Araştırma Makalesi
BibTex RIS Kaynak Göster

ENJEKSİYON KALIPLAMA İLE ÜRETİLEN FEMUR İMPLANTLARININ ISIL VE YAPISAL DAVRANIŞLARININ SAYISAL OLARAK İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 2, 1007 - 1019, 03.06.2025

Öz

Bu araştırma, biyomedikal uygulamalarında standart Ti-6Al-4V alaşımı yerine biyouyumlu mühendislik polimerlerini kullanma üzerine yapılmıştır. İmplantların üretimi için enjeksiyon kalıplama prosesinde Polipropilen (PP), Polioksimetilen (POM) ve Polibütilen Tereftalat (PBT) kullanımı incelenmiştir. Kalıp içi akış, hacimsel büzülme, çarpılma ve mekanik dayanım dikkate alınan parametrelerdir. (Autodesk Moldflow Insight yazılımı kullanılarak) Z eksenindeki deformasyon için, en büyük deformasyon 1.134 mm ile POM, ardından 1.102 mm ile PP ve 0.987 mm ile PBT iken hacimsel büzülme oranları sırasıyla 18.05, 18.29 ve 16.76 olarak hesaplanmıştır. Ansys Workbench yazılım simülasyonları, femur implant modeline maksimum 45 Nm eksenel kuvvetin uygulandığını ve maksimum eşdeğer gerilmenin POM için 112,3 MPa, PP için 89,7 MPa ve PBT için 104,2 MPa olduğunu göstermektedir. POM için toplam deformasyon değerinin 1,24 mm, PP için 1,68 mm ve PBT için 1,09 mm olduğu belirlenmiştir. Araştırmada, PBT’nin en yüksek boyutsal stabiliteye ve minimum eğrilme ve hacimsel büzülme oranlarına sahip ideal bir malzeme olduğu ve kemikle mekanik olarak uyumlu bir malzeme olduğu temel sonucuna varılmıştır. Analizler, PBT termoplastik malzemenin, enjeksiyon kalıplama tekniği kullanılarak implant yapımı için daha uygun bir seçim olduğunu göstermektedir.

Kaynakça

  • Azdast, T., Shirinbayan, M., & Rezaei, A. (2022). High-pressure foam injection molding of polylactide/nano-fibril composites with mold opening. In Polymeric Foams (pp. 129-139). CRC Press.
  • Bressan, E., Favero, V., Gardin, C., Ferroni, L., Iacobellis, L., Favero, L., ... & Zavan, B. (2011). Biopolymers for hard and soft engineered tissues: application in odontoiatric and plastic surgery field. Polymers, 3(1), 509-526.
  • Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Synthesis of polymer composite materials and their biomedical applications. Materials Today: Proceedings, 30, 305-315.
  • Brady, S. R., Nguyen, H. T., Patel, D. K., & Jones, A. M. (2023). Engineering synthetic poly(ethylene) glycol‐based hydrogels compatible with injection molding biofabrication. Journal of Biomedical Materials Research Part A, 111(6), 814-824.
  • Bastos, L., Rodrigues, P., & Almeida, J. (2022). Design and development of a novel double-chamber syringe concept for venous catheterization. Medical Engineering & Physics, 100, 103757.
  • Boronat, T., Ferrer, J. M., & Sánchez, J. (2009). Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process. Journal of Materials Processing Technology, 209(5), 2735-2745.
  • Chang, S. C. N., Hansbrough, J. F., Wheeler, E. S., & Wong, V. W. (2003). Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plastic and Reconstructive Surgery, 112(3), 793-799.
  • Canbolat A.S., Bademlioglu A.H. & Kaynakli Ö. (2022). Thermohydraulic performance optimization of automobile radiators using statistical approaches. Journal of Thermal Science and Engineering Applications, 14(5), 051014.
  • Fu, H., Xu, H., Liu, Y., Yang, Z., Kormakov, S., Wu, D., & Sun, J. (2020). Overview of injection molding technology for processing polymers and their composites. ES Materials & Manufacturing, 8(20), 3-23.
  • Gumustas, B., & Sismanoglu, S. (2018). Effectiveness of different resin composite materials for repairing noncarious amalgam margin defects. Journal of Conservative Dentistry and Endodontics, 21(6), 627-631.
  • Gogolewskı, S., Jovanovic, M., Perren, S. M., Dillon, J. G., & Hughes, M. K. (1993). Tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3‐hydroxybutyrate) (PHB), and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 27(9), 1135-1148.
  • Heıdarı, B. S., Rezvani, S., & Ghanbari, S. (2017). Simulation of mechanical behavior and optimization of simulated injection molding process for PLA-based antibacterial composite and nanocomposite bone screws using central composite design. Journal of the Mechanical Behavior of Biomedical Materials, 65, 160-176.
  • Isaıncu, A., Yazdanbakhsh, A. H., & Sharifi, H. H. (2021). Numerical investigation on the influence of fiber orientation mapping procedure to the mechanical response of short-fiber reinforced composites using Moldflow, Digimat, and Ansys software. Materials Today: Proceedings, 45, 4304-4309.
  • Kramschuster, A., & Turng, L.-S. (2010). An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92(2), 366-376.
  • Kulkarnı, A., Patel, R., & Singh, B. (2012). Modeling of short fiber reinforced injection moulded composite. In IOP Conference Series: Materials Science and Engineering (p. 012025). IOP Publishing.
  • Lee, C. S., Kim, S. H., Park, J. H., & Lee, J. H. (2019). Investigation on very high cycle fatigue of PA66-GF30 GFRP based on fiber orientation. Composites Science and Technology, 180, 94-100.
  • Maden, O., & Tüfekçi, K. (2022). İnsan femurunda eksenel ve yanal darbe yüküne maruz kalan kemik-implant sisteminin analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 12(1), 112-120.
  • Mao, H., Wang, Y., & Yang, D. (2022). Otomotiv arka kapı panelinin enjeksiyon kalıplama prosesi simülasyonu ve kalıp tasarımı çalışması. Mekanik Bilim ve Teknoloji Dergisi, 36(5), 2331-2344.
  • Mi, H.-Y., Jing, X., Liu, Y., & Li, Z. (2013). Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C, 33(8), 4767-4776.
  • Nuruzzaman, D. M., Kusaseh, N., Basri, S., Oumer, A. N., & Hamedon, Z. (2016, February). Modeling and flow analysis of pure nylon polymer for injection molding process. In IOP Conference Series: Materials Science and Engineering (Vol. 114, No. 1, p. 012043). IOP Publishing.
  • Oroszlány, Á., & Kovács, J. G. (2010). Gate type influence on thermal characteristics of injection molded biodegradable interference screws for ACL reconstruction. International Communications in Heat and Mass Transfer, 37(7), 766-769.
  • Premalatha, S., Kumar, R., & Singh, A. (2024). Injection molding hot runner machine. In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1-4). IEEE.
  • Sammoura, F., Ho, C. M., Lin, L., & Pisano, A. P. (2007). Polymeric microneedle fabrication using a microinjection molding technique. Microsystem Technologies, 13, 517-522.
  • Shirdar, M. R., Farajpour, N., Shahbazian-Yassar, R., & Shokuhfar, T. (2019). Nanocomposite materials in orthopedic applications. Frontiers of Chemical Science and Engineering, 13, 1-13.
  • Saad, M., Akhtar, S., & Srivastava, S. (2018). Composite polymer in orthopedic implants: A review. Materials Today: Proceedings, 5(9), 20224-20231.
  • Surace, R., Fassi, I., Previtali, B., & Annoni, M. (2016). Design and fabrication of a polymeric microfilter for medical applications. Journal of Micro-and Nano-Manufacturing, 4(1), 011006.
  • Tan, F. (2020). Experimental investigation of mechanical properties for injection molded pa66+ pa6i/6t composite using rsm and grey wolf optimization. El-Cezeri, 7(2), 835-847.
  • Tan, J., Zhang, Y., Liu, W., Wang, X., & Zhou, L. (2024). Fabricating high-performance biomedical PLLA/PVDF blend micro bone screws through in situ structuring of oriented PVDF submicron fibers in microinjection molding. Composites Part B: Engineering, 281, 111567.
  • Tan, F., & Alkan, A. K. (2024). Effect of Cooling Parameters on In-Mold Flow Behavior in the Microinjection Molding of Piezoelectric Pumps. International Journal of Automotive Science And Technology, 8(4), 467-475.
  • Turkan, B., Canbolat, A.S. & Etemoglu, A.B. (2019). Numerical investigation of multiphase transport model for hot-air drying of food. Journal of Agricultural Sciences, 25(4), 518-529.
  • Wang, J., Liu, Y., Zhang, H., & Chen, L. (2020). Measurement of specific volume of polymers under simulated injection molding processes. Materials & Design, 196, 109136.
  • Zhao, W., Zhang, H., Liu, Y., & Wang, J. (2001). Development of PMMA‐precoating metal prostheses via injection molding: Residual stresses. Journal of Biomedical Materials Research, 58(4), 456-462.
  • Zamanı, M. H., Yazdanbakhsh, A. H., & Sharifi, H. H. (2022). Investigation of ventilator’s polymeric split filter production with injection molding process using Autodesk Moldflow software.

NUMERICAL INVESTIGATION OF THERMAL AND STRUCTURAL BEHAVIOR IN INJECTION-MOLDED FEMUR IMPLANTS

Yıl 2025, Cilt: 28 Sayı: 2, 1007 - 1019, 03.06.2025

Öz

The biomedical applications utilized in this research adopt biocompatible engineering polymers instead of the standard Ti-6Al-4V alloy. The use of Polypropylene (PP), Polyoxymethylene (POM), and Polybutylene Terephthalate (PBT) was explored through the process of injection molding in the manufacture of implants. In examining the various polymers, molding flow, volumetric shrinkage, warpage, and mechanical strength were the parameters that were put under consideration. It was found (using the Autodesk Moldflow Insight software) that the deformation in the Z-axis was the largest for POM with 1.134 mm, followed by PP with 1.102 mm and PBT with 0.987 mm, whereas the volumetric shrinkage rates were computed as 18.05, 18.29, and 16.76, respectively. The Ansys Workbench software simulations demonstrated that a maximum axial force of 45 Nm was applied to the femur-implant model, and the maximum equivalent stress was 112.3 MPa for POM, 89.7 MPa for PP, and 104.2 MPa for PBT. The total deformation values were determined to be 1.24 mm for POM, 1.68 mm for PP, and 1.09 mm for PBT. The key results of this research were that PBT is the ideal material with the utmost dimensional stability and minimal warpage and volumetric shrinkage rates, as well as being the one that is mechanically compatible with the bone. The analyses confirmed that PBT thermoplastic is the more favorable choice among the materials for implant-making using the injection molding technique.

Kaynakça

  • Azdast, T., Shirinbayan, M., & Rezaei, A. (2022). High-pressure foam injection molding of polylactide/nano-fibril composites with mold opening. In Polymeric Foams (pp. 129-139). CRC Press.
  • Bressan, E., Favero, V., Gardin, C., Ferroni, L., Iacobellis, L., Favero, L., ... & Zavan, B. (2011). Biopolymers for hard and soft engineered tissues: application in odontoiatric and plastic surgery field. Polymers, 3(1), 509-526.
  • Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Synthesis of polymer composite materials and their biomedical applications. Materials Today: Proceedings, 30, 305-315.
  • Brady, S. R., Nguyen, H. T., Patel, D. K., & Jones, A. M. (2023). Engineering synthetic poly(ethylene) glycol‐based hydrogels compatible with injection molding biofabrication. Journal of Biomedical Materials Research Part A, 111(6), 814-824.
  • Bastos, L., Rodrigues, P., & Almeida, J. (2022). Design and development of a novel double-chamber syringe concept for venous catheterization. Medical Engineering & Physics, 100, 103757.
  • Boronat, T., Ferrer, J. M., & Sánchez, J. (2009). Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process. Journal of Materials Processing Technology, 209(5), 2735-2745.
  • Chang, S. C. N., Hansbrough, J. F., Wheeler, E. S., & Wong, V. W. (2003). Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plastic and Reconstructive Surgery, 112(3), 793-799.
  • Canbolat A.S., Bademlioglu A.H. & Kaynakli Ö. (2022). Thermohydraulic performance optimization of automobile radiators using statistical approaches. Journal of Thermal Science and Engineering Applications, 14(5), 051014.
  • Fu, H., Xu, H., Liu, Y., Yang, Z., Kormakov, S., Wu, D., & Sun, J. (2020). Overview of injection molding technology for processing polymers and their composites. ES Materials & Manufacturing, 8(20), 3-23.
  • Gumustas, B., & Sismanoglu, S. (2018). Effectiveness of different resin composite materials for repairing noncarious amalgam margin defects. Journal of Conservative Dentistry and Endodontics, 21(6), 627-631.
  • Gogolewskı, S., Jovanovic, M., Perren, S. M., Dillon, J. G., & Hughes, M. K. (1993). Tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3‐hydroxybutyrate) (PHB), and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 27(9), 1135-1148.
  • Heıdarı, B. S., Rezvani, S., & Ghanbari, S. (2017). Simulation of mechanical behavior and optimization of simulated injection molding process for PLA-based antibacterial composite and nanocomposite bone screws using central composite design. Journal of the Mechanical Behavior of Biomedical Materials, 65, 160-176.
  • Isaıncu, A., Yazdanbakhsh, A. H., & Sharifi, H. H. (2021). Numerical investigation on the influence of fiber orientation mapping procedure to the mechanical response of short-fiber reinforced composites using Moldflow, Digimat, and Ansys software. Materials Today: Proceedings, 45, 4304-4309.
  • Kramschuster, A., & Turng, L.-S. (2010). An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92(2), 366-376.
  • Kulkarnı, A., Patel, R., & Singh, B. (2012). Modeling of short fiber reinforced injection moulded composite. In IOP Conference Series: Materials Science and Engineering (p. 012025). IOP Publishing.
  • Lee, C. S., Kim, S. H., Park, J. H., & Lee, J. H. (2019). Investigation on very high cycle fatigue of PA66-GF30 GFRP based on fiber orientation. Composites Science and Technology, 180, 94-100.
  • Maden, O., & Tüfekçi, K. (2022). İnsan femurunda eksenel ve yanal darbe yüküne maruz kalan kemik-implant sisteminin analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 12(1), 112-120.
  • Mao, H., Wang, Y., & Yang, D. (2022). Otomotiv arka kapı panelinin enjeksiyon kalıplama prosesi simülasyonu ve kalıp tasarımı çalışması. Mekanik Bilim ve Teknoloji Dergisi, 36(5), 2331-2344.
  • Mi, H.-Y., Jing, X., Liu, Y., & Li, Z. (2013). Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C, 33(8), 4767-4776.
  • Nuruzzaman, D. M., Kusaseh, N., Basri, S., Oumer, A. N., & Hamedon, Z. (2016, February). Modeling and flow analysis of pure nylon polymer for injection molding process. In IOP Conference Series: Materials Science and Engineering (Vol. 114, No. 1, p. 012043). IOP Publishing.
  • Oroszlány, Á., & Kovács, J. G. (2010). Gate type influence on thermal characteristics of injection molded biodegradable interference screws for ACL reconstruction. International Communications in Heat and Mass Transfer, 37(7), 766-769.
  • Premalatha, S., Kumar, R., & Singh, A. (2024). Injection molding hot runner machine. In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1-4). IEEE.
  • Sammoura, F., Ho, C. M., Lin, L., & Pisano, A. P. (2007). Polymeric microneedle fabrication using a microinjection molding technique. Microsystem Technologies, 13, 517-522.
  • Shirdar, M. R., Farajpour, N., Shahbazian-Yassar, R., & Shokuhfar, T. (2019). Nanocomposite materials in orthopedic applications. Frontiers of Chemical Science and Engineering, 13, 1-13.
  • Saad, M., Akhtar, S., & Srivastava, S. (2018). Composite polymer in orthopedic implants: A review. Materials Today: Proceedings, 5(9), 20224-20231.
  • Surace, R., Fassi, I., Previtali, B., & Annoni, M. (2016). Design and fabrication of a polymeric microfilter for medical applications. Journal of Micro-and Nano-Manufacturing, 4(1), 011006.
  • Tan, F. (2020). Experimental investigation of mechanical properties for injection molded pa66+ pa6i/6t composite using rsm and grey wolf optimization. El-Cezeri, 7(2), 835-847.
  • Tan, J., Zhang, Y., Liu, W., Wang, X., & Zhou, L. (2024). Fabricating high-performance biomedical PLLA/PVDF blend micro bone screws through in situ structuring of oriented PVDF submicron fibers in microinjection molding. Composites Part B: Engineering, 281, 111567.
  • Tan, F., & Alkan, A. K. (2024). Effect of Cooling Parameters on In-Mold Flow Behavior in the Microinjection Molding of Piezoelectric Pumps. International Journal of Automotive Science And Technology, 8(4), 467-475.
  • Turkan, B., Canbolat, A.S. & Etemoglu, A.B. (2019). Numerical investigation of multiphase transport model for hot-air drying of food. Journal of Agricultural Sciences, 25(4), 518-529.
  • Wang, J., Liu, Y., Zhang, H., & Chen, L. (2020). Measurement of specific volume of polymers under simulated injection molding processes. Materials & Design, 196, 109136.
  • Zhao, W., Zhang, H., Liu, Y., & Wang, J. (2001). Development of PMMA‐precoating metal prostheses via injection molding: Residual stresses. Journal of Biomedical Materials Research, 58(4), 456-462.
  • Zamanı, M. H., Yazdanbakhsh, A. H., & Sharifi, H. H. (2022). Investigation of ventilator’s polymeric split filter production with injection molding process using Autodesk Moldflow software.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji ve Yakmada Kimyasal ve Termal Süreçler, Kimyasal Proses Tasarımı, Kütle Transferi, Malzeme Bilimi ve Teknolojileri, Polimer Bilimi ve Teknolojileri, Süreç Kontrolü ve Simülasyonu, Makine Mühendisliğinde Sayısal Yöntemler, Malzeme Tasarım ve Davranışları, Sayısal Modelleme ve Mekanik Karakterizasyon, Polimer Fiziği, Polimer Teknolojisi, CAD/CAM Sistemleri, İmalat Yönetimi, Üretimde Optimizasyon
Bölüm Makine Mühendisliği
Yazarlar

Fuat Tan 0000-0002-4194-5591

Ahmet Kerem Alkan 0009-0004-6595-3969

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 9 Mart 2025
Kabul Tarihi 15 Nisan 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Tan, F., & Alkan, A. K. (2025). NUMERICAL INVESTIGATION OF THERMAL AND STRUCTURAL BEHAVIOR IN INJECTION-MOLDED FEMUR IMPLANTS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 1007-1019.