants in water: A review. Journal of Water Process Engineering, 59, 104900. doi:https://doi.org/10.1016/j.jwpe.2024.104900
  • Deng, Y., Tang, L., Zeng, G., Dong, H., Yan, M., Wang, J., Hu, W., Wang, J., Zhou, Y., & Tang, J. (2016). Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Applied Surface Science, 387, 882-893. doi:https://doi.org/10.1016/j.apsusc.2016.07.026
  • Devi, L. V., Selvalakshmi, T., Sellaiyan, S., Uedono, A., Sivaji, K., & Sankar, S. (2017). Effect of La doping on the lattice defects and photoluminescence properties of CuO. Journal of Alloys and Compounds, 709, 496-504. doi:https://doi.org/10.1016/j.jallcom.2017.03.148
  • Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., & Avcı, A. (2012). Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental, 119-120, 197-206. doi:10.1016/j.apcatb.2012.02.034
  • Fu, H., Shewfelt, S., Sylvan, L. D., Gaillard, J.-F., & Gray, K. A. (2024). Polyaniline-metal oxide coatings for biocidal applications: Mechanisms of activation and deactivation. Chemosphere, 346, 140543. doi:https://doi.org/10.1016/j.chemosphere.2023.140543
  • Gelaw, T. B., Sarojini, B. K., & Kodoth, A. K. (2022). Chitosan/Hydroxyethyl Cellulose Gel Immobilized Polyaniline/CuO/ZnO Adsorptive-Photocatalytic Hybrid Nanocomposite for Congo Red Removal. Journal of Polymers and the Environment, 30(10), 4086-4101. doi:10.1007/s10924-022-02492-4
  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004
  • Jangid, N. K., Jadoun, S., Yadav, A., Srivastava, M., & Kaur, N. (2021). Polyaniline-TiO2-based photocatalysts for dyes degradation. Polymer Bulletin, 78(8), 4743-4777. doi:10.1007/s00289-020-03318-w
  • Kallawar, G. A., & Bhanvase, B. A. (2024). A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environmental Science and Pollution Research, 31(2), 1748-1789. doi:10.1007/s11356-023-31175-3
  • Khader, E. H., Muslim, S. A., Saady, N. M. C., Ali, N. S., Salih, I. K., Mohammed, T. J., Albayati, T.M., & Zendehboudi, S. (2024). Recent advances in photocatalytic advanced oxidation processes for organic compound degradation: A review. Desalination and Water Treatment, 318, 100384. doi:https://doi.org/10.1016/j.dwt.2024.100384
  • Khan, S., Noor, T., Iqbal, N., & Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega, 9(20), 21751-21767. doi:10.1021/acsomega.4c00887
  • Koysuren, H. N., & Koysuren, O. (2023a). Photocatalytic Activity of Boron Doped CuO and Its Composite with Polyaniline. Polymer-Plastics Technology and Materials, 62(3), 281-293. doi:10.1080/25740881.2022.2113894
  • Koysuren, O., & Koysuren, H. N. (2023b). Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. Journal of Sol-Gel Science and Technology, 106(1), 131-148. doi:10.1007/s10971-023-06049-2
  • Lanjwani, M. F., Tuzen, M., Khuhawar, M. Y., & Saleh, T. A. (2024). Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorganic Chemistry Communications, 159, 111613. doi:https://doi.org/10.1016/j.inoche.2023.111613
  • Muzammal, S., Ahmad, A., Sheraz, M., Kim, J., Ali, S., Hanif, M. B., Hussain, I., Pandiaraj S., Alodhayb, A., Javed, M.S., Al-bonsrulah, H.A.Z., & Motola, M. (2024). Polymer-supported nanomaterials for photodegradation: Unraveling the methylene blue menace. Energy Conversion and Management: X, 22, 100547. doi:https://doi.org/10.1016/j.ecmx.2024.100547
  • Nekooie, R., Shamspur, T., & Mostafavi, A. (2021). Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 407, 113038. doi:https://doi.org/10.1016/j.jphotochem.2020.113038
  • Pandey, K., Yadav, P., & Mukhopadhyay, I. (2015). Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Physical Chemistry Chemical Physics, 17(2), 878-887. doi:10.1039/C4CP04321A
  • Ping, Z. (1996). In situ FTIR–attenuated total reflection spectroscopic investigations on the base–acid transitions of polyaniline. Base–acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92(17), 3063-3067. doi:10.1039/FT9969203063
  • Rahman, K. H., & Kar, A. K. (2020a). Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. Journal of Environmental Chemical Engineering, 8(5), 104181. doi:https://doi.org/10.1016/j.jece.2020.104181
  • Rahman, K. H., & Kar, A. K. (2020b). Titanium-di-oxide (TiO2) concentration-dependent optical and morphological properties of PAni-TiO2 nanocomposite. Materials Science in Semiconductor Processing, 105, 104745. doi:https://doi.org/10.1016/j.mssp.2019.104745
  • Rathore, B. S., Chauhan, N. P. S., Rawal, M. K., Ameta, S. C., & Ameta, R. (2020). Chitosan–polyaniline–copper(II) oxide hybrid composite for the removal of methyl orange dye. Polymer Bulletin, 77(9), 4833-4850. doi:10.1007/s00289-019-02994-7
  • Sajith, M., S, H., & Sambhudevan, S. (2024). A Comprehensive Review on Photocatalytic Degradation of Textile Dyes Using PANI-Semiconductor Composites. Water, Air, & Soil Pollution, 235(9), 594. doi:10.1007/s11270-024-07399-5
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029-1033. doi:https://doi.org/10.1016/j.molliq.2016.06.074
  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
  • Singh, P., & Shukla, S. K. (2020). Structurally optimized cupric oxide/polyaniline nanocomposites for efficient humidity sensing. Surfaces and Interfaces, 18, 100410. doi:https://doi.org/10.1016/j.surfin.2019.100410
  • Stejskal, J., Riede, A., Hlavatá, D., Prokeš, J., Helmstedt, M., & Holler, P. (1998). The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals, 96(1), 55-61. doi:10.1016/s0379-6779(98)00064-2
  • Stejskal, J., & Sapurina, I. (2008). Polyaniline — A Conducting Polymer. In U. Schubert, N. Hüsing, & R. M. Laine (Eds.), Materials Syntheses: A Practical Guide (pp. 199-207). Vienna: Springer Vienna.
  • Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 83(10), 1803-1817. doi:doi:10.1351/PAC-REP-10-02-01 Turkten, N., Karatas, Y., & Bekbolet, M. (2021a). Conducting Polymers and Photocatalysis: A Mini Review on Selected Conducting
  • Polymers and Photocatalysts as TiO2 and ZnO. Journal of Photocatalysis, 2(4), 252-270. doi:10.2174/2665976x02666211201121530
  • Turkten, N., Karatas, Y., & Bekbolet, M. (2021b). Preparation of PANI Modified ZnO Composites via Different Methods: Structural, Morphological and Photocatalytic Properties. Water, 13(8). doi:10.3390/w13081025
  • Turkten, N., Karatas, Y., Uyguner-Demirel, C. S., & Bekbolet, M. (2023). Preparation of PANI modified TiO2 and characterization under pre- and post- photocatalytic conditions. Environmental Science and Pollution Research, 30(51), 111182-111207. doi:10.1007/s11356-023-30090-x
  • Turkten, N., Karatas, Y., & Yalcin Gurkan, Y. (2025). New Insights into the Application of Copper-Based Polymer Composites: A Depth Experimental and Computational Inorganic Chemistry Communications.
  • Ullah, R., Bilal, S., Ali, K., & Shah, A.-u.-H. A. (2014). Synthesis and characterization of polyaniline doped with Cu II chloride by inverse emulsion polymerization. Synthetic Metals, 198, 113-117. doi:https://doi.org/10.1016/j.synthmet.2014.09.024
  • Vijayalakshmi, S., Kumar, E., Ganeshbabu, M., Venkatesh, P. S., & Rathnakumar, K. (2021). Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites. Ionics, 27(7), 2967-2977. doi:10.1007/s11581-021-04041-w
  • Wang, F., Min, S., Han, Y., & Feng, L. (2010). Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattices and Microstructures, 48(2), 170-180. doi:https://doi.org/10.1016/j.spmi.2010.06.009
  • Wang, F., & Min, S. X. (2007). TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light. Chinese Chemical Letters, 18(10), 1273-1277. doi:https://doi.org/10.1016/j.cclet.2007.08.010
  • Yang, C., Dong, W., Cui, G., Zhao, Y., Shi, X., Xia, X., Tang, B., & Wang, W. (2017). Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochimica Acta, 247, 486-495. doi:https://doi.org/10.1016/j.electacta.2017.07.037

SYNTHESIS OF POLYANILINE-BASED CATALYSTS: PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE

Yıl 2025, Cilt: 28 Sayı: 2, 851 - 862, 03.06.2025

Öz

The increasing use of dyes in various industries has raised concerns regarding the potential release of harmful substances into the environment and their influence on human health. The incorporating style of polyaniline-based catalysts has attracted great interest in the field of photocatalysis, specifically for dye degradation from water. Polyaniline CuO (PANI-CuO) catalysts with varying PANI/CuO mole ratios (1:8, 1:1, and 8:1) were synthesized by in-situ chemical oxidation polymerization (PCI) and mechano-chemical preparation (PCS) methods. FTIR, XRD, and SEM analyses confirmed the presence of CuO and PANI in PCS catalysts. However, CuO particles were not detected in PCI specimens due to the dissolution of CuO in a highly acidic medium. The photocatalytic efficiency of prepared two different series of PANI-CuO catalysts was assessed by the degradation of methylene blue (MB) dye degradation for comparative purposes. The results implied that the preparation process significantly concerns the photocatalytic performance with PCI catalysts exhibiting higher MB photocatalytic degradation than PCS specimens. The PCI-18 specimen achieved 56% degradation of MB in 300 minutes.

Kaynakça

  • Borgohain, K., Singh, J. B., Rama Rao, M. V., Shripathi, T., & Mahamuni, S. (2000). Quantum size effects in CuO nanoparticles. Physical Review B, 61(16), 11093-11096. doi:10.1103/PhysRevB.61.11093
  • Boucherdoud, A., Kherroub, D. E., Dahmani, K., Douinat, O., Seghier, A., Bestani, B., & Benderdouche, N. (2024). Polyaniline/cupric oxide organometallic nanocomposites as a sonocatalyst for the degradation of methylene blue: Experimental study, RSM optimization, and DFT analysis. Journal of Organometallic Chemistry, 1022, 123386. doi:https://doi.org/10.1016/j.jorganchem.2024.123386
  • Cui, Z., Yuan, R., Chen, H., Zhou, B., Zhu, B., & Zhang, C. (2024). Application of polyaniline-based photocatalyst in photocatalytic degradation of micropollutants in water: A review. Journal of Water Process Engineering, 59, 104900. doi:https://doi.org/10.1016/j.jwpe.2024.104900
  • Deng, Y., Tang, L., Zeng, G., Dong, H., Yan, M., Wang, J., Hu, W., Wang, J., Zhou, Y., & Tang, J. (2016). Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Applied Surface Science, 387, 882-893. doi:https://doi.org/10.1016/j.apsusc.2016.07.026
  • Devi, L. V., Selvalakshmi, T., Sellaiyan, S., Uedono, A., Sivaji, K., & Sankar, S. (2017). Effect of La doping on the lattice defects and photoluminescence properties of CuO. Journal of Alloys and Compounds, 709, 496-504. doi:https://doi.org/10.1016/j.jallcom.2017.03.148
  • Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., & Avcı, A. (2012). Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental, 119-120, 197-206. doi:10.1016/j.apcatb.2012.02.034
  • Fu, H., Shewfelt, S., Sylvan, L. D., Gaillard, J.-F., & Gray, K. A. (2024). Polyaniline-metal oxide coatings for biocidal applications: Mechanisms of activation and deactivation. Chemosphere, 346, 140543. doi:https://doi.org/10.1016/j.chemosphere.2023.140543
  • Gelaw, T. B., Sarojini, B. K., & Kodoth, A. K. (2022). Chitosan/Hydroxyethyl Cellulose Gel Immobilized Polyaniline/CuO/ZnO Adsorptive-Photocatalytic Hybrid Nanocomposite for Congo Red Removal. Journal of Polymers and the Environment, 30(10), 4086-4101. doi:10.1007/s10924-022-02492-4
  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004
  • Jangid, N. K., Jadoun, S., Yadav, A., Srivastava, M., & Kaur, N. (2021). Polyaniline-TiO2-based photocatalysts for dyes degradation. Polymer Bulletin, 78(8), 4743-4777. doi:10.1007/s00289-020-03318-w
  • Kallawar, G. A., & Bhanvase, B. A. (2024). A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environmental Science and Pollution Research, 31(2), 1748-1789. doi:10.1007/s11356-023-31175-3
  • Khader, E. H., Muslim, S. A., Saady, N. M. C., Ali, N. S., Salih, I. K., Mohammed, T. J., Albayati, T.M., & Zendehboudi, S. (2024). Recent advances in photocatalytic advanced oxidation processes for organic compound degradation: A review. Desalination and Water Treatment, 318, 100384. doi:https://doi.org/10.1016/j.dwt.2024.100384
  • Khan, S., Noor, T., Iqbal, N., & Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega, 9(20), 21751-21767. doi:10.1021/acsomega.4c00887
  • Koysuren, H. N., & Koysuren, O. (2023a). Photocatalytic Activity of Boron Doped CuO and Its Composite with Polyaniline. Polymer-Plastics Technology and Materials, 62(3), 281-293. doi:10.1080/25740881.2022.2113894
  • Koysuren, O., & Koysuren, H. N. (2023b). Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. Journal of Sol-Gel Science and Technology, 106(1), 131-148. doi:10.1007/s10971-023-06049-2
  • Lanjwani, M. F., Tuzen, M., Khuhawar, M. Y., & Saleh, T. A. (2024). Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorganic Chemistry Communications, 159, 111613. doi:https://doi.org/10.1016/j.inoche.2023.111613
  • Muzammal, S., Ahmad, A., Sheraz, M., Kim, J., Ali, S., Hanif, M. B., Hussain, I., Pandiaraj S., Alodhayb, A., Javed, M.S., Al-bonsrulah, H.A.Z., & Motola, M. (2024). Polymer-supported nanomaterials for photodegradation: Unraveling the methylene blue menace. Energy Conversion and Management: X, 22, 100547. doi:https://doi.org/10.1016/j.ecmx.2024.100547
  • Nekooie, R., Shamspur, T., & Mostafavi, A. (2021). Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 407, 113038. doi:https://doi.org/10.1016/j.jphotochem.2020.113038
  • Pandey, K., Yadav, P., & Mukhopadhyay, I. (2015). Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Physical Chemistry Chemical Physics, 17(2), 878-887. doi:10.1039/C4CP04321A
  • Ping, Z. (1996). In situ FTIR–attenuated total reflection spectroscopic investigations on the base–acid transitions of polyaniline. Base–acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92(17), 3063-3067. doi:10.1039/FT9969203063
  • Rahman, K. H., & Kar, A. K. (2020a). Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. Journal of Environmental Chemical Engineering, 8(5), 104181. doi:https://doi.org/10.1016/j.jece.2020.104181
  • Rahman, K. H., & Kar, A. K. (2020b). Titanium-di-oxide (TiO2) concentration-dependent optical and morphological properties of PAni-TiO2 nanocomposite. Materials Science in Semiconductor Processing, 105, 104745. doi:https://doi.org/10.1016/j.mssp.2019.104745
  • Rathore, B. S., Chauhan, N. P. S., Rawal, M. K., Ameta, S. C., & Ameta, R. (2020). Chitosan–polyaniline–copper(II) oxide hybrid composite for the removal of methyl orange dye. Polymer Bulletin, 77(9), 4833-4850. doi:10.1007/s00289-019-02994-7
  • Sajith, M., S, H., & Sambhudevan, S. (2024). A Comprehensive Review on Photocatalytic Degradation of Textile Dyes Using PANI-Semiconductor Composites. Water, Air, & Soil Pollution, 235(9), 594. doi:10.1007/s11270-024-07399-5
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029-1033. doi:https://doi.org/10.1016/j.molliq.2016.06.074
  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
  • Singh, P., & Shukla, S. K. (2020). Structurally optimized cupric oxide/polyaniline nanocomposites for efficient humidity sensing. Surfaces and Interfaces, 18, 100410. doi:https://doi.org/10.1016/j.surfin.2019.100410
  • Stejskal, J., Riede, A., Hlavatá, D., Prokeš, J., Helmstedt, M., & Holler, P. (1998). The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals, 96(1), 55-61. doi:10.1016/s0379-6779(98)00064-2
  • Stejskal, J., & Sapurina, I. (2008). Polyaniline — A Conducting Polymer. In U. Schubert, N. Hüsing, & R. M. Laine (Eds.), Materials Syntheses: A Practical Guide (pp. 199-207). Vienna: Springer Vienna.
  • Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 83(10), 1803-1817. doi:doi:10.1351/PAC-REP-10-02-01 Turkten, N., Karatas, Y., & Bekbolet, M. (2021a). Conducting Polymers and Photocatalysis: A Mini Review on Selected Conducting
  • Polymers and Photocatalysts as TiO2 and ZnO. Journal of Photocatalysis, 2(4), 252-270. doi:10.2174/2665976x02666211201121530
  • Turkten, N., Karatas, Y., & Bekbolet, M. (2021b). Preparation of PANI Modified ZnO Composites via Different Methods: Structural, Morphological and Photocatalytic Properties. Water, 13(8). doi:10.3390/w13081025
  • Turkten, N., Karatas, Y., Uyguner-Demirel, C. S., & Bekbolet, M. (2023). Preparation of PANI modified TiO2 and characterization under pre- and post- photocatalytic conditions. Environmental Science and Pollution Research, 30(51), 111182-111207. doi:10.1007/s11356-023-30090-x
  • Turkten, N., Karatas, Y., & Yalcin Gurkan, Y. (2025). New Insights into the Application of Copper-Based Polymer Composites: A Depth Experimental and Computational Inorganic Chemistry Communications.
  • Ullah, R., Bilal, S., Ali, K., & Shah, A.-u.-H. A. (2014). Synthesis and characterization of polyaniline doped with Cu II chloride by inverse emulsion polymerization. Synthetic Metals, 198, 113-117. doi:https://doi.org/10.1016/j.synthmet.2014.09.024
  • Vijayalakshmi, S., Kumar, E., Ganeshbabu, M., Venkatesh, P. S., & Rathnakumar, K. (2021). Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites. Ionics, 27(7), 2967-2977. doi:10.1007/s11581-021-04041-w
  • Wang, F., Min, S., Han, Y., & Feng, L. (2010). Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattices and Microstructures, 48(2), 170-180. doi:https://doi.org/10.1016/j.spmi.2010.06.009
  • Wang, F., & Min, S. X. (2007). TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light. Chinese Chemical Letters, 18(10), 1273-1277. doi:https://doi.org/10.1016/j.cclet.2007.08.010
  • Yang, C., Dong, W., Cui, G., Zhao, Y., Shi, X., Xia, X., Tang, B., & Wang, W. (2017). Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochimica Acta, 247, 486-495. doi:https://doi.org/10.1016/j.electacta.2017.07.037
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi, Çevre Mühendisliği (Diğer)
Bölüm Kimya Mühendisliği
Yazarlar

Nazlı Türkten 0000-0001-9343-3697

Yunus Karataş 0000-0002-3826-463X

Yelda Yalçın Gürkan 0000-0002-8621-2025

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 13 Ocak 2025
Kabul Tarihi 6 Şubat 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Türkten, N., Karataş, Y., & Yalçın Gürkan, Y. (2025). SYNTHESIS OF POLYANILINE-BASED CATALYSTS: PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 851-862.