Derleme
BibTex RIS Kaynak Göster

TİTANYUM DİOKSİTİN TEKSTİL ÜRÜNLERİNDE KULLANIMI

Yıl 2025, Cilt: 28 Sayı: 3, 1624 - 1638, 03.09.2025
https://doi.org/10.17780/ksujes.1545526

Öz

Bu derleme çalışmasında, titanyum dioksitin (TiO₂) tekstil ürünlerine kazandırdığı işlevsel uygulamalar araştırılmıştır. TiO₂, yüksek termal kararlılığı, fotokatalitik aktivitesi ve düşük toksisitesi sayesinde tekstil endüstrisinde yaygın olarak kullanılan bir metal oksit bileşiğidir. Çalışmada özellikle TiO₂’nin farklı kullanım alanları ele alınmıştır: Bunlardan ilki alev geciktirici terbiye işlemleridir. TiO₂ ilavesi, tekstil materyallerinde alev yayılım hızını azaltarak yanmazlık performansını iyileştirebilmektedir. Bir diğer önemli uygulama, uzak kızılötesi (FIR) ışıma yapabilen fonksiyonel tekstillerdir. TiO₂ gibi seramik katkılar sayesinde tekstil yüzeyleri FIR dalgaları yayabilir; bu da kan dolaşımını iyileştirme gibi sağlık açısından faydalar sunmaktadır. Ayrıca, TiO₂ nanopartikülleri güçlü bir ultraviyole (UV) filtresi olarak işlev görüp kumaşları zararlı UV ışınlarına karşı korumakta ve bu sayede yüksek düzeyde UV koruması elde edilmesini sağlamaktadır.
Bunlara ek olarak, TiO₂’nin nanolif üretiminde kullanımı, tekstil atıksularının fotokatalitik arıtımı, tekstil liflerinin ağartılması ve kendi kendine temizlenebilen yüzeylerin oluşturulması gibi alanlardaki uygulamaları da incelenmiştir. TiO₂’nin fotokatalitik özelliği, organik kirleri ve boyarmaddeleri ışık altında parçalayarak kumaşlara kendi kendini temizleme özelliği kazandırmakta ve tekstil kaynaklı atıksulardaki boyar madde kirliliklerinin giderilmesine imkân vermektedir. Bu çalışma, literatür taraması yoluyla, yayınlanan araştırmaları derleyerek TiO₂’nin tekstil sektöründeki tüm bu kullanım alanlarına dair kapsamlı bir bakış sunmayı amaçlamıştır. Çalışmanın metodolojisi kapsamında kapsamlı bir literatür taraması yapılmış ve elde edilen bulgular sentezlenerek sunulmuştur.

Kaynakça

  • Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. https://doi.org/10.1016/j.jece.2019.103248
  • Amaechi, I. C., Hadj Youssef, A., Rawach, D., Claverie, J. P., Sun, S., & Ruediger, A. (2019). Ferroelectric Fe–Cr codoped BaTiO3 nanoparticles for the photocatalytic oxidation of azo dyes. ACS Applied Nano Materials, 2(5), 2890-2901.
  • Ambaye, T. G., & Hagos, K. (2020). Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnology for Environmental Engineering, 5, 1-11. https://doi.org/10.1007/s41204-020-00094-w
  • Baia, L., Orbán, E., Fodor, S., Hampel, B., Kedves, E. Z., Székely, I., ... & Pap, Z. (2016). Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors' surface charge. Materials Science in Semiconductor Processing, 42, 66-71.
  • Bakulin, A. V., Chumakova, L. S., & Kulkova, S. E. (2021). Study of the Diffusion Properties of Oxygen in TiO 2. Journal of Experimental and Theoretical Physics, 133, 169-174.
  • Basyigit, Z. O., & Ciğeroğlu, Z. (2024). Nano Photo Bleaching Method of Cotton Fabrics for a Sustainable Finishing. Fibers and Polymers, 25(8), 2913-2923.
  • Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J., & Malucelli, G. (2014). Flame retardancy of polyester and polyester–cotton blends treated with caseins. Industrial & Engineering Chemistry Research, 53(10), 3917-3923. https://doi.org/10.1021/ie404089t
  • Cheng, X. W., Guan, J. P., Yang, X. H., & Tang, R. C. (2018). Durable flame retardant wool fabric treated by phytic acid and TiO2 using an exhaustion-assisted pad-dry-cure process. Thermochimica Acta, 665, 28-36. https://doi.org/10.1016/j.tca.2018.05.011
  • Christian, D., Gaekwad, A., Dani, H., Shabiimam, M. A., & Kandya, A. (2023). Recent techniques of textile industrial wastewater treatment: A review. Materials Today: Proceedings, 77, 277-285.
  • Choi, H., Stathatos, E., & Dionysiou, D. D. (2007). Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 202(1-3), 199-206. https://doi.org/10.1016/j.desal.2005.12.055
  • Chung, J., & Lee, S. (2014). Development of nanofibrous membranes with far infrared radiation and their antimicrobial properties. Fibers and Polymers, 15(6), 1153-1159. https://doi.org/10.1007/s12221-014-1153-4
  • Cian, C., Gianocca, V., Barraud, P.A., Guerraz, M., Bresciani, J. P. (2015) Bioceramic fabrics improve quiet standing posture and handstand stability in expert gymnasts. Gait & posture, 42(4), 419-423.
  • Costa, R. G., Brichi, G. S., Ribeiro, C., & Mattoso, L. H. (2016). Nanocomposite fibers of poly (lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin, 73(11), 2973-2985. https://doi.org/10.1007/s00289-016-1635-1
  • Damkale, S. R., Arbuj, S. S., Umarji, G. G., Rane, S. B., & Kale, B. B. (2021). Highly crystalline anatase TiO 2 nanocuboids as an efficient photocatalyst for hydrogen generation. RSC advances, 11(13), 7587-7599. DOI: 10.1039/d0ra10750f
  • Dharma, H. N. C., Jaafar, J., Widiastuti, N., Matsuyama, H., Rajabsadeh, S., Othman, M. H. D., ... & Alias, N. H. (2022). A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes, 12(3), 345.
  • Dubrovski, P. D., & Golob, D. (2009). Effects of woven fabric construction and color on ultraviolet protection. Textile Research Journal, 79(4), 351-359.
  • Duygulu, N. E. (2020). Elektro eğirme yöntemiyle nano boyutlu TiO2 parçacık katkılı PLA nano fiber üretimi. Karaelmas Fen ve Mühendislik Dergisi, 10(1), 7-18. https://doi.org/10.7212/zkufbd.v10i1.1451
  • Dyer, J. (2011). Infrared functional textiles. In N. Pan & G. Sun (Eds.), Functional textiles for improved performance, protection and health (pp. 184–197). Woodhead Publishing. https://doi.org/10.1533/9780857092878.184
  • Eltuğral, N. (2021). Assessment of UV Protection Factor of Flax, Polyester and Nylon Fabrics Treated with Zinc oxide Nanoparticles. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 596-606.
  • Eren, S., & Özenç, A. (2023). Investigation of bleaching of cotton fabrics with UV-TiO2. Tekstilec, 66(2), 126-133. https://doi.org/10.14502/tekstilec.66.2023019
  • Esen, Ö., Demir, A., & Seventekin, N. (2006). Nano Teknoloji ve Tekstil Uygulamaları Bölüm 2. Tekstil ve Konfeksiyon, 16(3).
  • Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  • Ferreira, D.D., Galvao, T. D., & Appoloni, C. R. (2020). Total reflection X-ray fluorescence spectrometry determination of titanium dioxide released from UV-protective textiles during wash. Applied Radiation and Isotopes, 165, 109345. https://doi.org/10.1016/j.apradiso.2020.109345
  • Gautam, A., Kshirsagar, A. S., Banerjee, S., Dhapte, V. V., & Khanna, P. K. (2016). UVC-shielding by nano-TiO2/PMMA composite: A chemical approach. Journal of Materials Science and Nanotechnology, 4(1), 1-14.
  • Gedik, G. (2020). Pamuk/Lyocell kumaşların titanyum (IV) oksit varlığında ultraviyole ışınlarıyla hetorojen fotokataliz ile ağartılması ve ağartma işlemine oksijen radikali varlığının etkisinin incelenmesi. Tekstil ve Mühendis, 27(118), 64-74.
  • Ghosal, K., Agatemor, C., Špitálsky, Z., Thomas, S., & Kny, E. (2019). Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal, 358, 1262-1278. https://doi.org/10.1016/j.cej.2018.10.117
  • Gupta, K. K., Mishra, P. K., Srivastava, P., Gangwar, M., Nath, G., & Maiti, P. (2013). Hydrothermal in situ preparation of TiO2 particles onto poly (lactic acid) electrospun nanofibres. Applied Surface Science, 264, 375-382. https://doi.org/10.1016/j.apsusc.2012.10.029
  • He, P., Low, R. J. Y., Burns, S. F., Lipik, V., & Tok, A. I. Y. (2023). Enhanced far infrared emissivity, UV protection and near-infrared shielding of polypropylene composites via incorporation of natural mineral for functional fabric development. Scientific Reports, 13(1), 22329.
  • Hernández, S., Hidalgo, D., Sacco, A., Chiodoni, A., Lamberti, A., Cauda, V., ... & Saracco, G. (2015). Comparison of photocatalytic and transport properties of TiO 2 and ZnO nanostructures for solar-driven water splitting. Physical Chemistry Chemical Physics, 17(12), 7775-7786.
  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of environmental management, 182, 351-366.
  • Hong,Y., Li, Y., Zhuang, X., Chen, X., Jing, X. (2009). Electrospinning of multicomponent ultrathin fibrous nonwovens for semi‐occlusive wound dressings. Journal of Biomedical Materials Research Part A, 89(2), 345-354. doi: 10.1002/jbm.a.31968.
  • Horikoshi, S., & Serpone, N. (2020). Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catalysis Today, 340, 334-346. https://doi.org/10.1016/j.cattod.2018.10.020
  • Infrared Reflecting Titanium Dioxide. (2025). https://interchemic.com/ir-tio2/ Accessed 02.02.2025 Islam, M., Akter, T., & Ferdush, J. (2019). Impact of fabric density, color and composition of plain weave fabric on ultraviolet protective factor. Glob J Res Eng, 19, 13-15.
  • Jie, L., Junping, M., Liang, J., & Xiaoli, H. (2014). Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water. Journal of Rare Earths, 32(9), 890-894. https://doi.org/10.1016/S1002-0721(14)60159-9
  • Kara, S., Nurlu, T., & Yavaş, A. (2024). Single and hybrid effects of nano‐TiO 2 and‐ZnO particles on multifunctional properties of textiles. Journal of Applied Polymer Science, 141(11), e55101.
  • Karasu, S. (2020). Farklı oranlarda titanyum dioksit kullanılarak elde edilen polyester iplik ve kumaş özelliklerinin incelenmesi [Doktora tezi, Bursa Uludağ Üniversitesi].
  • Ke, A., Lu, Y., Tan, Z., Li, X., Jiang, X., & Zhang, X. (2025). Reflective and heat insulation coatings enabled by TiO2@ polyacrylate hybrid latex and bionic potassium titanate whisker for passive cooling. Journal of Applied Polymer Science, 142(2), e56339.
  • Kızılötesi. (2025). Kızılötesi - Vikipedi Accessed 23.02.2025
  • Kim, H. A. (2022). Wear comfort characteristics of Al2O3/ATO/TiO2-embedded multi-functional PET fabrics. Materials, 15(24), 8799. https://doi.org/10.3390/ma15248799
  • Lal, M. S., Chander, S., Sharma, P., & Ram, C. (2024). Synthesis and characterization of Nd‐TiO2 and Nd‐ZnO nanostructures for photocatalytic degradation of textile wastewater. Vietnam Journal of Chemistry. https://doi.org/10.1002/vjch.202400089
  • Lam, Y. L., Kan, C. W., & Yuen, C. W. M. (2011). Effect of titanium dioxide on the flame‐retardant finishing of cotton fabric. Journal of Applied Polymer Science, 121(1), 267-278. https://doi.org/10.1002/app.33618
  • Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts, 2(4), 572-601. https://doi.org/10.3390/catal2040572
  • Lee, S., & Kim, Y., & Kang, S. (2011). Far-infrared emission of Ti-based oxides. Journal of Molecular Structure, 987(1-3), 86-90. https://doi.org/10.1016/j.molstruc.2010.11.063
  • Li, D., & Xia, Y. (2003). Fabrication of titania nanofibers by electrospinning. Nano Letters, 3(4), 555-560. https://doi.org/10.1021/nl034039o
  • Li, Y., Ding, J. N., Yuan, N. Y., Bai, L., Hu, H. W., & Wang, X. Q. (2013). The influence of surface treatment on dye-sensitized solar cells based on TiO2 nanofibers. Materials Letters, 97, 74-77. https://doi.org/10.1016/j.matlet.2013.01.106
  • Li, R., Yang, J., Zhang, G., & Zhu, P. (2022). Decolorization of dark-colored waste cotton fabric using redox decoloring agents. Rsc Advances, 12(28), 17689-17700.
  • Li, H., Hu, Z., Zhang, S., Gu, X., Wang, H., Jiang, P., & Zhao, Q. (2015). Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Progress in Organic Coatings, 78, 318-324.
  • Li, Z., Dong, Y., Li, B., Wang, P., Chen, Z., & Bian, L. (2018). Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: Conditions optimization and stain decomposition pathway. Materials & Design, 140, 366-375.
  • Li, C., Li, L., Li, J., Wu, X., Qi, L., & Li, W. (2019). Fabrication and characterisation of viscose fibre with photoinduced heat-generating properties. Cellulose, 26, 1631-1640. https://doi.org/10.1007/s10570-018-2207-3
  • Lou, C.W., Lin, J.H. (2011). Evaluation of Bamboo Charcoal/Stainless Steel/TPU Composite Woven Fabrics. Fibers and Polymers, 12(4), 514-520. https://doi.org/10.1007/s12221-011-0514-5
  • Mazumder, N. U. S., & Islam, M. T. (2021). Flame retardant finish for textile fibers. In Innovative and Emerging Technologies for Textile Dyeing and Finishing (pp. 373-405). https://doi.org/10.1002/9781119710288.ch13
  • Mishra, A., & Butola, B. S. (2019). UV protective clothing. In S. Islam & B. S. Butola (Eds.), Advanced functional textiles and polymers (pp. 33-64). John Wiley & Sons. https://doi.org/10.1002/9781119605843.ch2
  • Moafi, H. F., Shojaie, A. F., & Zanjanchi, M. A. (2011). Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. Journal of Thermal Analysis and Calorimetry, 104(2), 717-724. https://doi.org/s10973-010-1133-x
  • Montazer, M., & Morshedi, S. (2012). Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules, 50(4), 1018-1025. https://doi.org/10.1016/j.ijbiomac.2012.02.018
  • Montazer, M., & Morshedi, S. (2014). Photo bleaching of wool using nano TiO2 under daylight irradiation. Journal of Industrial and Engineering Chemistry, 20(1), 83-90. https://doi.org/10.1016/j.jiec.2013.04.023
  • Nasadil, P., & Benešovský, P. (2008). Plasma In Textile Treatment. Chem. Listy, 102, 1486−s1489.
  • Neisius, M., Stelzig, T., Liang, S., & Gaan, S. (2014). Flame retardant finishes for textiles. In R. Paul (Ed.), Functional finishes for textiles: Improving comfort, performance and protection (pp. 429-461). Woodhead Publishing. https://doi.org/10.1016/C2013-0-16373-8
  • Nuansing, W., Ninmuang, S., Jarernboon, W., Maensiri, S., & Seraphin, S. (2006). Structural characterization and morphology of electrospun TiO2 nanofibers. Materials Science and Engineering: B, 131(1-3), 147-155. https://doi.org/10.1016/j.mseb.2006.04.030
  • Ortelli, S., Belosi, F., Bengalli, R., Ravegnani, F., Baldisserri, C., Perucca, M., ... & Costa, A. L. (2020). Influence of spray-coating process parameters on the release of TiO2 particles for the production of antibacterial textile. NanoImpact, 19, 100245.
  • Ömeroğulları, Z., & Dilek, KUT. (2012). Tekstilde güç tutuşurluk. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 17(1), 27-41.
  • Padmanabhan, N. T., & John, H. (2020). Titanium dioxide based self-cleaning smart surfaces: A short review. Journal of Environmental Chemical Engineering, 8(5), 104211.
  • Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1-20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001
  • Paul, R. (2014). Functional finishes for textiles: An overview. In R. Paul (Ed.), Functional finishes for textiles: Improving comfort, performance and protection (pp. 1-14). Woodhead Publishing. https://doi.org/10.1016/C2013-0-16373-8
  • Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40(6), 1276-1286. https://doi.org/10.1016/j.watres.2006.01.019
  • Periyasamy, A. P. (2024). Recent advances in the remediation of textile-dye-containing wastewater: prioritizing human health and sustainable wastewater treatment. Sustainability, 16(2), 495.
  • Photocatalysis. (2025). https://en.wikipedia.org/wiki/Photocatalysis?utm_source Accessed 23.02.2025
  • Prorokova, N. P., Kumeeva, T. Y., Agafonov, A. V., & Ivanov, V. K. (2017). Modification of polyester fabrics with nanosized titanium dioxide to impart photoactivity. Inorganic Materials: Applied Research, 8, 696-703. https://doi.org/10.1134/S2075113317050264
  • Qin, B., Fu, S. J., Xu, X. F., Yang, J. J., Wang, Y., Wang, L. N., ... & Wong, V. K. W. (2024). Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine?. Pharmacological Research, 107349.
  • Rabiei, H., Farhang Dehghan, S., Montazer, M., Khaloo, S. S., & Koozekonan, A. G. (2022). UV protection properties of workwear fabrics coated with TiO2 nanoparticles. Frontiers in Public Health, 10, 929095.
  • Radetić, M. (2013). Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 16, 62-76. https://doi.org/10.1016/j.jphotochemrev.2013.04.002
  • Rashid, M. M., Simončič, B., & Tomšič, B. (2021). Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 22, 100890. https://doi.org/10.1016/j.surfin.2020.100890
  • Refractive index.info. (2025). https://refractiveindex.info/?book=TiO2&page=Devore-o&shelf=main Accessed 02.02.2025
  • Sadr, F. A., & Montazer, M. (2014). In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrasonics sonochemistry, 21(2), 681-691. https://doi.org/10.1016/j.ultsonch.2013.09.018
  • Salem, D. R. (2007). Electrospinning of nanofibers and the charge injection method. In P. Brown & K. Stevens (Eds.), Nanofibers and nanotechnology in textiles (pp. 3-21). Woodhead Publishing Ltd. https://doi.org/10.1533/9781845693732.1.3
  • Sankauskaitė, A., Rubežienė, V., Kubilienė, D., Abraitienė, A., Baltušnikaitė-Guzaitienė, J., & Dubinskaitė, K. (2020). Investigation of thermal behavior of 3D PET knits with different bioceramic additives. Polymers, 12(6), 1-12. https://doi.org/10.3390/polym12061319
  • Saravanan, D. (2007). UV protection textile materials. AUTEX Research Journal, 7(1), 53-62.
  • Seentrakoon, B., Junhasavasdikul, B., & Chavasiri, W. (2013). Enhanced UV-protection and antibacterial properties of natural rubber/rutile-TiO2 nanocomposites. Polymer Degradation and Stability, 98(2), 566-578. https://doi.org/10.1016/j.polymdegradstab.2012.11.018
  • Shim, M. H., Park, C. H., & Shim, H. S. (2009). Effect of ceramics on the physical and thermo-physiological performance of warm-up suit. Textile Research Journal, 79(17), 1557-1564. https://doi.org/10.1177/0040517508095605
  • Shih, Y. H., Lin, J. H., Hsieh, C. T., Lin, C. W., & Lou, C. W. (2015). Far-infrared nonwoven fabrics made of various ratios of bamboo fiber to far-infrared fiber: Far-infrared emissivity and mechanical property evaluations. In Proceedings of the 13th Asian Textile Conference (pp. 830–834). Geelong, Australia.
  • Singh, A. K., & Panwar, K. (2022). Synthesis and application of binary metal oxides for multifunctional textiles. Synthesis, 9(10), 19923-19933.
  • Someswararao, M. V., Dubey, R. S., Subbarao, P. S. V., & Singh, S. (2018). Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results in Physics, 11, 223-231. https://doi.org/10.1016/j.rinp.2018.08.054
  • Song, M., Pan, C., Chen, C., Li, J., Wang, X., & Gu, Z. (2008). The application of new nanocomposites: Enhancement effect of polylactide nanofibers/nano-TiO2 blends on biorecognition of anticancer drug daunorubicin. Applied Surface Science, 255(2), 610-612. https://doi.org/10.1016/j.apsusc.2008.06.131
  • Song, Y., Zhao, F., Li, Z., Cheng, Z., Huang, H., & Yang, M. (2021). Electrospinning preparation and anti-infrared radiation performance of silica/titanium dioxide composite nanofiber membrane. RSC Advances, 11(39), 23901-23907. https://doi.org/10.1039/D1RA03917B
  • Stamatoski, A., Fidoski, J. (2017) Osteoinductive potential of bone scaffolds developed from FYR Bioceramic (a material of emitting high performance far-infrared ray irradiation). International Journal of Oral and Maxillofacial Surgery, 46(1), 272 273.
  • Sun Protective Clothing. (2025). https://www.skincancer.org/skin-cancer-prevention/sun-protection/sun-protective-clothing\ Accessed: 11.02.2025
  • Textiles - optimum protection from harmful UV rays - Hohenstein. (2025). https://www.hohenstein.com/en/expertise/health/uv-protection Accessed 11.02.2025
  • Titanium dioxide. (2025). https://en.wikipedia.org/wiki/Titanium_dioxide?utm_source Accessed 23.02.2025
  • Tudu, B. K., Sinhamahapatra, A., & Kumar, A. (2020). Surface modification of cotton fabric using TiO2 nanoparticles for self-cleaning, oil–water separation, antistain, anti-water absorption, and antibacterial properties. ACS omega, 5(14), 7850-7860.
  • Vatansever, F., & Hamblin, M. R. (2012). Far infrared radiation (FIR): Its biological effects and medical applications. Photonics Lasers Med., 1, 255–266. https://doi.org/10.1515/plm-2012-0034
  • Wei, W., Zhu, Y., Li, Q., Cheng, Z., Yao, Y., Zhao, Q., Zhang, P., Liu, X., Chen, Z., Xu, F., & Gao, Y. (2020). An Al2O3-cellulose acetate-coated textile for human body cooling. Solar Energy Materials and Solar Cells, 211, 1-7. https://doi.org/10.1016/j.solmat.2020.110525
  • Weil, E. D., & Levchik, S. V. (2008). Flame retardants in commercial use or development for textiles. Journal of Fire Sciences, 26(3), 243-281. doi: 10.1177/0734904108089485
  • Wiener, J., Chládová, A., Shahidi, S., & Peterová, L. (2017). Effect of UV irradiation on mechanical and morphological properties of natural and synthetic fabric before and after nano-TiO2 padding. Autex Research Journal, 17(4), 370-378.
  • Xia, T., Wu, B., Zhang, H., Xu, F., Sun, L., Lin, X., ... & Yan, E. (2024). Titanium dioxide/graphene oxide synergetic reinforced composite phase change materials with excellent thermal energy storage and photo-thermal performances. Journal of Materials Research and Technology, 32, 4019-4027.
  • Yang, Y., Li, R., & Zhang, H. (2010). Preparation and properties of polyethylene/ nano-TiO2 composites with enhanced mechanical properties and UV resistance. Polymer, 51(15), 3431-3435. https://doi.org/10.1016/j.polymer.2010.05.008
  • Yang, Z. D. (2013). Application of titanium dioxide nanoparticles on textile modification. Advanced Materials Research, 821, 901-905.
  • Yao, J. K., Huang, H. L., Ma, J. Y., Jin, Y. X., Zhao, Y. A., Shao, J. D., ... & Wu, Z. Y. (2009). High refractive index TiO2 film deposited by electron beam evaporation. Surface engineering, 25(3), 257-260.
  • Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International journal of environmental science and technology, 16, 1193-1226.
  • Yoon, J. Y., & Chang, M. (2007). Preparation of polyethylene fabric coated with TiO2 nano sol by a facile method and its application to surface hydro-modification. Journal of Sol-Gel Science and Technology, 41(3), 285-291. https://doi.org/10.1007/s10971-007-1563-1
  • Yüce, İ. (2017). Uzak kızılötesi ışın yayan kumaş ve iplikler. Trakya University Journal of Engineering Sciences, 18(2), 145-151.
  • Yüce, İ. (2022). Uzak kızılötesi ışın (FIR) yayma özelliğine sahip kumaşların geliştirilmesi üzerine bir çalışma [Doctoral thesis, Marmara University].
  • Yüce, İ., Canoglu, S., Yukseloglu, S. M., Li Voti, R., Cesarini, G., Sibilia, C., & Larciprete, M. C. (2022). Titanium and silicon dioxide-coated fabrics for management and tuning of infrared radiation. Sensors, 22(10), 3918. https://doi.org/10.3390/s22103918
  • Yuranova, T., Laub, D., & Kiwi, J. (2007). Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catalysis Today, 122(1-2), 109-117. https://doi.org/10.1016/j.cattod.2007.01.040
  • Xue, G., Wang, Y. Q., Zhang, L., & Zhang, X. F. (2010). Preparation of tourmaline composite materials and its property of far infrared radiance. Advanced Materials Research, 96, 165-170. https://doi.org/10.4028/www.scientific.net/AMR.96.165
  • Zaleska, A. (2008). Doped-TiO2: a review. Recent patents on engineering, 2(3), 157-164.
  • Zha, J. W., Li, W. L., Cui, R. Y., Guo, Z. H., & Dang, Z. M. (2013). Preparation and properties of polypropylene/titanium dioxide nanocomposites. Polymer, 54(18), 5147-5153. https://doi.org/10.1016/j.polymer.2013.07.055
  • Zhang, X., Guo, M., Zhao, X., Zhang, Q., Shi, Y., & Guo, C. (2019). Flame retardant and fire behaviors of epoxy resin composites containing melamine phosphate modified by aluminum hypophosphite and nano TiO2. Materials Research Express, 6(6), 065302. https://doi.org/10.1088/2053-1591/ab0ee1

USES OF TITANIUM DIOXIDE IN TEXTILE PRODUCTS

Yıl 2025, Cilt: 28 Sayı: 3, 1624 - 1638, 03.09.2025
https://doi.org/10.17780/ksujes.1545526

Öz

This review study investigates the functional applications of titanium dioxide (TiO₂) in textile products. TiO₂ is a widely used metal oxide compound in the textile industry due to its high thermal stability, photocatalytic activity, and low toxicity. The study particularly focuses on various application areas of TiO₂. One of these is flame-retardant finishing processes, where the incorporation of TiO₂ can reduce the flame propagation rate in textile materials, thereby improving fire resistance. Another significant application is in functional textiles that emit far-infrared (FIR) radiation. Through the addition of ceramic-based materials like TiO₂, textile surfaces can emit FIR waves, which are known to offer health benefits such as improved blood circulation. Additionally, TiO₂ nanoparticles act as strong ultraviolet (UV) filters, protecting fabrics against harmful UV radiation and providing a high level of UV protection.
Moreover, the applications of TiO₂ in nanofiber production, photocatalytic treatment of textile wastewater, bleaching of textile fibers, and the development of self-cleaning surfaces are also examined. The photocatalytic properties of TiO₂ enable the decomposition of organic contaminants and dyes under light exposure, imparting self-cleaning capabilities to fabrics and contributing to the removal of dye pollutants from textile wastewater. This study aims to provide a comprehensive overview of these applications by compiling and synthesizing findings from previously published research through an extensive literature review.

Kaynakça

  • Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. https://doi.org/10.1016/j.jece.2019.103248
  • Amaechi, I. C., Hadj Youssef, A., Rawach, D., Claverie, J. P., Sun, S., & Ruediger, A. (2019). Ferroelectric Fe–Cr codoped BaTiO3 nanoparticles for the photocatalytic oxidation of azo dyes. ACS Applied Nano Materials, 2(5), 2890-2901.
  • Ambaye, T. G., & Hagos, K. (2020). Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnology for Environmental Engineering, 5, 1-11. https://doi.org/10.1007/s41204-020-00094-w
  • Baia, L., Orbán, E., Fodor, S., Hampel, B., Kedves, E. Z., Székely, I., ... & Pap, Z. (2016). Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors' surface charge. Materials Science in Semiconductor Processing, 42, 66-71.
  • Bakulin, A. V., Chumakova, L. S., & Kulkova, S. E. (2021). Study of the Diffusion Properties of Oxygen in TiO 2. Journal of Experimental and Theoretical Physics, 133, 169-174.
  • Basyigit, Z. O., & Ciğeroğlu, Z. (2024). Nano Photo Bleaching Method of Cotton Fabrics for a Sustainable Finishing. Fibers and Polymers, 25(8), 2913-2923.
  • Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J., & Malucelli, G. (2014). Flame retardancy of polyester and polyester–cotton blends treated with caseins. Industrial & Engineering Chemistry Research, 53(10), 3917-3923. https://doi.org/10.1021/ie404089t
  • Cheng, X. W., Guan, J. P., Yang, X. H., & Tang, R. C. (2018). Durable flame retardant wool fabric treated by phytic acid and TiO2 using an exhaustion-assisted pad-dry-cure process. Thermochimica Acta, 665, 28-36. https://doi.org/10.1016/j.tca.2018.05.011
  • Christian, D., Gaekwad, A., Dani, H., Shabiimam, M. A., & Kandya, A. (2023). Recent techniques of textile industrial wastewater treatment: A review. Materials Today: Proceedings, 77, 277-285.
  • Choi, H., Stathatos, E., & Dionysiou, D. D. (2007). Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 202(1-3), 199-206. https://doi.org/10.1016/j.desal.2005.12.055
  • Chung, J., & Lee, S. (2014). Development of nanofibrous membranes with far infrared radiation and their antimicrobial properties. Fibers and Polymers, 15(6), 1153-1159. https://doi.org/10.1007/s12221-014-1153-4
  • Cian, C., Gianocca, V., Barraud, P.A., Guerraz, M., Bresciani, J. P. (2015) Bioceramic fabrics improve quiet standing posture and handstand stability in expert gymnasts. Gait & posture, 42(4), 419-423.
  • Costa, R. G., Brichi, G. S., Ribeiro, C., & Mattoso, L. H. (2016). Nanocomposite fibers of poly (lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin, 73(11), 2973-2985. https://doi.org/10.1007/s00289-016-1635-1
  • Damkale, S. R., Arbuj, S. S., Umarji, G. G., Rane, S. B., & Kale, B. B. (2021). Highly crystalline anatase TiO 2 nanocuboids as an efficient photocatalyst for hydrogen generation. RSC advances, 11(13), 7587-7599. DOI: 10.1039/d0ra10750f
  • Dharma, H. N. C., Jaafar, J., Widiastuti, N., Matsuyama, H., Rajabsadeh, S., Othman, M. H. D., ... & Alias, N. H. (2022). A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes, 12(3), 345.
  • Dubrovski, P. D., & Golob, D. (2009). Effects of woven fabric construction and color on ultraviolet protection. Textile Research Journal, 79(4), 351-359.
  • Duygulu, N. E. (2020). Elektro eğirme yöntemiyle nano boyutlu TiO2 parçacık katkılı PLA nano fiber üretimi. Karaelmas Fen ve Mühendislik Dergisi, 10(1), 7-18. https://doi.org/10.7212/zkufbd.v10i1.1451
  • Dyer, J. (2011). Infrared functional textiles. In N. Pan & G. Sun (Eds.), Functional textiles for improved performance, protection and health (pp. 184–197). Woodhead Publishing. https://doi.org/10.1533/9780857092878.184
  • Eltuğral, N. (2021). Assessment of UV Protection Factor of Flax, Polyester and Nylon Fabrics Treated with Zinc oxide Nanoparticles. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 596-606.
  • Eren, S., & Özenç, A. (2023). Investigation of bleaching of cotton fabrics with UV-TiO2. Tekstilec, 66(2), 126-133. https://doi.org/10.14502/tekstilec.66.2023019
  • Esen, Ö., Demir, A., & Seventekin, N. (2006). Nano Teknoloji ve Tekstil Uygulamaları Bölüm 2. Tekstil ve Konfeksiyon, 16(3).
  • Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  • Ferreira, D.D., Galvao, T. D., & Appoloni, C. R. (2020). Total reflection X-ray fluorescence spectrometry determination of titanium dioxide released from UV-protective textiles during wash. Applied Radiation and Isotopes, 165, 109345. https://doi.org/10.1016/j.apradiso.2020.109345
  • Gautam, A., Kshirsagar, A. S., Banerjee, S., Dhapte, V. V., & Khanna, P. K. (2016). UVC-shielding by nano-TiO2/PMMA composite: A chemical approach. Journal of Materials Science and Nanotechnology, 4(1), 1-14.
  • Gedik, G. (2020). Pamuk/Lyocell kumaşların titanyum (IV) oksit varlığında ultraviyole ışınlarıyla hetorojen fotokataliz ile ağartılması ve ağartma işlemine oksijen radikali varlığının etkisinin incelenmesi. Tekstil ve Mühendis, 27(118), 64-74.
  • Ghosal, K., Agatemor, C., Špitálsky, Z., Thomas, S., & Kny, E. (2019). Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal, 358, 1262-1278. https://doi.org/10.1016/j.cej.2018.10.117
  • Gupta, K. K., Mishra, P. K., Srivastava, P., Gangwar, M., Nath, G., & Maiti, P. (2013). Hydrothermal in situ preparation of TiO2 particles onto poly (lactic acid) electrospun nanofibres. Applied Surface Science, 264, 375-382. https://doi.org/10.1016/j.apsusc.2012.10.029
  • He, P., Low, R. J. Y., Burns, S. F., Lipik, V., & Tok, A. I. Y. (2023). Enhanced far infrared emissivity, UV protection and near-infrared shielding of polypropylene composites via incorporation of natural mineral for functional fabric development. Scientific Reports, 13(1), 22329.
  • Hernández, S., Hidalgo, D., Sacco, A., Chiodoni, A., Lamberti, A., Cauda, V., ... & Saracco, G. (2015). Comparison of photocatalytic and transport properties of TiO 2 and ZnO nanostructures for solar-driven water splitting. Physical Chemistry Chemical Physics, 17(12), 7775-7786.
  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of environmental management, 182, 351-366.
  • Hong,Y., Li, Y., Zhuang, X., Chen, X., Jing, X. (2009). Electrospinning of multicomponent ultrathin fibrous nonwovens for semi‐occlusive wound dressings. Journal of Biomedical Materials Research Part A, 89(2), 345-354. doi: 10.1002/jbm.a.31968.
  • Horikoshi, S., & Serpone, N. (2020). Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catalysis Today, 340, 334-346. https://doi.org/10.1016/j.cattod.2018.10.020
  • Infrared Reflecting Titanium Dioxide. (2025). https://interchemic.com/ir-tio2/ Accessed 02.02.2025 Islam, M., Akter, T., & Ferdush, J. (2019). Impact of fabric density, color and composition of plain weave fabric on ultraviolet protective factor. Glob J Res Eng, 19, 13-15.
  • Jie, L., Junping, M., Liang, J., & Xiaoli, H. (2014). Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water. Journal of Rare Earths, 32(9), 890-894. https://doi.org/10.1016/S1002-0721(14)60159-9
  • Kara, S., Nurlu, T., & Yavaş, A. (2024). Single and hybrid effects of nano‐TiO 2 and‐ZnO particles on multifunctional properties of textiles. Journal of Applied Polymer Science, 141(11), e55101.
  • Karasu, S. (2020). Farklı oranlarda titanyum dioksit kullanılarak elde edilen polyester iplik ve kumaş özelliklerinin incelenmesi [Doktora tezi, Bursa Uludağ Üniversitesi].
  • Ke, A., Lu, Y., Tan, Z., Li, X., Jiang, X., & Zhang, X. (2025). Reflective and heat insulation coatings enabled by TiO2@ polyacrylate hybrid latex and bionic potassium titanate whisker for passive cooling. Journal of Applied Polymer Science, 142(2), e56339.
  • Kızılötesi. (2025). Kızılötesi - Vikipedi Accessed 23.02.2025
  • Kim, H. A. (2022). Wear comfort characteristics of Al2O3/ATO/TiO2-embedded multi-functional PET fabrics. Materials, 15(24), 8799. https://doi.org/10.3390/ma15248799
  • Lal, M. S., Chander, S., Sharma, P., & Ram, C. (2024). Synthesis and characterization of Nd‐TiO2 and Nd‐ZnO nanostructures for photocatalytic degradation of textile wastewater. Vietnam Journal of Chemistry. https://doi.org/10.1002/vjch.202400089
  • Lam, Y. L., Kan, C. W., & Yuen, C. W. M. (2011). Effect of titanium dioxide on the flame‐retardant finishing of cotton fabric. Journal of Applied Polymer Science, 121(1), 267-278. https://doi.org/10.1002/app.33618
  • Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts, 2(4), 572-601. https://doi.org/10.3390/catal2040572
  • Lee, S., & Kim, Y., & Kang, S. (2011). Far-infrared emission of Ti-based oxides. Journal of Molecular Structure, 987(1-3), 86-90. https://doi.org/10.1016/j.molstruc.2010.11.063
  • Li, D., & Xia, Y. (2003). Fabrication of titania nanofibers by electrospinning. Nano Letters, 3(4), 555-560. https://doi.org/10.1021/nl034039o
  • Li, Y., Ding, J. N., Yuan, N. Y., Bai, L., Hu, H. W., & Wang, X. Q. (2013). The influence of surface treatment on dye-sensitized solar cells based on TiO2 nanofibers. Materials Letters, 97, 74-77. https://doi.org/10.1016/j.matlet.2013.01.106
  • Li, R., Yang, J., Zhang, G., & Zhu, P. (2022). Decolorization of dark-colored waste cotton fabric using redox decoloring agents. Rsc Advances, 12(28), 17689-17700.
  • Li, H., Hu, Z., Zhang, S., Gu, X., Wang, H., Jiang, P., & Zhao, Q. (2015). Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Progress in Organic Coatings, 78, 318-324.
  • Li, Z., Dong, Y., Li, B., Wang, P., Chen, Z., & Bian, L. (2018). Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: Conditions optimization and stain decomposition pathway. Materials & Design, 140, 366-375.
  • Li, C., Li, L., Li, J., Wu, X., Qi, L., & Li, W. (2019). Fabrication and characterisation of viscose fibre with photoinduced heat-generating properties. Cellulose, 26, 1631-1640. https://doi.org/10.1007/s10570-018-2207-3
  • Lou, C.W., Lin, J.H. (2011). Evaluation of Bamboo Charcoal/Stainless Steel/TPU Composite Woven Fabrics. Fibers and Polymers, 12(4), 514-520. https://doi.org/10.1007/s12221-011-0514-5
  • Mazumder, N. U. S., & Islam, M. T. (2021). Flame retardant finish for textile fibers. In Innovative and Emerging Technologies for Textile Dyeing and Finishing (pp. 373-405). https://doi.org/10.1002/9781119710288.ch13
  • Mishra, A., & Butola, B. S. (2019). UV protective clothing. In S. Islam & B. S. Butola (Eds.), Advanced functional textiles and polymers (pp. 33-64). John Wiley & Sons. https://doi.org/10.1002/9781119605843.ch2
  • Moafi, H. F., Shojaie, A. F., & Zanjanchi, M. A. (2011). Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. Journal of Thermal Analysis and Calorimetry, 104(2), 717-724. https://doi.org/s10973-010-1133-x
  • Montazer, M., & Morshedi, S. (2012). Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules, 50(4), 1018-1025. https://doi.org/10.1016/j.ijbiomac.2012.02.018
  • Montazer, M., & Morshedi, S. (2014). Photo bleaching of wool using nano TiO2 under daylight irradiation. Journal of Industrial and Engineering Chemistry, 20(1), 83-90. https://doi.org/10.1016/j.jiec.2013.04.023
  • Nasadil, P., & Benešovský, P. (2008). Plasma In Textile Treatment. Chem. Listy, 102, 1486−s1489.
  • Neisius, M., Stelzig, T., Liang, S., & Gaan, S. (2014). Flame retardant finishes for textiles. In R. Paul (Ed.), Functional finishes for textiles: Improving comfort, performance and protection (pp. 429-461). Woodhead Publishing. https://doi.org/10.1016/C2013-0-16373-8
  • Nuansing, W., Ninmuang, S., Jarernboon, W., Maensiri, S., & Seraphin, S. (2006). Structural characterization and morphology of electrospun TiO2 nanofibers. Materials Science and Engineering: B, 131(1-3), 147-155. https://doi.org/10.1016/j.mseb.2006.04.030
  • Ortelli, S., Belosi, F., Bengalli, R., Ravegnani, F., Baldisserri, C., Perucca, M., ... & Costa, A. L. (2020). Influence of spray-coating process parameters on the release of TiO2 particles for the production of antibacterial textile. NanoImpact, 19, 100245.
  • Ömeroğulları, Z., & Dilek, KUT. (2012). Tekstilde güç tutuşurluk. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 17(1), 27-41.
  • Padmanabhan, N. T., & John, H. (2020). Titanium dioxide based self-cleaning smart surfaces: A short review. Journal of Environmental Chemical Engineering, 8(5), 104211.
  • Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1-20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001
  • Paul, R. (2014). Functional finishes for textiles: An overview. In R. Paul (Ed.), Functional finishes for textiles: Improving comfort, performance and protection (pp. 1-14). Woodhead Publishing. https://doi.org/10.1016/C2013-0-16373-8
  • Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40(6), 1276-1286. https://doi.org/10.1016/j.watres.2006.01.019
  • Periyasamy, A. P. (2024). Recent advances in the remediation of textile-dye-containing wastewater: prioritizing human health and sustainable wastewater treatment. Sustainability, 16(2), 495.
  • Photocatalysis. (2025). https://en.wikipedia.org/wiki/Photocatalysis?utm_source Accessed 23.02.2025
  • Prorokova, N. P., Kumeeva, T. Y., Agafonov, A. V., & Ivanov, V. K. (2017). Modification of polyester fabrics with nanosized titanium dioxide to impart photoactivity. Inorganic Materials: Applied Research, 8, 696-703. https://doi.org/10.1134/S2075113317050264
  • Qin, B., Fu, S. J., Xu, X. F., Yang, J. J., Wang, Y., Wang, L. N., ... & Wong, V. K. W. (2024). Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine?. Pharmacological Research, 107349.
  • Rabiei, H., Farhang Dehghan, S., Montazer, M., Khaloo, S. S., & Koozekonan, A. G. (2022). UV protection properties of workwear fabrics coated with TiO2 nanoparticles. Frontiers in Public Health, 10, 929095.
  • Radetić, M. (2013). Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 16, 62-76. https://doi.org/10.1016/j.jphotochemrev.2013.04.002
  • Rashid, M. M., Simončič, B., & Tomšič, B. (2021). Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 22, 100890. https://doi.org/10.1016/j.surfin.2020.100890
  • Refractive index.info. (2025). https://refractiveindex.info/?book=TiO2&page=Devore-o&shelf=main Accessed 02.02.2025
  • Sadr, F. A., & Montazer, M. (2014). In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrasonics sonochemistry, 21(2), 681-691. https://doi.org/10.1016/j.ultsonch.2013.09.018
  • Salem, D. R. (2007). Electrospinning of nanofibers and the charge injection method. In P. Brown & K. Stevens (Eds.), Nanofibers and nanotechnology in textiles (pp. 3-21). Woodhead Publishing Ltd. https://doi.org/10.1533/9781845693732.1.3
  • Sankauskaitė, A., Rubežienė, V., Kubilienė, D., Abraitienė, A., Baltušnikaitė-Guzaitienė, J., & Dubinskaitė, K. (2020). Investigation of thermal behavior of 3D PET knits with different bioceramic additives. Polymers, 12(6), 1-12. https://doi.org/10.3390/polym12061319
  • Saravanan, D. (2007). UV protection textile materials. AUTEX Research Journal, 7(1), 53-62.
  • Seentrakoon, B., Junhasavasdikul, B., & Chavasiri, W. (2013). Enhanced UV-protection and antibacterial properties of natural rubber/rutile-TiO2 nanocomposites. Polymer Degradation and Stability, 98(2), 566-578. https://doi.org/10.1016/j.polymdegradstab.2012.11.018
  • Shim, M. H., Park, C. H., & Shim, H. S. (2009). Effect of ceramics on the physical and thermo-physiological performance of warm-up suit. Textile Research Journal, 79(17), 1557-1564. https://doi.org/10.1177/0040517508095605
  • Shih, Y. H., Lin, J. H., Hsieh, C. T., Lin, C. W., & Lou, C. W. (2015). Far-infrared nonwoven fabrics made of various ratios of bamboo fiber to far-infrared fiber: Far-infrared emissivity and mechanical property evaluations. In Proceedings of the 13th Asian Textile Conference (pp. 830–834). Geelong, Australia.
  • Singh, A. K., & Panwar, K. (2022). Synthesis and application of binary metal oxides for multifunctional textiles. Synthesis, 9(10), 19923-19933.
  • Someswararao, M. V., Dubey, R. S., Subbarao, P. S. V., & Singh, S. (2018). Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results in Physics, 11, 223-231. https://doi.org/10.1016/j.rinp.2018.08.054
  • Song, M., Pan, C., Chen, C., Li, J., Wang, X., & Gu, Z. (2008). The application of new nanocomposites: Enhancement effect of polylactide nanofibers/nano-TiO2 blends on biorecognition of anticancer drug daunorubicin. Applied Surface Science, 255(2), 610-612. https://doi.org/10.1016/j.apsusc.2008.06.131
  • Song, Y., Zhao, F., Li, Z., Cheng, Z., Huang, H., & Yang, M. (2021). Electrospinning preparation and anti-infrared radiation performance of silica/titanium dioxide composite nanofiber membrane. RSC Advances, 11(39), 23901-23907. https://doi.org/10.1039/D1RA03917B
  • Stamatoski, A., Fidoski, J. (2017) Osteoinductive potential of bone scaffolds developed from FYR Bioceramic (a material of emitting high performance far-infrared ray irradiation). International Journal of Oral and Maxillofacial Surgery, 46(1), 272 273.
  • Sun Protective Clothing. (2025). https://www.skincancer.org/skin-cancer-prevention/sun-protection/sun-protective-clothing\ Accessed: 11.02.2025
  • Textiles - optimum protection from harmful UV rays - Hohenstein. (2025). https://www.hohenstein.com/en/expertise/health/uv-protection Accessed 11.02.2025
  • Titanium dioxide. (2025). https://en.wikipedia.org/wiki/Titanium_dioxide?utm_source Accessed 23.02.2025
  • Tudu, B. K., Sinhamahapatra, A., & Kumar, A. (2020). Surface modification of cotton fabric using TiO2 nanoparticles for self-cleaning, oil–water separation, antistain, anti-water absorption, and antibacterial properties. ACS omega, 5(14), 7850-7860.
  • Vatansever, F., & Hamblin, M. R. (2012). Far infrared radiation (FIR): Its biological effects and medical applications. Photonics Lasers Med., 1, 255–266. https://doi.org/10.1515/plm-2012-0034
  • Wei, W., Zhu, Y., Li, Q., Cheng, Z., Yao, Y., Zhao, Q., Zhang, P., Liu, X., Chen, Z., Xu, F., & Gao, Y. (2020). An Al2O3-cellulose acetate-coated textile for human body cooling. Solar Energy Materials and Solar Cells, 211, 1-7. https://doi.org/10.1016/j.solmat.2020.110525
  • Weil, E. D., & Levchik, S. V. (2008). Flame retardants in commercial use or development for textiles. Journal of Fire Sciences, 26(3), 243-281. doi: 10.1177/0734904108089485
  • Wiener, J., Chládová, A., Shahidi, S., & Peterová, L. (2017). Effect of UV irradiation on mechanical and morphological properties of natural and synthetic fabric before and after nano-TiO2 padding. Autex Research Journal, 17(4), 370-378.
  • Xia, T., Wu, B., Zhang, H., Xu, F., Sun, L., Lin, X., ... & Yan, E. (2024). Titanium dioxide/graphene oxide synergetic reinforced composite phase change materials with excellent thermal energy storage and photo-thermal performances. Journal of Materials Research and Technology, 32, 4019-4027.
  • Yang, Y., Li, R., & Zhang, H. (2010). Preparation and properties of polyethylene/ nano-TiO2 composites with enhanced mechanical properties and UV resistance. Polymer, 51(15), 3431-3435. https://doi.org/10.1016/j.polymer.2010.05.008
  • Yang, Z. D. (2013). Application of titanium dioxide nanoparticles on textile modification. Advanced Materials Research, 821, 901-905.
  • Yao, J. K., Huang, H. L., Ma, J. Y., Jin, Y. X., Zhao, Y. A., Shao, J. D., ... & Wu, Z. Y. (2009). High refractive index TiO2 film deposited by electron beam evaporation. Surface engineering, 25(3), 257-260.
  • Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International journal of environmental science and technology, 16, 1193-1226.
  • Yoon, J. Y., & Chang, M. (2007). Preparation of polyethylene fabric coated with TiO2 nano sol by a facile method and its application to surface hydro-modification. Journal of Sol-Gel Science and Technology, 41(3), 285-291. https://doi.org/10.1007/s10971-007-1563-1
  • Yüce, İ. (2017). Uzak kızılötesi ışın yayan kumaş ve iplikler. Trakya University Journal of Engineering Sciences, 18(2), 145-151.
  • Yüce, İ. (2022). Uzak kızılötesi ışın (FIR) yayma özelliğine sahip kumaşların geliştirilmesi üzerine bir çalışma [Doctoral thesis, Marmara University].
  • Yüce, İ., Canoglu, S., Yukseloglu, S. M., Li Voti, R., Cesarini, G., Sibilia, C., & Larciprete, M. C. (2022). Titanium and silicon dioxide-coated fabrics for management and tuning of infrared radiation. Sensors, 22(10), 3918. https://doi.org/10.3390/s22103918
  • Yuranova, T., Laub, D., & Kiwi, J. (2007). Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catalysis Today, 122(1-2), 109-117. https://doi.org/10.1016/j.cattod.2007.01.040
  • Xue, G., Wang, Y. Q., Zhang, L., & Zhang, X. F. (2010). Preparation of tourmaline composite materials and its property of far infrared radiance. Advanced Materials Research, 96, 165-170. https://doi.org/10.4028/www.scientific.net/AMR.96.165
  • Zaleska, A. (2008). Doped-TiO2: a review. Recent patents on engineering, 2(3), 157-164.
  • Zha, J. W., Li, W. L., Cui, R. Y., Guo, Z. H., & Dang, Z. M. (2013). Preparation and properties of polypropylene/titanium dioxide nanocomposites. Polymer, 54(18), 5147-5153. https://doi.org/10.1016/j.polymer.2013.07.055
  • Zhang, X., Guo, M., Zhao, X., Zhang, Q., Shi, Y., & Guo, C. (2019). Flame retardant and fire behaviors of epoxy resin composites containing melamine phosphate modified by aluminum hypophosphite and nano TiO2. Materials Research Express, 6(6), 065302. https://doi.org/10.1088/2053-1591/ab0ee1
Toplam 106 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimi, Tekstil Kimyası, Tekstil Terbiyesi
Bölüm Derleme
Yazarlar

İsmail Yüce 0000-0001-6657-7169

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 8 Eylül 2024
Kabul Tarihi 18 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Yüce, İ. (2025). USES OF TITANIUM DIOXIDE IN TEXTILE PRODUCTS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1624-1638. https://doi.org/10.17780/ksujes.1545526