Araştırma Makalesi
BibTex RIS Kaynak Göster

SOĞUKTA ŞEKİL VERİLMİŞ ÇELİK GÖVDE DELİKLİ KESİTLERİN BURKULMA KAPASİTELERİNİN FARKLI YAKLAŞIMLARLA İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 2, 1036 - 1048, 03.06.2025

Öz

Bu çalışma, gövde delikli soğukta şekil verilmiş çelik kesitlerin eğilme etkisi altındaki burkulma davranışını incelemektedir. Delikli kesitler, elektrik, su ve havalandırma sistemleri için gerekli boşlukları sağlamak amacıyla yapısal uygulamalarda yaygın olarak kullanılmaktadır. Ancak bu delikler, kesitin mekanik özelliklerini ve burkulma davranışını önemli ölçüde etkilemektedir. Bu kapsamda, delik yüksekliği, delik uzunluğu ve kesit yüksekliği gibi değişkenler dikkate alınarak, CUFSM programı kullanılarak deliksiz ve delikli kesitler için elastik burkulma analizleri gerçekleştirilmiştir. Ayrıca, farklı yaklaşımların lokal ve distorsiyonel burkulma kapasitelerini tahmin etmedeki etkinliği karşılaştırılmıştır. Elde edilen sonuçlar, delik yüksekliği ve delik uzunluğunun burkulma kapasitesi üzerinde önemli bir etkisi olduğunu göstermektedir. Özellikle delik uzunluğunun 80 mm’yi aşması durumunda, lokal burkulma kapasitesinin arttığı, ancak distorsiyonel burkulma kapasitesinin azaldığı belirlenmiştir. Ayrıca, farklı yöntemlerin karşılaştırılması sonucunda, Moen ve Schafer tarafından geliştirilen yaklaşımının standart hesaplamalarla benzer sonuçlar verdiği, buna karşın bazı diğer yöntemlerin lokal burkulma kapasitesini yüksek, distorsiyonel burkulma kapasitesini ise düşük tahmin ettiği tespit edilmiştir.

Kaynakça

  • Adany, S., & Schafer, B. W. (2006). Buckling analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods. In CCFSS Proceedings of International Specialty Conference on Cold-Formed Steel Structures.
  • AISI S100-16. (2020). Specifications for the cold-formed steel structural members, cold-formed steel design manual. American Iron and Steel Institute (AISI).
  • Australian/New Zealand Standard (2018). Cold-formed stainless steel structures. Sydney, Australia: Standards Australia (AS/NZS 4600).
  • Chandramohan, D. L., Roy, K., Fang, Z., & Lim, J. B. (2025). Moment capacity of cold-formed steel channel beams with edge-stiffened and unstiffened elongated web holes. Thin-Walled Structures, 206, 112605. https://doi.org/10.1016/j.tws.2024.112605
  • Chandramohan, D. L., Roy, K., Fang, Z., Ananthi, G. B. G., & Lim, J. B. (2024). Numerical investigation of cold-formed steel channels with edge-stiffened and unstiffened elongated web holes under shear. Thin-Walled Structures, 196, 111472. https://doi.org/10.1016/j.tws.2023.111472
  • Chen, B., Roy, K., Fang, Z., Uzzaman, A., Raftery, G., & Lim, J. B. (2021). Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes, and plain webs. Engineering Structures, 235, 112042. https://doi.org/10.1016/j.engstruct.2021.112042
  • Chen, B., Roy, K., Uzzaman, A., & Lim, J. B. (2020). Moment capacity of cold-formed channel beams with edge-stiffened web holes, un-stiffened web holes and plain webs. Thin-Walled Structures, 157, 107070. https://doi.org/10.1016/j.tws.2020.107070
  • Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G. M., & Lim, J. B. (2022). A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes. Journal of Building Engineering, 53, 104592. https://doi.org/10.1016/j.jobe.2022.104592
  • Eurocode. (2007). Eurocode 3: Design of steel structures - Part 1-3: General rules - Supplementary rules for coldformed members and sheeting. European Committee for Standardization.
  • Fang, Z., Roy, K., Chen, B., Sham, C. W., Hajirasouliha, I., & Lim, J. B. (2021). Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression. Thin-Walled Structures, 166, 108076. https://doi.org/10.1016/j.tws.2021.108076
  • Grey, C. N., & Moen, C. D. (2011, May). Elastic buckling simplified methods for cold-formed columns and beams with edge-stiffened holes. In Proceedings of the Annual Stability Conference Structural Stability Research Council Pittsburgh (pp. 92-103).
  • Jin, S., Ádány, S., & Schafer, B. W. Constrained Finite Strip Method: kinematic-and force-based approaches. In Proceedings of the Annual Stability Conference Structural Stability Research Council.
  • Li, Z., & Schafer, B. W. (2010). Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM conventional and constrained finite strip methods. In Twentieth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D. (2009). Direct strength design of cold-formed steel members with perforations. Phd Thesis. The Johns Hopkins University, Baltimore.
  • Moen, C. D., & Schafer, B. W. (2008; October). Simplified methods for predicting elastic buckling of cold-formed steel structural members with holes. In Nineteenth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D., & Schafer, B. W. (2006; October). Impact of holes on the elastic buckling of cold-formed steel columns with application to the direct strength method. In Eighteenth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D., & Schafer, B. W. (2009). Elastic buckling of cold-formed steel columns and beams with holes. Engineering Structures, 31(12), 2812-2824. https://doi.org/10.1016/j.engstruct.2009.07.007
  • Moen, C. D., & Schafer, B. W. (2010; November). Extending direct strength design to cold-formed steel beams with holes. In Twentieth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D., Schudlich, A., & von der Heyden, A. (2013). Experiments on cold-formed steel C-section joists with unstiffened web holes. Journal of Structural Engineering, 139(5), 695-704. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000652
  • Oruç, R. (2025, April). Influence of web holes on cold-formed steel beams: Experimental and numerical analysis. Structures, 74, 108471. https://doi.org/10.1016/j.istruc.2025.108471
  • Pham, D. K., Pham, C. H., Pham, S. H., & Hancock, G. J. (2020). Experimental investigation of high strength cold-formed channel sections in shear with rectangular and slotted web openings. Journal of Constructional Steel Research, 165, 105889. https://doi.org/10.1016/j.jcsr.2019.105889
  • Qin, J., Guo, X., Liao, L., & Li, G. (2023). Analytical method for distortional buckling load of cold-formed steel members with perforated web under bending moment. Structures, 57, 105189. https://doi.org/10.1016/j.istruc.2023.105189
  • Wang, L., & Young, B. (2015). Beam tests of cold-formed steel built-up sections with web perforations. Journal of Constructional Steel Research, 115, 18-33. https://doi.org/10.1016/j.jcsr.2015.08.001
  • Wang, L., & Young, B. (2017). Design of cold-formed steel built-up sections with web perforations subjected to bending. Thin-Walled Structures, 120, 458-469. https://doi.org/10.1016/j.tws.2017.06.016
  • Wang, L., Jiang, X., Chen, Z., Luo, C., & Jiang, B. (2024). Effect of hole-edge stiffeners on the behavior of cold-formed steel members with web openings under combined bending and shear. Structures, 64, 106485. https://doi.org/10.1016/j.istruc.2024.106485
  • Wang, L., Li, J., Luo, C., Cao, X., & Wang, H. (2022). Experimental and numerical study on the shear behavior of web perforated cold-formed steel beams. Structures, 45, 2117-2136. https://doi.org/10.1016/j.istruc.2022.10.039
  • Yu, C. (2012). Cold-formed steel flexural member with edge stiffened holes: Behavior, optimization, and design. Journal of Constructional Steel Research, 71, 210-218. https://doi.org/10.1016/j.jcsr.2011.09.008
  • Yu, N. T., Kim, B., Huang, X. H., Yuan, W. B., Ye, R., Wu, L., & Le, J. J. (2022). Analytical solution for flange/web distortional buckling of cold-formed steel beams with circular web perforations. Mechanics of Advanced Materials and Structures, 29(24), 3463-3473. https://doi.org/10.1080/15376494.2021.1902594
  • Yuan, W. B., Yu, N. T., & Li, L. Y. (2017). Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web. International Journal of Mechanical Sciences, 126, 255-260. https://doi.org/10.1016/j.ijmecsci.2017.04.001
  • Zhao, J., Sun, K., Yu, C., & Wang, J. (2019). Tests and direct strength design on cold-formed steel channel beams with web holes. Engineering Structures, 184, 434-446. https://doi.org/10.1016/j.engstruct.2019.01.062

BUCKLING CAPACITY OF COLD-FORMED STEEL SECTIONS WITH WEB HOLES USING DIFFERENT APPROACHES

Yıl 2025, Cilt: 28 Sayı: 2, 1036 - 1048, 03.06.2025

Öz

This study examines the buckling behavior of cold-formed steel sections with web holes under bending. Perforated sections are widely used in structural applications to accommodate openings for electrical, plumbing, and ventilation systems. However, these holes significantly affect the section's mechanical properties and buckling behavior. Elastic buckling analyses were conducted for both perforated and non-perforated sections using CUFSM, considering variables such as hole height, hole length, and section height. Additionally, the effectiveness of different approaches in predicting local and distortional buckling capacities was compared. The results indicate that hole height and hole length significantly influence buckling capacity. In particular, when the hole length exceeds 80 mm, local buckling capacity increases, while distortional buckling capacity decreases. Furthermore, comparison of different methods revealed that the approach developed by Moen and Scahfer produced results similar to standart approaches, whereas some other methods tended to overestimate the local buckling capacity and underestimate the distortional buckling capacity.

Kaynakça

  • Adany, S., & Schafer, B. W. (2006). Buckling analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods. In CCFSS Proceedings of International Specialty Conference on Cold-Formed Steel Structures.
  • AISI S100-16. (2020). Specifications for the cold-formed steel structural members, cold-formed steel design manual. American Iron and Steel Institute (AISI).
  • Australian/New Zealand Standard (2018). Cold-formed stainless steel structures. Sydney, Australia: Standards Australia (AS/NZS 4600).
  • Chandramohan, D. L., Roy, K., Fang, Z., & Lim, J. B. (2025). Moment capacity of cold-formed steel channel beams with edge-stiffened and unstiffened elongated web holes. Thin-Walled Structures, 206, 112605. https://doi.org/10.1016/j.tws.2024.112605
  • Chandramohan, D. L., Roy, K., Fang, Z., Ananthi, G. B. G., & Lim, J. B. (2024). Numerical investigation of cold-formed steel channels with edge-stiffened and unstiffened elongated web holes under shear. Thin-Walled Structures, 196, 111472. https://doi.org/10.1016/j.tws.2023.111472
  • Chen, B., Roy, K., Fang, Z., Uzzaman, A., Raftery, G., & Lim, J. B. (2021). Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes, and plain webs. Engineering Structures, 235, 112042. https://doi.org/10.1016/j.engstruct.2021.112042
  • Chen, B., Roy, K., Uzzaman, A., & Lim, J. B. (2020). Moment capacity of cold-formed channel beams with edge-stiffened web holes, un-stiffened web holes and plain webs. Thin-Walled Structures, 157, 107070. https://doi.org/10.1016/j.tws.2020.107070
  • Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G. M., & Lim, J. B. (2022). A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes. Journal of Building Engineering, 53, 104592. https://doi.org/10.1016/j.jobe.2022.104592
  • Eurocode. (2007). Eurocode 3: Design of steel structures - Part 1-3: General rules - Supplementary rules for coldformed members and sheeting. European Committee for Standardization.
  • Fang, Z., Roy, K., Chen, B., Sham, C. W., Hajirasouliha, I., & Lim, J. B. (2021). Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression. Thin-Walled Structures, 166, 108076. https://doi.org/10.1016/j.tws.2021.108076
  • Grey, C. N., & Moen, C. D. (2011, May). Elastic buckling simplified methods for cold-formed columns and beams with edge-stiffened holes. In Proceedings of the Annual Stability Conference Structural Stability Research Council Pittsburgh (pp. 92-103).
  • Jin, S., Ádány, S., & Schafer, B. W. Constrained Finite Strip Method: kinematic-and force-based approaches. In Proceedings of the Annual Stability Conference Structural Stability Research Council.
  • Li, Z., & Schafer, B. W. (2010). Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM conventional and constrained finite strip methods. In Twentieth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D. (2009). Direct strength design of cold-formed steel members with perforations. Phd Thesis. The Johns Hopkins University, Baltimore.
  • Moen, C. D., & Schafer, B. W. (2008; October). Simplified methods for predicting elastic buckling of cold-formed steel structural members with holes. In Nineteenth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D., & Schafer, B. W. (2006; October). Impact of holes on the elastic buckling of cold-formed steel columns with application to the direct strength method. In Eighteenth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D., & Schafer, B. W. (2009). Elastic buckling of cold-formed steel columns and beams with holes. Engineering Structures, 31(12), 2812-2824. https://doi.org/10.1016/j.engstruct.2009.07.007
  • Moen, C. D., & Schafer, B. W. (2010; November). Extending direct strength design to cold-formed steel beams with holes. In Twentieth International Specialty Conference on Cold-Formed Steel Structures.
  • Moen, C. D., Schudlich, A., & von der Heyden, A. (2013). Experiments on cold-formed steel C-section joists with unstiffened web holes. Journal of Structural Engineering, 139(5), 695-704. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000652
  • Oruç, R. (2025, April). Influence of web holes on cold-formed steel beams: Experimental and numerical analysis. Structures, 74, 108471. https://doi.org/10.1016/j.istruc.2025.108471
  • Pham, D. K., Pham, C. H., Pham, S. H., & Hancock, G. J. (2020). Experimental investigation of high strength cold-formed channel sections in shear with rectangular and slotted web openings. Journal of Constructional Steel Research, 165, 105889. https://doi.org/10.1016/j.jcsr.2019.105889
  • Qin, J., Guo, X., Liao, L., & Li, G. (2023). Analytical method for distortional buckling load of cold-formed steel members with perforated web under bending moment. Structures, 57, 105189. https://doi.org/10.1016/j.istruc.2023.105189
  • Wang, L., & Young, B. (2015). Beam tests of cold-formed steel built-up sections with web perforations. Journal of Constructional Steel Research, 115, 18-33. https://doi.org/10.1016/j.jcsr.2015.08.001
  • Wang, L., & Young, B. (2017). Design of cold-formed steel built-up sections with web perforations subjected to bending. Thin-Walled Structures, 120, 458-469. https://doi.org/10.1016/j.tws.2017.06.016
  • Wang, L., Jiang, X., Chen, Z., Luo, C., & Jiang, B. (2024). Effect of hole-edge stiffeners on the behavior of cold-formed steel members with web openings under combined bending and shear. Structures, 64, 106485. https://doi.org/10.1016/j.istruc.2024.106485
  • Wang, L., Li, J., Luo, C., Cao, X., & Wang, H. (2022). Experimental and numerical study on the shear behavior of web perforated cold-formed steel beams. Structures, 45, 2117-2136. https://doi.org/10.1016/j.istruc.2022.10.039
  • Yu, C. (2012). Cold-formed steel flexural member with edge stiffened holes: Behavior, optimization, and design. Journal of Constructional Steel Research, 71, 210-218. https://doi.org/10.1016/j.jcsr.2011.09.008
  • Yu, N. T., Kim, B., Huang, X. H., Yuan, W. B., Ye, R., Wu, L., & Le, J. J. (2022). Analytical solution for flange/web distortional buckling of cold-formed steel beams with circular web perforations. Mechanics of Advanced Materials and Structures, 29(24), 3463-3473. https://doi.org/10.1080/15376494.2021.1902594
  • Yuan, W. B., Yu, N. T., & Li, L. Y. (2017). Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web. International Journal of Mechanical Sciences, 126, 255-260. https://doi.org/10.1016/j.ijmecsci.2017.04.001
  • Zhao, J., Sun, K., Yu, C., & Wang, J. (2019). Tests and direct strength design on cold-formed steel channel beams with web holes. Engineering Structures, 184, 434-446. https://doi.org/10.1016/j.engstruct.2019.01.062
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çelik Yapılar
Bölüm İnşaat Mühendisliği
Yazarlar

Ramazan Oruç 0000-0002-1650-4145

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 18 Mart 2025
Kabul Tarihi 30 Mayıs 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Oruç, R. (2025). SOĞUKTA ŞEKİL VERİLMİŞ ÇELİK GÖVDE DELİKLİ KESİTLERİN BURKULMA KAPASİTELERİNİN FARKLI YAKLAŞIMLARLA İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 1036-1048.