FARKLI FAN BASINCI VE BYPASS ORANLARINDA TURBOFAN MOTORUNUN TERMODİNAMİK PERFORMANSININ İNCELENMESİ BÖLÜM B: EKSERJİ ANALİZİ
Yıl 2025,
Cilt: 28 Sayı: 3, 1171 - 1188, 03.09.2025
Emine Oğur
,
Ali Koç
,
Özkan Köse
,
Hüseyin Yağlı
,
Yıldız Koç
Öz
Bu çalışmada, bypass oranı (BPR) (4.4-11.6) ve fan basınç oranı (FBR) (1.26-1.98) kademeli olarak değiştirilerek bir turbofan motorunun ekserji ve ekserji sürdürülebilirlik analizi yapılmıştır. Analiz EES (mühendislik denklem çözücü) programı kullanılarak gerçekleştirilmiştir. Çalışma sonucunda, yanma odası (CC) bileşeni en az verimli bileşen olarak belirlenmiştir. Fan basınç oranı arttıkça motorun ekserji verimliliği, ekserji yıkım oranı, ekserji sürdürülebilirlik endeksi ve sürdürülebilir verimlilik faktörü artarken, çevresel etki faktörü ve ekolojik etki faktörünün azaldığı belirlenmiştir. Bypass oranı arttıkça ise iyileştirme potansiyeli ve atık oranının azaldığı görülmüştür.
Kaynakça
-
Aydın H. (2012). Ticari Uçaklarda Ekserjetik Sürdürülebilirlik Göstergelerinin Geliştirilmesi. PhD Dissertation, Anadolu University Graduate School of Sciences Civil Aviation Program. April 2012. Eskişehir, Türkiye.
-
Akdeniz H.Y and Ballı O. (2021a). Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft. Energy 238(No. 1):121745 https://doi.org/10.1016/j.energy.2021.121745.
-
Akdeniz, H. Y., & Balli, O. (2021). Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology, 143(12), 120905. https://doi.org/ 10.1115/1.4051297.
-
Akdeniz, H. Y., Balli, O., & Caliskan, H. (2023). Energy, exergy, thermoecologic, environmental, enviroeconomic and sustainability analyses and assessments of the aircraft engine fueled with biofuel and jet fuel. Journal of Thermal Analysis and Calorimetry, 148(9), 3585-3603. https://doi.org/10.1007/s10973-023-11982-z.
-
AlHarbi F. G., Mohamed M. H. and Fadhl B. M. (2024). Exergetic Indicators for Evaluation of High Bypass Turbofan Engine at Take-off Condition. Trends in advanced sciences and technology,Vol. 1, Article 14. https://doi.org/10.62537/2974-444X.1013.
-
Arslan O., Acikkalp E. and Genc G. (2022). A multi-generation system for hydrogen production through the high-temperature solid oxide 2 electrolyzer integrated to 150 MW coal-fired steam boiler. SSRN Electronic Journal, https://doi.org/10.1016/j.fuel.2022.123201.
-
Artaş S. B., Kocaman E., Bilgiç H.H., Tutumlu H., Yağlı H. and Yumrutaş R. (2023). Why PV panels must be recycled at the end of their economic life span? A case study on recycling together with the global situation. Process Safety and Environmental Protection, 174(11). https://doi.org/10.1016/j.psep.2023.03.053.
-
Aygun H., Sheikhi M. R., and Caliskan H. (2024). Thermodynamics, Environmental and Sustainability Impacts of a Turbofan Engine Under Different Design Conditions Considering Variable Needs in the Aviation Industry. Global Challenges, vol.8, no.2. https://doi.org/10.1002/gch2.202300205.
-
Aygün H. and Turan O. (2019). Entropy, Energy and Exergy for Measuring PW4000 Turbofan Sustainability. International Journal of Turbo & Jet-Engines. 38. https://doi.org/10.1515/tjj-2018-0050.
-
Balli O. and Hepbasli (2013). A. Exergetic, exergoeconomic, environmental and sustainability analyses of T56 turboprop engine. Energy, Elsevier, vol. 64(C), pages 582-600. https://doi.org/10.1016/j.energy.2013.09.066.
-
Balli, O. (2017). Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138-155. http://dx.doi.org/10.1016/j.applthermaleng.2017.05.068.
-
Balli, O., Sohret, Y., & Karakoc, H. T. (2018). The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43(23), 10848-10858. http://doi.org/10.1016/j.ijhydene.2017.12.178.
-
Balli, O., & Caliskan, H. (2021). Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 232, 121031. https://doi.org/10.1016/j.energy.2021.121031.
-
Caliskan H. (2015). Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy Conversion and Management, 89, p. 156-161. https://doi.org/10.1016/j.enconman.2014.09.067.
-
Çoban K. (2018). İnsansız Hava Araçlarında Farklı Yakıtlarla Çalışan Turbojet Motorunun Enerji, Ekserji ve Sürdürülebilirlik Analizi, Eskisehir Anadolu University Institute of Science, PhD Dissertation.
-
Coban K., Colpan C.O. and Karakoc T.H. (2018). Application of thermodynamic laws on a military helicopter engine. Energy, Volume 140, Part 2, 1 December 2017, Pages 1427-1436. https://dx.doi.org/10.1016/j.energy.2017.07.179.
-
Chang, Y. H., Hsu, H. W., & Wang, W. C. (2021). Exergy analysis of renewable jet fuel production through hydro-conversion of glyceride-based oil. Applied Thermal Engineering, 182, 115934. https://doi.org/10.1016/j.applthermaleng.2020.115934.
-
Da Silva, R. P. P., & Amini, S. (2023). Energy, exergy and economic analysis for a combined cooling heat and power system: A case study for a university campus. Case Studies in Thermal Engineering, 49, 103393. https://doi.org/10.1016/j.csite.2023.103393.
-
Dinç, A., Şöhret, Y., and Ekici, S. (2020). Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircraft Engineering and Aerospace Technology, Vol. 92 No. 10, pp. 1495-1503. https://doi.org/10.1108/AEAT-05-2020-0087.
-
Dursun Ö.O., Toraman S. and Aygun H. (2023). Deep learning approach for prediction of exergy and emission parameters of commercial high by‑pass turbofan engines. Environmental Science and Pollution Research, 30(10), 27539-27559. https://doi.org/10.1007/s11356-022-24109-y.
-
Ekici S. (2020a). Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases. Energy, vol. 202(C). https://doi.org/10.1016/j.energy.2020.117692.
-
Ekici S. (2020b). Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing. Energy, vol. 193(C). https://doi.org/10.1016/j.energy.2019.116804.
-
Ekrataleshian A.P. and Ahmadi M. (2020). Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. Journal of Thermal Analysis and Calorimetry, 145:909–923 http://doi.org/10.1007/s10973-020-10310-z.
-
Ezzat M.F. and Dinçer I. (2019). Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems. Energy, vol. 194(C). https://doi.org/10.1016/j.energy.2019.116750.
-
GEnx-ib76 turbofan engine. General Electric/Aero-Engines: USA, April 1997. https://www.studypool.com/documents/9205618/th e-ge90-an-introduction. [Accessed 10 December 2024].
-
Gunasekar P., Manigandan S., Subramanian V. and Gokulnath R. (2020). Effect of hydrogen addition on exergetic performance of gas turbine engine. Aircraft Engineering and Aerospace Technology, 92/2 (2020) 180–185. https://doi.org/10.1108/AEAT-05-2019-0095.
-
Ibrahim, T. K., Basrawi, F., Awad, O. I., Abdullah, A. N., Najafi, G., Mamat, R., & Hagos, F. Y. (2017). Thermal performance of gas turbine power plant based on exergy analysis. Applied thermal engineering, 115, 977-985. https://doi.org/10.1016/j.applthermaleng.2017.01.032.
-
Kalkan, O. (2024). A commercial turbofan engine modeling and exergy analysis. Konya Journal of Engineering Sciences, 12(1), 109-122. https://doi.org/10.36306/konjes.1332160.
-
Kirmizi, M., Aygun, H., & Turan, O. (2024). Stage-based exergy analysis for a modern turboprop engine under various loading. Energy, 308, 132854. https://doi.org/10.1016/j.energy.2024.13285.
-
Khan Y., Singh D., Caliskan H. and Hong H. (2023). Exergoeconomic and Thermodynamic Analyses of Solar Power Tower Based Novel Combined Helium Brayton Cycle-Transcritical CO2 Cycle for Carbon Free Power Generation. Thermal Science and Engineering Progress. https://doi.org/10.1002/gch2.202300191.
-
Kocaman E., Karakuş C., Yağlı H., Koç Y., Yumrutaş R., and Koç A. (2022). Pinch point determination and Multi-Objective optimization for working parameters of an ORC by using numerical analyses optimization method. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2022.116301.
-
Küçük E.Ö. and Kılıç M. (2023). Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle. Sustainability, 15(8), 6987 https://doi.org/10.3390/su15086987.
-
Marszałek, N. (2020). The impact of thermodynamics parameters of turbofan engine with ITB on its performance. Combustion Engines, 59. https://doi.org/10.19206/CE-2020-303.
-
Mrzljak V., Poljak I., Prpić-Oršić J. and Jelić M. (2020). Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system. Pomorstvo, 34, 309-322. https://doi.org/10.31217/p.34.2.12.
-
Nourianpour M. and Banitalebidehkordi M. (2024). Analysis and ınvestigation of thermodynamic ımprovement and exergy of turbofan engine using fuzzy logic and meta-heuristic optimizers. https://www.preprints.org/manuscript/202407.0409/download/final_file.
-
Okash A., Yumrutaş Y., Kocaman E. and Yağlı H. (2023). Analysis of an ORC using R245fa under the optimum design working condition of condenser. The International Journal of Energy and Engineering Sciences, 8(2), 1-13.
-
Oğur, E., Koç, A., Yağlı, H., Koç, Y., & Köse, Ö. (2024). Thermodynamic, economic, and environmental analysis of a hydrogen-powered turbofan engine at varying altitudes. International Journal of Hydrogen Energy, 55, 1203-1216. https://doi.org/10.1016/j.ijhydene.2023.11.252.
Oğur, E., Koç, A., Köse, Ö., Koç, Y., & Yağlı, H. (2024). Performance assessment of ammonia as a turbofan engine fuel during various altitude levels. Energy, 308, 132714. https://doi.org/10.1016/ j.energy.2024.132714.
-
Oğur, E., Koç, A., Köse, Ö., Yağlı, H., & Koç, Y. (2025). Energy, exergy, exergoeconomic, exergy sustainability and exergoenvironmental analyses (5E) of a turbofan engine: A comparative study of hydrogen and kerosene fuels. Fuel, 381, 133324. https://doi.org/10.1016/j.fuel.2024.133324.
-
Oğur, E., Koç, A., Yağlı, H., Köse, Ö., & Koç, Y. (2025). Shifting to lower carbon emission for aircraft: An alternative fuel evaluation. Energy, 316, 134426. https://doi.org/10.1016/j.energy.2025.134426.
-
Purgunan, G. R. V., & Stathopoulos, P. (2024). Performance and exergy analysis of TurboJet and TurboFan configurations with rotating detonation combustor. International Journal of Thermofluids, 23, 100739. https://doi.org/10.1016/j.ijft.2024.100739.
Rosen, M., Dincer, I., Rosen, M. A. (2007). Exergy: Energy, Environment and Sustainable Development. Applied Energy, 64, 427-440.
-
Sabzehali, M., Rabiee, A. H., Alibeigi, M., & Mosavi, A. (2022). Predicting the energy and exergy performance of F135 PW100 turbofan engine via deep learning approach. Energy Conversion and Management, 265, 115775. https://doi.org/10.1016/j.enconman.2022.115775.
-
Samad, A., Saghir, H., Ahmad, I., Ahmad, F., & Caliskan, H. (2023). Thermodynamic analysis of cumene production plant for identification of energy recovery potentials. Energy, 270, 126840. https://doi.org/10.1016/j.energy.2023.126840.
-
Sürer M. G. and Arat H. T. (2024). Energy and exergy analysis of hydrogen production from seawater using waste heat recovery system on a model ship. International Journal of Exergy, 44 (1), pp. 53-64. https://doi.org/10.1504/IJEX.2024.138741
-
Tiwari D. (2024). Improved evacuated and compound parabolic collector‑driven ORC/VCR system: a thermodynamic analysis. Journal of Thermal Analysis and Calorimetry, 149(7). https://doi.org/10.1007/s10973-024-13350-x.
-
Turan O. and Karakoç T.H. (2009). Ardyanmalı ve ayrık akışlı turbofanlarda fan basınç oranı ve bypass oranıyla toplam verimin değişiminin incelenmesi. Havacılık ve Uzay Teknolojileri Dergisi, Vol. 4 No. 2.
-
Type-certifıcate data sheet (2019). No. IM. E.002 for GE90 Series Engines Type Certificate Holder. General Electric Company, OH 45215-6310 USA.
-
Xue R, Jiang J, and Jackson A. (2019). Effect of Bypass Ratio on Optimal Fan Outer Pressure Ratio and Performance for Turbofan Engines. International Journal of Aeronautical and Space Sciences, 20(5). https://doi.org/10.1007/s42405-018-0134-z.
-
Yalcin, E. (2017). Thrust performance evaluation of a turbofan engine based on exergetic approach and thrust management in aircraft. International Journal of Turbo & Jet-Engines, 34(2), 177-186. https://doi.org/10.1515/tjj-2015-0065.
INVESTIGATION OF THERMODYNAMIC PERFORMANCE OF TURBOFAN ENGINE AT DIFFERENT FAN PRESSURE AND BYPASS RATIOS PART B: EXERGY ANALYSIS
Yıl 2025,
Cilt: 28 Sayı: 3, 1171 - 1188, 03.09.2025
Emine Oğur
,
Ali Koç
,
Özkan Köse
,
Hüseyin Yağlı
,
Yıldız Koç
Öz
In this study, exergy and exergy sustainability analysis of a turbofan engine were performed by gradually changing the bypass ratio (BPR) (4.4-11.6) and fan pressure ratio (FBR) (1.26-1.98). The analysis was performed using the EES (engineering equation solver) program. As a result of the study, the combustion chamber (CC) component was determined as the least efficient component. It was determined that as the fan pressure ratio increased, the exergy efficiency, exergy destruction ratio, exergy sustainability index, and sustainable efficiency factor of the engine increased, while the environmental impact factor and ecological impact factor decreased. It was observed that as the bypass ratio increased, the improvement potential and waste ratio decreased.
Kaynakça
-
Aydın H. (2012). Ticari Uçaklarda Ekserjetik Sürdürülebilirlik Göstergelerinin Geliştirilmesi. PhD Dissertation, Anadolu University Graduate School of Sciences Civil Aviation Program. April 2012. Eskişehir, Türkiye.
-
Akdeniz H.Y and Ballı O. (2021a). Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft. Energy 238(No. 1):121745 https://doi.org/10.1016/j.energy.2021.121745.
-
Akdeniz, H. Y., & Balli, O. (2021). Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology, 143(12), 120905. https://doi.org/ 10.1115/1.4051297.
-
Akdeniz, H. Y., Balli, O., & Caliskan, H. (2023). Energy, exergy, thermoecologic, environmental, enviroeconomic and sustainability analyses and assessments of the aircraft engine fueled with biofuel and jet fuel. Journal of Thermal Analysis and Calorimetry, 148(9), 3585-3603. https://doi.org/10.1007/s10973-023-11982-z.
-
AlHarbi F. G., Mohamed M. H. and Fadhl B. M. (2024). Exergetic Indicators for Evaluation of High Bypass Turbofan Engine at Take-off Condition. Trends in advanced sciences and technology,Vol. 1, Article 14. https://doi.org/10.62537/2974-444X.1013.
-
Arslan O., Acikkalp E. and Genc G. (2022). A multi-generation system for hydrogen production through the high-temperature solid oxide 2 electrolyzer integrated to 150 MW coal-fired steam boiler. SSRN Electronic Journal, https://doi.org/10.1016/j.fuel.2022.123201.
-
Artaş S. B., Kocaman E., Bilgiç H.H., Tutumlu H., Yağlı H. and Yumrutaş R. (2023). Why PV panels must be recycled at the end of their economic life span? A case study on recycling together with the global situation. Process Safety and Environmental Protection, 174(11). https://doi.org/10.1016/j.psep.2023.03.053.
-
Aygun H., Sheikhi M. R., and Caliskan H. (2024). Thermodynamics, Environmental and Sustainability Impacts of a Turbofan Engine Under Different Design Conditions Considering Variable Needs in the Aviation Industry. Global Challenges, vol.8, no.2. https://doi.org/10.1002/gch2.202300205.
-
Aygün H. and Turan O. (2019). Entropy, Energy and Exergy for Measuring PW4000 Turbofan Sustainability. International Journal of Turbo & Jet-Engines. 38. https://doi.org/10.1515/tjj-2018-0050.
-
Balli O. and Hepbasli (2013). A. Exergetic, exergoeconomic, environmental and sustainability analyses of T56 turboprop engine. Energy, Elsevier, vol. 64(C), pages 582-600. https://doi.org/10.1016/j.energy.2013.09.066.
-
Balli, O. (2017). Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138-155. http://dx.doi.org/10.1016/j.applthermaleng.2017.05.068.
-
Balli, O., Sohret, Y., & Karakoc, H. T. (2018). The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43(23), 10848-10858. http://doi.org/10.1016/j.ijhydene.2017.12.178.
-
Balli, O., & Caliskan, H. (2021). Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy, 232, 121031. https://doi.org/10.1016/j.energy.2021.121031.
-
Caliskan H. (2015). Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy Conversion and Management, 89, p. 156-161. https://doi.org/10.1016/j.enconman.2014.09.067.
-
Çoban K. (2018). İnsansız Hava Araçlarında Farklı Yakıtlarla Çalışan Turbojet Motorunun Enerji, Ekserji ve Sürdürülebilirlik Analizi, Eskisehir Anadolu University Institute of Science, PhD Dissertation.
-
Coban K., Colpan C.O. and Karakoc T.H. (2018). Application of thermodynamic laws on a military helicopter engine. Energy, Volume 140, Part 2, 1 December 2017, Pages 1427-1436. https://dx.doi.org/10.1016/j.energy.2017.07.179.
-
Chang, Y. H., Hsu, H. W., & Wang, W. C. (2021). Exergy analysis of renewable jet fuel production through hydro-conversion of glyceride-based oil. Applied Thermal Engineering, 182, 115934. https://doi.org/10.1016/j.applthermaleng.2020.115934.
-
Da Silva, R. P. P., & Amini, S. (2023). Energy, exergy and economic analysis for a combined cooling heat and power system: A case study for a university campus. Case Studies in Thermal Engineering, 49, 103393. https://doi.org/10.1016/j.csite.2023.103393.
-
Dinç, A., Şöhret, Y., and Ekici, S. (2020). Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircraft Engineering and Aerospace Technology, Vol. 92 No. 10, pp. 1495-1503. https://doi.org/10.1108/AEAT-05-2020-0087.
-
Dursun Ö.O., Toraman S. and Aygun H. (2023). Deep learning approach for prediction of exergy and emission parameters of commercial high by‑pass turbofan engines. Environmental Science and Pollution Research, 30(10), 27539-27559. https://doi.org/10.1007/s11356-022-24109-y.
-
Ekici S. (2020a). Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases. Energy, vol. 202(C). https://doi.org/10.1016/j.energy.2020.117692.
-
Ekici S. (2020b). Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing. Energy, vol. 193(C). https://doi.org/10.1016/j.energy.2019.116804.
-
Ekrataleshian A.P. and Ahmadi M. (2020). Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. Journal of Thermal Analysis and Calorimetry, 145:909–923 http://doi.org/10.1007/s10973-020-10310-z.
-
Ezzat M.F. and Dinçer I. (2019). Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems. Energy, vol. 194(C). https://doi.org/10.1016/j.energy.2019.116750.
-
GEnx-ib76 turbofan engine. General Electric/Aero-Engines: USA, April 1997. https://www.studypool.com/documents/9205618/th e-ge90-an-introduction. [Accessed 10 December 2024].
-
Gunasekar P., Manigandan S., Subramanian V. and Gokulnath R. (2020). Effect of hydrogen addition on exergetic performance of gas turbine engine. Aircraft Engineering and Aerospace Technology, 92/2 (2020) 180–185. https://doi.org/10.1108/AEAT-05-2019-0095.
-
Ibrahim, T. K., Basrawi, F., Awad, O. I., Abdullah, A. N., Najafi, G., Mamat, R., & Hagos, F. Y. (2017). Thermal performance of gas turbine power plant based on exergy analysis. Applied thermal engineering, 115, 977-985. https://doi.org/10.1016/j.applthermaleng.2017.01.032.
-
Kalkan, O. (2024). A commercial turbofan engine modeling and exergy analysis. Konya Journal of Engineering Sciences, 12(1), 109-122. https://doi.org/10.36306/konjes.1332160.
-
Kirmizi, M., Aygun, H., & Turan, O. (2024). Stage-based exergy analysis for a modern turboprop engine under various loading. Energy, 308, 132854. https://doi.org/10.1016/j.energy.2024.13285.
-
Khan Y., Singh D., Caliskan H. and Hong H. (2023). Exergoeconomic and Thermodynamic Analyses of Solar Power Tower Based Novel Combined Helium Brayton Cycle-Transcritical CO2 Cycle for Carbon Free Power Generation. Thermal Science and Engineering Progress. https://doi.org/10.1002/gch2.202300191.
-
Kocaman E., Karakuş C., Yağlı H., Koç Y., Yumrutaş R., and Koç A. (2022). Pinch point determination and Multi-Objective optimization for working parameters of an ORC by using numerical analyses optimization method. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2022.116301.
-
Küçük E.Ö. and Kılıç M. (2023). Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle. Sustainability, 15(8), 6987 https://doi.org/10.3390/su15086987.
-
Marszałek, N. (2020). The impact of thermodynamics parameters of turbofan engine with ITB on its performance. Combustion Engines, 59. https://doi.org/10.19206/CE-2020-303.
-
Mrzljak V., Poljak I., Prpić-Oršić J. and Jelić M. (2020). Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system. Pomorstvo, 34, 309-322. https://doi.org/10.31217/p.34.2.12.
-
Nourianpour M. and Banitalebidehkordi M. (2024). Analysis and ınvestigation of thermodynamic ımprovement and exergy of turbofan engine using fuzzy logic and meta-heuristic optimizers. https://www.preprints.org/manuscript/202407.0409/download/final_file.
-
Okash A., Yumrutaş Y., Kocaman E. and Yağlı H. (2023). Analysis of an ORC using R245fa under the optimum design working condition of condenser. The International Journal of Energy and Engineering Sciences, 8(2), 1-13.
-
Oğur, E., Koç, A., Yağlı, H., Koç, Y., & Köse, Ö. (2024). Thermodynamic, economic, and environmental analysis of a hydrogen-powered turbofan engine at varying altitudes. International Journal of Hydrogen Energy, 55, 1203-1216. https://doi.org/10.1016/j.ijhydene.2023.11.252.
Oğur, E., Koç, A., Köse, Ö., Koç, Y., & Yağlı, H. (2024). Performance assessment of ammonia as a turbofan engine fuel during various altitude levels. Energy, 308, 132714. https://doi.org/10.1016/ j.energy.2024.132714.
-
Oğur, E., Koç, A., Köse, Ö., Yağlı, H., & Koç, Y. (2025). Energy, exergy, exergoeconomic, exergy sustainability and exergoenvironmental analyses (5E) of a turbofan engine: A comparative study of hydrogen and kerosene fuels. Fuel, 381, 133324. https://doi.org/10.1016/j.fuel.2024.133324.
-
Oğur, E., Koç, A., Yağlı, H., Köse, Ö., & Koç, Y. (2025). Shifting to lower carbon emission for aircraft: An alternative fuel evaluation. Energy, 316, 134426. https://doi.org/10.1016/j.energy.2025.134426.
-
Purgunan, G. R. V., & Stathopoulos, P. (2024). Performance and exergy analysis of TurboJet and TurboFan configurations with rotating detonation combustor. International Journal of Thermofluids, 23, 100739. https://doi.org/10.1016/j.ijft.2024.100739.
Rosen, M., Dincer, I., Rosen, M. A. (2007). Exergy: Energy, Environment and Sustainable Development. Applied Energy, 64, 427-440.
-
Sabzehali, M., Rabiee, A. H., Alibeigi, M., & Mosavi, A. (2022). Predicting the energy and exergy performance of F135 PW100 turbofan engine via deep learning approach. Energy Conversion and Management, 265, 115775. https://doi.org/10.1016/j.enconman.2022.115775.
-
Samad, A., Saghir, H., Ahmad, I., Ahmad, F., & Caliskan, H. (2023). Thermodynamic analysis of cumene production plant for identification of energy recovery potentials. Energy, 270, 126840. https://doi.org/10.1016/j.energy.2023.126840.
-
Sürer M. G. and Arat H. T. (2024). Energy and exergy analysis of hydrogen production from seawater using waste heat recovery system on a model ship. International Journal of Exergy, 44 (1), pp. 53-64. https://doi.org/10.1504/IJEX.2024.138741
-
Tiwari D. (2024). Improved evacuated and compound parabolic collector‑driven ORC/VCR system: a thermodynamic analysis. Journal of Thermal Analysis and Calorimetry, 149(7). https://doi.org/10.1007/s10973-024-13350-x.
-
Turan O. and Karakoç T.H. (2009). Ardyanmalı ve ayrık akışlı turbofanlarda fan basınç oranı ve bypass oranıyla toplam verimin değişiminin incelenmesi. Havacılık ve Uzay Teknolojileri Dergisi, Vol. 4 No. 2.
-
Type-certifıcate data sheet (2019). No. IM. E.002 for GE90 Series Engines Type Certificate Holder. General Electric Company, OH 45215-6310 USA.
-
Xue R, Jiang J, and Jackson A. (2019). Effect of Bypass Ratio on Optimal Fan Outer Pressure Ratio and Performance for Turbofan Engines. International Journal of Aeronautical and Space Sciences, 20(5). https://doi.org/10.1007/s42405-018-0134-z.
-
Yalcin, E. (2017). Thrust performance evaluation of a turbofan engine based on exergetic approach and thrust management in aircraft. International Journal of Turbo & Jet-Engines, 34(2), 177-186. https://doi.org/10.1515/tjj-2015-0065.