Araştırma Makalesi
BibTex RIS Kaynak Göster

AORTİK DAMARDA FARKLI KALP ATIM HIZLARININ KAN AKIŞ DINAMİĞİ ÜZERİNDEKİ ETKİLERİNİN SAYISAL ANALİZİ

Yıl 2025, Cilt: 28 Sayı: 2, 1064 - 1080, 03.06.2025

Öz

Farklı kalp atım hızlarının (HR50–HR110) aortik hemodinamik parametreler üzerindeki etkileri, hesaplamalı akışkanlar dinamiği (CFD) yöntemiyle incelenmiştir. Sayısal analizlerde aort duvarı rijit kabul edilerek, tek yönlü akış çözümlemesi gerçekleştirilmiştir. Brakiyosefalik, sol ortak karotis, sol subklavyen ve abdominal aort çıkışlarında elde edilen hız profilleri ile duvar üzerindeki basınç ve duvar kayma gerilimi (WSS) dağılımları, zamana bağlı olarak karşılaştırılmıştır. Kalp atım hızının artışıyla birlikte çıkış hızlarında ve duvar üzerindeki mekanik yüklerde belirgin değişimler gözlemlenmiş; yüksek HR koşullarında daha erken ve daha yüksek tepe değerlerine ulaşılmıştır. Dalga yayılımı ve geri yansıma etkilerinin, özellikle sistol sonrası dönemde basınç ve WSS eğrileri üzerinde farklı zamanlamalarla ortaya çıktığı belirlenmiştir. Elde edilen bulgular, HR değişiminin aortik sistemdeki akış rejimi ve duvar mekaniği üzerinde doğrudan etkili olduğunu ortaya koymakta; rijit duvar modellemesinin temel dalga mekaniği analizleri açısından işlevsel bir yöntem sunduğunu göstermektedir.

Kaynakça

  • Bazilevs, Y., Hsu, M. C., Zhang, Y., Wang, W., Kvamsdal, T., Hentschel, S., & Isaksen, J. G. (2013). Computational vascular fluid–structure interaction: Methodology and application to cerebral aneurysms. Biomechanics and Modeling in Mechanobiology, 12(5), 925–940. doi: 10.1007/s10237-010-0189-7
  • Berger, S. A., & Jou, L. D. (2000). Flows in stenotic vessels. Annual Review of Fluid Mechanics, 32(1), 347–382. doi: 10.1146/annurev.fluid.32.1.347
  • Bouqentar, M. A., Sudres, P., Wei, W., Boufi, M., Behr, M., & Evin, M. (2019). Influence of the aortic morphological changes in aging on aortic flow. Computer Methods in Biomechanics and Biomedical Engineering, 22(sup1), S415-S417. doi: 10.1080/10255842.2020.1714965
  • Chatzizisis, Y. S., Coskun, A. U., Jonas, M., Edelman, E. R., Feldman, C. L., & Stone, P. H. (2007). Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Journal of the American College of Cardiology, 49(25), 2379–2393. doi: 10.1016/j.jacc.2007.02.059
  • Cheng, Z., Tan, F. P. P., Riga, C. V., Bicknell, C. D., Hamady, M. S., Wood, N. B., & Xu, X. Y. (2010). Analysis of flow patterns in a patient-specific aortic dissection model. Journal of Biomechanical Engineering, 132(5), 051007. doi: 10.1115/1.4000964
  • Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1209–H1224. DOI: 10.1152/ajpheart.01047.2006
  • Chiu, J. J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327–387. DOI: 10.1152/physrev.00047.2009
  • Diallo, C. (2020). Hesaplamalı akışkanlar dinamiği kullanılarak kan pompası tasarımı (Yüksek lisans tezi, Karabük Üniversitesi).
  • Feigenbaum, H., Armstrong, W. F., & Ryan, T. (2005). Feigenbaum's Echocardiography (6th ed.). Lippincott Williams & Wilkins.
  • Formaggia, L., Quarteroni, A., & Veneziani, A. (2009). Cardiovascular mathematics: Modeling and simulation of the circulatory system. Springer. DOI: 10.1007/978-88-470-1152-6
  • Gallo, D., Steinman, D. A., Bijari, P. B., & Morbiducci, U. (2012). Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. Journal of Biomechanics, 45(14), 2398–2404. DOI: 10.1016/j.jbiomech.2012.07.007
  • Gharib, M., Rambod, E., & Kheradvar, A. (2006). Nature of flow in the cardiovascular system: Flow-induced vibrations and energy efficiency. Progress in Cardiovascular Diseases, 49(3), 161–185. DOI: 10.1016/j.pcad.2006.07.001
  • Giddens, D. P., Zarins, C. K., & Glagov, S. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, 115(4B), 588–594. DOI: 10.1115/1.2895530
  • Gijsen, F. J. H., Wentzel, J. J., Thury, A., Lamers, B., Schuurbiers, J. C. H., Serruys, P. W., & Slager, C. J. (2013). A new imaging technique to assess wall shear stress in vivo. Journal of Biomechanics, 46(14), 2401–2408. DOI: 10.1016/j.jbiomech.2006.12.007
  • Guyton, A. C., & Hall, J. E. (2020). Tıbbi Fizyoloji (13. Baskı). Nobel Tıp Kitabevi.
  • Górski, G., & Kucab, K. (2024). Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. European Biophysics Journal, 53(7), 429-445. DOI: 10.1007/s00249-024-01724-w
  • He, X., Ku, D. N., & Arand, P. W. (2020). Vortex and wall shear stress analysis in a compliant carotid artery bifurcation model. Annals of Biomedical Engineering, 48(5), 1361–1374. DOI: 10.1115/1.2895710
  • Kim, H. J., Vignon-Clementel, I. E., Coogan, J. S., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10), 3195–3209. DOI: 10.1007/s10439-010-0083-6
  • Ku, D. N. (1985). Blood flow in arteries. Annual Review of Fluid Mechanics, 17, 1–32.
  • Ku, D. N., Giddens, D. P., Zarins, C. K., & Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 5(3), 293–302. DOI: 10.1161/01.ATV.5.3.293
  • Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399-434. https://doi.org/10.1146/annurev.fluid.29.1.399
  • Mao, W., Wang, L., Li, J., & Sun, W. (2020). Computational modeling of hemodynamic alterations in the aorta following transcatheter aortic valve implantation. Journal of Biomechanics, 98, 109469. https://doi.org/10.1001/jama.282.21.2035
  • Milner, J. S., Moore, J. A., Rutt, B. K., & Steinman, D. A. (1998). Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery, 28(1), 143–156. https://doi.org/10.1016/j.jbiomech.2019.109469
  • Milnor, W. R. (1989). Hemodynamics. Williams & Wilkins.
  • Morbiducci, U., Ponzini, R., Grigioni, M., & Redaelli, A. (2010). Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. Journal of Biomechanics, 43(16), 2870–2877. ttps://doi.org/10.1016/j.jbiomech.2010.06.003
  • Morbiducci, U., Gallo, D., Massai, D., et al. (2011). Outflow conditions for image-based hemodynamic models of the carotid bifurcation: Implications for indicators of abnormal flow. Journal of Biomechanical Engineering, 133(3), 031002. https://doi.org/10.1115/1.4002889
  • Mynard, J. P., & Smolich, J. J. (2015). One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Annals of Biomedical Engineering, 43(6), 1443–1460. https://doi.org/10.1007/s10439-015-1313-8
  • Nichols, W. W., & O’Rourke, M. F. (2005). McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (5th ed.). Oxford University Press.
  • Nichols, W. W., O’Rourke, M. F., & Vlachopoulos, C. (2011). McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (6th ed.). CRC Press. https://doi.org/10.1201/b11301
  • Perktold, K., Resch, M., & Peter, R. (1991). Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. Journal of Biomechanics, 24(6), 409–420. https://doi.org/10.1016/0021-9290(91)90029-M
  • Sagawa, K., Maughan, W. L., Suga, H., & Sunagawa, K. (1990). Cardiac Contraction and the Pressure-Volume Relationship. Oxford University Press.
  • Sherwin, S. J., Formaggia, L., Peiro, J., & Franke, V. (2003). Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids, 43(6–7), 673–700. https://doi.org/10.1002/fld.543
  • Stone, P. H., Coskun, A. U., Yeghiazarians, Y., et al. (2003). Prediction of sites of coronary atherosclerosis progression using endothelial shear stress. Circulation, 108(4), 468–474. https://doi.org/10.1161/01.CIR.0000080894.35274.64
  • Taylor, C. A., & Draney, M. T. (2004). Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics, 36, 197–231. https://doi.org/10.1146/annurev.fluid.36.050802.121944
  • Taylor, C. A., & Steinman, D. A. (2010). Image-based modeling of blood flow and vessel wall dynamics: Applications, methods, and future directions. Annals of Biomedical Engineering, 38(3), 1188–1203. https://doi.org/10.1007/s10439-010-9901-0
  • Xiao, N., Alastruey, J., & Figueroa, C. A. (2014). A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering, 30(2), 204–231. https://doi.org/10.1002/cnm.2598
  • Zhou, M., Glick, Z. R., Rapoport, B. I., & Kassab, G. S. (2020). Hemodynamic regulation of the cerebral circulation. Frontiers in Physiology, 11, 569554. https://doi.org/10.3389/fphys.2020.569554
  • Zhou, Z., Qiao, A., & Liu, Y. (2021). Hemodynamic analysis of patient-specific aortic dissection: Evaluation of true-false lumen blood exchange. Biomechanics and Modeling in Mechanobiology, 20(3), 933–946. https://doi.org/10.1007/s10237-020-01395-4

NUMERICAL ANALYSIS OF THE EFFECTS OF DIFFERENT HEART RATES ON BLOOD FLOW DYNAMICS IN THE AORTIC VESSEL

Yıl 2025, Cilt: 28 Sayı: 2, 1064 - 1080, 03.06.2025

Öz

The effects of varying heart rates (HR50–HR110) on aortic hemodynamic parameters were investigated using computational fluid dynamics (CFD) methods. A rigid wall assumption was employed in the simulations, and one-way flow analyses were carried out. Time-dependent velocity profiles at the outlets of the brachiocephalic, left common carotid, left subclavian, and abdominal aorta were evaluated along with corresponding pressure and wall shear stress (WSS) distributions. Increasing heart rate resulted in noticeable changes in both outlet flow characteristics and mechanical loading on the vessel wall, with earlier and higher peak values observed under elevated HR conditions. Wave propagation and reflection effects became more pronounced during the post-systolic phase, leading to temporal shifts in both pressure and WSS profiles. These findings highlight the direct influence of heart rate variability on flow dynamics and wall mechanics and underline the utility of rigid wall modeling for investigating fundamental wave phenomena

Kaynakça

  • Bazilevs, Y., Hsu, M. C., Zhang, Y., Wang, W., Kvamsdal, T., Hentschel, S., & Isaksen, J. G. (2013). Computational vascular fluid–structure interaction: Methodology and application to cerebral aneurysms. Biomechanics and Modeling in Mechanobiology, 12(5), 925–940. doi: 10.1007/s10237-010-0189-7
  • Berger, S. A., & Jou, L. D. (2000). Flows in stenotic vessels. Annual Review of Fluid Mechanics, 32(1), 347–382. doi: 10.1146/annurev.fluid.32.1.347
  • Bouqentar, M. A., Sudres, P., Wei, W., Boufi, M., Behr, M., & Evin, M. (2019). Influence of the aortic morphological changes in aging on aortic flow. Computer Methods in Biomechanics and Biomedical Engineering, 22(sup1), S415-S417. doi: 10.1080/10255842.2020.1714965
  • Chatzizisis, Y. S., Coskun, A. U., Jonas, M., Edelman, E. R., Feldman, C. L., & Stone, P. H. (2007). Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Journal of the American College of Cardiology, 49(25), 2379–2393. doi: 10.1016/j.jacc.2007.02.059
  • Cheng, Z., Tan, F. P. P., Riga, C. V., Bicknell, C. D., Hamady, M. S., Wood, N. B., & Xu, X. Y. (2010). Analysis of flow patterns in a patient-specific aortic dissection model. Journal of Biomechanical Engineering, 132(5), 051007. doi: 10.1115/1.4000964
  • Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1209–H1224. DOI: 10.1152/ajpheart.01047.2006
  • Chiu, J. J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327–387. DOI: 10.1152/physrev.00047.2009
  • Diallo, C. (2020). Hesaplamalı akışkanlar dinamiği kullanılarak kan pompası tasarımı (Yüksek lisans tezi, Karabük Üniversitesi).
  • Feigenbaum, H., Armstrong, W. F., & Ryan, T. (2005). Feigenbaum's Echocardiography (6th ed.). Lippincott Williams & Wilkins.
  • Formaggia, L., Quarteroni, A., & Veneziani, A. (2009). Cardiovascular mathematics: Modeling and simulation of the circulatory system. Springer. DOI: 10.1007/978-88-470-1152-6
  • Gallo, D., Steinman, D. A., Bijari, P. B., & Morbiducci, U. (2012). Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. Journal of Biomechanics, 45(14), 2398–2404. DOI: 10.1016/j.jbiomech.2012.07.007
  • Gharib, M., Rambod, E., & Kheradvar, A. (2006). Nature of flow in the cardiovascular system: Flow-induced vibrations and energy efficiency. Progress in Cardiovascular Diseases, 49(3), 161–185. DOI: 10.1016/j.pcad.2006.07.001
  • Giddens, D. P., Zarins, C. K., & Glagov, S. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, 115(4B), 588–594. DOI: 10.1115/1.2895530
  • Gijsen, F. J. H., Wentzel, J. J., Thury, A., Lamers, B., Schuurbiers, J. C. H., Serruys, P. W., & Slager, C. J. (2013). A new imaging technique to assess wall shear stress in vivo. Journal of Biomechanics, 46(14), 2401–2408. DOI: 10.1016/j.jbiomech.2006.12.007
  • Guyton, A. C., & Hall, J. E. (2020). Tıbbi Fizyoloji (13. Baskı). Nobel Tıp Kitabevi.
  • Górski, G., & Kucab, K. (2024). Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. European Biophysics Journal, 53(7), 429-445. DOI: 10.1007/s00249-024-01724-w
  • He, X., Ku, D. N., & Arand, P. W. (2020). Vortex and wall shear stress analysis in a compliant carotid artery bifurcation model. Annals of Biomedical Engineering, 48(5), 1361–1374. DOI: 10.1115/1.2895710
  • Kim, H. J., Vignon-Clementel, I. E., Coogan, J. S., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10), 3195–3209. DOI: 10.1007/s10439-010-0083-6
  • Ku, D. N. (1985). Blood flow in arteries. Annual Review of Fluid Mechanics, 17, 1–32.
  • Ku, D. N., Giddens, D. P., Zarins, C. K., & Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 5(3), 293–302. DOI: 10.1161/01.ATV.5.3.293
  • Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399-434. https://doi.org/10.1146/annurev.fluid.29.1.399
  • Mao, W., Wang, L., Li, J., & Sun, W. (2020). Computational modeling of hemodynamic alterations in the aorta following transcatheter aortic valve implantation. Journal of Biomechanics, 98, 109469. https://doi.org/10.1001/jama.282.21.2035
  • Milner, J. S., Moore, J. A., Rutt, B. K., & Steinman, D. A. (1998). Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery, 28(1), 143–156. https://doi.org/10.1016/j.jbiomech.2019.109469
  • Milnor, W. R. (1989). Hemodynamics. Williams & Wilkins.
  • Morbiducci, U., Ponzini, R., Grigioni, M., & Redaelli, A. (2010). Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. Journal of Biomechanics, 43(16), 2870–2877. ttps://doi.org/10.1016/j.jbiomech.2010.06.003
  • Morbiducci, U., Gallo, D., Massai, D., et al. (2011). Outflow conditions for image-based hemodynamic models of the carotid bifurcation: Implications for indicators of abnormal flow. Journal of Biomechanical Engineering, 133(3), 031002. https://doi.org/10.1115/1.4002889
  • Mynard, J. P., & Smolich, J. J. (2015). One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Annals of Biomedical Engineering, 43(6), 1443–1460. https://doi.org/10.1007/s10439-015-1313-8
  • Nichols, W. W., & O’Rourke, M. F. (2005). McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (5th ed.). Oxford University Press.
  • Nichols, W. W., O’Rourke, M. F., & Vlachopoulos, C. (2011). McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (6th ed.). CRC Press. https://doi.org/10.1201/b11301
  • Perktold, K., Resch, M., & Peter, R. (1991). Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. Journal of Biomechanics, 24(6), 409–420. https://doi.org/10.1016/0021-9290(91)90029-M
  • Sagawa, K., Maughan, W. L., Suga, H., & Sunagawa, K. (1990). Cardiac Contraction and the Pressure-Volume Relationship. Oxford University Press.
  • Sherwin, S. J., Formaggia, L., Peiro, J., & Franke, V. (2003). Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids, 43(6–7), 673–700. https://doi.org/10.1002/fld.543
  • Stone, P. H., Coskun, A. U., Yeghiazarians, Y., et al. (2003). Prediction of sites of coronary atherosclerosis progression using endothelial shear stress. Circulation, 108(4), 468–474. https://doi.org/10.1161/01.CIR.0000080894.35274.64
  • Taylor, C. A., & Draney, M. T. (2004). Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics, 36, 197–231. https://doi.org/10.1146/annurev.fluid.36.050802.121944
  • Taylor, C. A., & Steinman, D. A. (2010). Image-based modeling of blood flow and vessel wall dynamics: Applications, methods, and future directions. Annals of Biomedical Engineering, 38(3), 1188–1203. https://doi.org/10.1007/s10439-010-9901-0
  • Xiao, N., Alastruey, J., & Figueroa, C. A. (2014). A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering, 30(2), 204–231. https://doi.org/10.1002/cnm.2598
  • Zhou, M., Glick, Z. R., Rapoport, B. I., & Kassab, G. S. (2020). Hemodynamic regulation of the cerebral circulation. Frontiers in Physiology, 11, 569554. https://doi.org/10.3389/fphys.2020.569554
  • Zhou, Z., Qiao, A., & Liu, Y. (2021). Hemodynamic analysis of patient-specific aortic dissection: Evaluation of true-false lumen blood exchange. Biomechanics and Modeling in Mechanobiology, 20(3), 933–946. https://doi.org/10.1007/s10237-020-01395-4
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Sayısal Yöntemler
Bölüm Makine Mühendisliği
Yazarlar

Arif Çutay 0000-0002-0057-9417

Özdeş Çermik 0000-0001-9308-4589

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 25 Nisan 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Çutay, A., & Çermik, Ö. (2025). AORTİK DAMARDA FARKLI KALP ATIM HIZLARININ KAN AKIŞ DINAMİĞİ ÜZERİNDEKİ ETKİLERİNİN SAYISAL ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 1064-1080.