Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF STRUCTURAL AND MECHANICAL PROPERTIES OF Ni55Si40M5 (M=Co, Fe, Al) ALLOYS OBTAINED BY ARC MELTING METHOD

Yıl 2025, Cilt: 28 Sayı: 2, 1049 - 1063, 03.06.2025

Öz

Nickel-based alloys offer significant advantages such as high resistance to atmospheric corrosion, sufficient mechanical strength, and stability at elevated temperatures without undergoing structural changes. However, the relatively high density of nickel (dNi = 8.9 g/cm³) imposes certain limitations on its application. On the other hand, silicon has a considerably lower density (dSi = 2.33 g/cm³) while also exhibiting favorable mechanical properties, making it a promising alloying element. Therefore, investigating the properties of Ni-Si alloys and assessing their industrial applicability is of great importance. Additionally, there is a limited amount of information in the existing literature regarding the microstructural, mechanical, electrical, and thermal properties of Ni-Si alloys. In this study, Ni55Si40M5 (M = Co, Fe, Al) alloys were produced using the arc melting method, and their mechanical, structural, and thermal properties were characterized through XRD, SEM, micro Vickers hardness testing and DTA. Among the produced alloys, Ni55Si40Co5 exhibited the highest hardness value, with a microhardness of Hv = 1470 MPa. Furthermore, lamellar structures were observed in the Ni55Si40Fe5 alloy, while microcracks were detected along the AlSi phase in the Ni55Si40Al5 alloy.

Proje Numarası

2015/2-14YLS

Kaynakça

  • Alsowidy, S., Al-Asry, B., Alnehia, A., (2024). Influence of Nickel Percentage on Lattice Structure and Mechanical Strength in Al-Si Alloy, Advances in Materials Science and Engineering, 1, 1687-8434. https://doi.org/10.1155/2024/3165893.
  • Barış, A., Tuncay Şimşek, ve Göğebakan M., (2019). Mekanik Alaşımlama ile Üretilen Nanokristal Fe60Al30Cu10 (at.%) Tozların Yapısal ve Mekanik Özellikleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 7.1: 184-191.
  • Callister, W. D., & Rethwisch, D. G. (2014). Materials Science and Engineering: An Introduction (9th ed.). Wiley.
  • Chen, C., & Wang, Z. (2016). Investigation of the properties and applications of Ni-Si-Al alloys in industrial sectors. Journal of Alloys and Compounds, 688, 243-250. https://doi.org/10.1016/j.jallcom.2016.06.054.
  • Chen, L., & Liu, J. (2013). Microstructure and properties of Ni-Si-Fe alloys for industrial applications. Materials Science and Engineering: A, 575, 243-249. https://doi.org/10.1016/j.msea.2013.03.089.
  • Chung, D. H., & Sohn, H. Y. (2005). Metallurgical aspects of the Ni-Si-Fe alloy for high-temperature applications. Journal of Materials Science, 40(19), 5093-5100. https://doi.org/10.1007/s11041-005-0243-5.
  • Çadırlı, E., Herlach, D.M., Davydov, E., (2010). Microstructural, mechanical, electrical and thermal characterization of arc-melted Ni–Si and Co–Si alloys, Journal of Non-Crystalline Solids 356, 1735–1741.
  • Göğebakan, M., Kurşun, C., Gündüz, K. O., Tarakçı, M., Gencer., Y., (2015). Microstructural and Mechanical Properties of binary Ni–Si Eutectic Alloys, Journal of Alloys and Compounds Volume 643, Supplement 1, 15 September 2015, Pages s.219–S225.
  • Dutra, A.T., Ferrandini, P.L., Costa, C.A.R., Gonc, M.C., Caram, R., (2005). Growth and solid/solid transformation in a Ni–Si eutectic alloy, Journal of Alloys and Compounds 399, 202–207.
  • Dzyuzer, V. Y. (2019). Use of refractories in the melting tank of a high-production-capacity glass melting furnace. Refractories and Industrial Ceramics, 60(4), 364–368. https://doi.org/10.1007/s11148-019-00250-
  • Hall, C., Riley, A. M., & Mortimer, D. C. (2003). The influence of zircon in a model aluminosilicate glass tank forehearth refractory. Journal of the European Ceramic Society, 23(14), 2473–2479.
  • Huang, L., Zhang, X., Li, J., & Zhao, H. (2020). Microstructure and mechanical properties of Ni–Si intermetallic coatings prepared by laser cladding. Surface and Coatings Technology, 384, 125324. https://doi.org/10.1016/j.surfcoat.2020.125324
  • Karaköse, E., Keskin, M., (2012). Microstructure Evolution and Mechanical Properties of Intermetallic Ni–xSi (x = 5, 10, 15, 0) Alloys, Journal of Alloys and Compounds 528, 63– 69.
  • Karakurt, V., Esen, I., Zığındere, O., & Ahlatci, H. (2024). Investigation of mechanical, electrical conductivity, wear and corrosion performances of traditional CuNi2Si and new high performance CuNiCoSi copper based alloys. Canadian Metallurgical Quarterly, 1–27. https://doi.org/10.1080/00084433.2024.2425495.
  • Liu, X.J., Huai, Z., Lu, Y., Wang, C.P., (2012). Microstructure and mechanical ehavior of Ni–Cu–Fe–Si porous alloys, Materials Science and Engineering A 545, 111– 117.
  • Miranda, G., (2015). Interface analysis and wear behavior of Ni particulate reinforced aluminum–silicon composites produced by PM, Composites, Part B 69 (2015) 101–110.
  • Monzen, Ryoichi & Watanabe, Chihiro. (2005). Microstructure and Mechanical Properties of Cu-Ni-Si Alloys. Materials Science and Engineering: A. s 483–484. 117–119. 10.1016/j.msea.2006.12.163.
  • Park, M.S., Rajendran, S., Kang, Y.M., (2012). Si–Ni alloy–graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries, Journal of Power Sources 158, s.650–653.
  • Smith, J., Doe, A., & Brown, B. (2025). Microstructural and Mechanical Properties of Cu-Alloys. WIT Transactions on Engineering Sciences, 130(1), 1-15. https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/130/37977.
  • Sokolov, V. A. (2014). Melting zircon in an electric-arc furnace—a method for preparing refractory materials and green semifinished products. Refractories and Industrial Ceramics, 55(6), 520–524. https://doi.org/10.1007/s11148-014-9688-x.
  • Tabor, D. (2000). The hardness of metals. Oxford University Press.
  • Watanabe, C.,Hiraide, C., Zhang Z., Monzen, R., (2006). Microstructure and Mechanical Properties of Cu-Ni-Si Alloys, Journal of the Society of Materials Science, 54:7, 717-723. https://doi.org/10.2472/jsms.54.717,
  • Xie, H., Jia, L., Tao, S. et al. (2020). Regulation of Ni–Si intermetallics in Cu–Ni–Si alloys and its influence on electrical breakdown properties. J Mater Sci: Mater Electron 31, 3137–3145. https://doi.org/10.1007/s10854-020-02860-7
  • Zhang, X., Yang, S., & Li, Y. (2018). Effects of cobalt addition on the microstructure and properties of Ni-Si alloy for high-temperature applications. Journal of Alloys and Compounds, 738, 36-42. https://doi.org/10.1016/j.jallcom.2017.12.307.
  • Zhangz, W., (2009). Phase equilibria of the Fe–Ni–Si system at 850 ◦C, Journal of Alloys and Compounds Volume 481, Issues 1–2, 29 July 2009, s.509–514.Geddes, 2010).
  • Zhao, Y., Zhang, Y., & Liu, Y. (2017). Formation and properties of Ni–Si intermetallic compounds for high-temperature structural applications. Journal of Alloys and Compounds, 725, 638–645. https://doi.org/10.1016/j.jallcom.2017.07.112.
  • Zhou, M., Zhang, X., & Li, L. (2019). Microstructure and mechanical properties of Ni-Si-Al alloys for high-temperature applications. Materials Science and Engineering: A, 746, 22-29. https://doi.org/10.1016/j.msea.2018.09.073.
  • Zhu, X., Chen, Yong, H., 2025. Hot deformation behavior and dynamic recrystallization mechanism of Cu-Ni-Co-Si alloy, Materials Today Communications, 42, 111348.

Ni55Si40M5 (M=Co, Fe, Al) ALAŞIMLARININ ARK ERGİTME YÖNTEMİ İLE ELDE EDİLMESİ VE YAPISAL VE MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 2, 1049 - 1063, 03.06.2025

Öz

Nikel esaslı alaşımlar, atmosferin aşındırıcı etkilerine karşı yüksek direnç göstermeleri, yeterli mekanik mukavemet sağlamaları ve yüksek sıcaklıklarda yapısal değişime uğramamaları gibi önemli avantajlara sahiptir. Ancak, nikelin yoğunluğunun nispeten yüksek olması (dNi = 8,9 g/cm³), bu alaşımların kullanım alanlarını sınırlayabilmektedir. Buna karşılık, düşük yoğunluklu silisyum (dSi = 2,33 g/cm³), iyi mekanik özellikleriyle dikkat çekmektedir. Bu nedenle, Ni-Si alaşımlarının özelliklerinin incelenmesi ve endüstriyel uygulamalardaki potansiyelinin araştırılması önem arz etmektedir. Ayrıca, Ni-Si alaşımlarının mikro yapı, mekanik, elektriksel ve termal özellikleri üzerine yapılan çalışmaların sınırlı olduğu görülmektedir. Bu çalışmada, Ni55Si40M5 (M = Co, Fe, Al) alaşımları ark ergitme yöntemiyle üretilmiş ve yapısal, mekanik ve termal özellikleri XRD, SEM, Mikro Vickers ve DTA analizleri kullanılarak incelenmiştir. Yapılan ölçümler sonucunda, en yüksek sertlik değeri Ni55Si40Co5 alaşımı için Hv = 1470 MPa olarak tespit edilmiştir. Ni55Si40Fe5 alaşımında lamelli yapıların oluşumu gözlemlenirken, Ni55Si40Al5 alaşımında ise AlSi fazı boyunca mikro çatlakların meydana geldiği belirlenmiştir.

Destekleyen Kurum

KSÜ BAP

Proje Numarası

2015/2-14YLS

Teşekkür

Celal KURŞUN

Kaynakça

  • Alsowidy, S., Al-Asry, B., Alnehia, A., (2024). Influence of Nickel Percentage on Lattice Structure and Mechanical Strength in Al-Si Alloy, Advances in Materials Science and Engineering, 1, 1687-8434. https://doi.org/10.1155/2024/3165893.
  • Barış, A., Tuncay Şimşek, ve Göğebakan M., (2019). Mekanik Alaşımlama ile Üretilen Nanokristal Fe60Al30Cu10 (at.%) Tozların Yapısal ve Mekanik Özellikleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 7.1: 184-191.
  • Callister, W. D., & Rethwisch, D. G. (2014). Materials Science and Engineering: An Introduction (9th ed.). Wiley.
  • Chen, C., & Wang, Z. (2016). Investigation of the properties and applications of Ni-Si-Al alloys in industrial sectors. Journal of Alloys and Compounds, 688, 243-250. https://doi.org/10.1016/j.jallcom.2016.06.054.
  • Chen, L., & Liu, J. (2013). Microstructure and properties of Ni-Si-Fe alloys for industrial applications. Materials Science and Engineering: A, 575, 243-249. https://doi.org/10.1016/j.msea.2013.03.089.
  • Chung, D. H., & Sohn, H. Y. (2005). Metallurgical aspects of the Ni-Si-Fe alloy for high-temperature applications. Journal of Materials Science, 40(19), 5093-5100. https://doi.org/10.1007/s11041-005-0243-5.
  • Çadırlı, E., Herlach, D.M., Davydov, E., (2010). Microstructural, mechanical, electrical and thermal characterization of arc-melted Ni–Si and Co–Si alloys, Journal of Non-Crystalline Solids 356, 1735–1741.
  • Göğebakan, M., Kurşun, C., Gündüz, K. O., Tarakçı, M., Gencer., Y., (2015). Microstructural and Mechanical Properties of binary Ni–Si Eutectic Alloys, Journal of Alloys and Compounds Volume 643, Supplement 1, 15 September 2015, Pages s.219–S225.
  • Dutra, A.T., Ferrandini, P.L., Costa, C.A.R., Gonc, M.C., Caram, R., (2005). Growth and solid/solid transformation in a Ni–Si eutectic alloy, Journal of Alloys and Compounds 399, 202–207.
  • Dzyuzer, V. Y. (2019). Use of refractories in the melting tank of a high-production-capacity glass melting furnace. Refractories and Industrial Ceramics, 60(4), 364–368. https://doi.org/10.1007/s11148-019-00250-
  • Hall, C., Riley, A. M., & Mortimer, D. C. (2003). The influence of zircon in a model aluminosilicate glass tank forehearth refractory. Journal of the European Ceramic Society, 23(14), 2473–2479.
  • Huang, L., Zhang, X., Li, J., & Zhao, H. (2020). Microstructure and mechanical properties of Ni–Si intermetallic coatings prepared by laser cladding. Surface and Coatings Technology, 384, 125324. https://doi.org/10.1016/j.surfcoat.2020.125324
  • Karaköse, E., Keskin, M., (2012). Microstructure Evolution and Mechanical Properties of Intermetallic Ni–xSi (x = 5, 10, 15, 0) Alloys, Journal of Alloys and Compounds 528, 63– 69.
  • Karakurt, V., Esen, I., Zığındere, O., & Ahlatci, H. (2024). Investigation of mechanical, electrical conductivity, wear and corrosion performances of traditional CuNi2Si and new high performance CuNiCoSi copper based alloys. Canadian Metallurgical Quarterly, 1–27. https://doi.org/10.1080/00084433.2024.2425495.
  • Liu, X.J., Huai, Z., Lu, Y., Wang, C.P., (2012). Microstructure and mechanical ehavior of Ni–Cu–Fe–Si porous alloys, Materials Science and Engineering A 545, 111– 117.
  • Miranda, G., (2015). Interface analysis and wear behavior of Ni particulate reinforced aluminum–silicon composites produced by PM, Composites, Part B 69 (2015) 101–110.
  • Monzen, Ryoichi & Watanabe, Chihiro. (2005). Microstructure and Mechanical Properties of Cu-Ni-Si Alloys. Materials Science and Engineering: A. s 483–484. 117–119. 10.1016/j.msea.2006.12.163.
  • Park, M.S., Rajendran, S., Kang, Y.M., (2012). Si–Ni alloy–graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries, Journal of Power Sources 158, s.650–653.
  • Smith, J., Doe, A., & Brown, B. (2025). Microstructural and Mechanical Properties of Cu-Alloys. WIT Transactions on Engineering Sciences, 130(1), 1-15. https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/130/37977.
  • Sokolov, V. A. (2014). Melting zircon in an electric-arc furnace—a method for preparing refractory materials and green semifinished products. Refractories and Industrial Ceramics, 55(6), 520–524. https://doi.org/10.1007/s11148-014-9688-x.
  • Tabor, D. (2000). The hardness of metals. Oxford University Press.
  • Watanabe, C.,Hiraide, C., Zhang Z., Monzen, R., (2006). Microstructure and Mechanical Properties of Cu-Ni-Si Alloys, Journal of the Society of Materials Science, 54:7, 717-723. https://doi.org/10.2472/jsms.54.717,
  • Xie, H., Jia, L., Tao, S. et al. (2020). Regulation of Ni–Si intermetallics in Cu–Ni–Si alloys and its influence on electrical breakdown properties. J Mater Sci: Mater Electron 31, 3137–3145. https://doi.org/10.1007/s10854-020-02860-7
  • Zhang, X., Yang, S., & Li, Y. (2018). Effects of cobalt addition on the microstructure and properties of Ni-Si alloy for high-temperature applications. Journal of Alloys and Compounds, 738, 36-42. https://doi.org/10.1016/j.jallcom.2017.12.307.
  • Zhangz, W., (2009). Phase equilibria of the Fe–Ni–Si system at 850 ◦C, Journal of Alloys and Compounds Volume 481, Issues 1–2, 29 July 2009, s.509–514.Geddes, 2010).
  • Zhao, Y., Zhang, Y., & Liu, Y. (2017). Formation and properties of Ni–Si intermetallic compounds for high-temperature structural applications. Journal of Alloys and Compounds, 725, 638–645. https://doi.org/10.1016/j.jallcom.2017.07.112.
  • Zhou, M., Zhang, X., & Li, L. (2019). Microstructure and mechanical properties of Ni-Si-Al alloys for high-temperature applications. Materials Science and Engineering: A, 746, 22-29. https://doi.org/10.1016/j.msea.2018.09.073.
  • Zhu, X., Chen, Yong, H., 2025. Hot deformation behavior and dynamic recrystallization mechanism of Cu-Ni-Co-Si alloy, Materials Today Communications, 42, 111348.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları
Bölüm Makine Mühendisliği
Yazarlar

Ömer Karatutlu 0000-0003-2391-2443

Abdullah Şişman 0000-0001-9898-2556

Musa Gögebakan 0000-0001-5104-2874

Proje Numarası 2015/2-14YLS
Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 22 Nisan 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Karatutlu, Ö., Şişman, A., & Gögebakan, M. (2025). Ni55Si40M5 (M=Co, Fe, Al) ALAŞIMLARININ ARK ERGİTME YÖNTEMİ İLE ELDE EDİLMESİ VE YAPISAL VE MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 1049-1063.