INVESTIGATION OF THE POLYETHYLENE GLYCOL AND CHERRY STEM WASTE RATIOS ON THE FINAL THERMAL, AND MECHANICAL PROPERTIES OF POLYVINYL ALCOHOL BASED COMPOSITE FILMS
Yıl 2025,
Cilt: 28 Sayı: 3, 1198 - 1209, 03.09.2025
Sibel Tuna
Öz
“Green composites”, which are essentially composed of a biopolymer matrix and natural filler materials, have emerged as a significant alternative in the context of environmental pollution and sustainability studies in recent years. This study was designed to investigate the effects of polyethylene glycol (PEG) as a secondary polymer and cherry stem (CS) powder as a reinforcing phase on the thermal and mechanical performances of polyvinyl alcohol (PVA) based composite films. The composite films were produced using the solvent casting method. Taguchi optimization was performed to observe the effects of the PEG and CS ratios. The properties of the composite films were evaluated using Fourier transform infrared spectroscopy, thermogravimetric analysis, and mechanical testing. It was determined that the use of PEG improves the thermal properties due to its high thermal stability, as well as improving the elongation at break values, while decreasing tensile strength due to its plasticizing effect. CS generally improves thermal properties and tensile strength by up to 5% but decreases by 10% due to agglomeration. Elongation at break decreases as the amount of CS increases.
Kaynakça
-
Abd Alla, S. G., Said, H. M., & El‐Naggar, A. W. M. (2004). Structural properties of γ‐irradiated poly (vinyl alcohol)/poly (ethylene glycol) polymer blends. Journal of Applied Polymer Science, 94(1), 167–176.
-
Abdel Tawab, K., Magida, M. M., & Ibrahim, S. M. (2011). Effect of ionizing radiation on the morphological, thermal and mechanical properties of polyvinyl alcohol/polyethylene glycol blends. Journal of Polymers and the Environment, 19, 440–446.
-
Abu Ghalia, M., & Dahman, Y. (2015). Radiation crosslinking polymerization of poly (vinyl alcohol) and poly (ethylene glycol) with controlled drug release. Journal of Polymer Research, 22, 1–9.
-
Ali, Z. I., & Eisa, W. H. (2014). Characterization of electron beam irradiated poly vinyl alcohol/poly ethylene glycol blends. Journal of Scientific Research, 6(1), 29–42.
-
Appu, S. P., Kumar De, S., Khan, M. J., & Al-Harthi, M. A. (2013). Natural weather ageing of starch/polyvinyl alcohol blend: effect of glycerol content. Journal of Polymer Engineering, 33(3), 257–263.
-
Arun, R., Shruthy, R., Preetha, R., & Sreejit, V. (2022). Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere, 291, 132786.
-
Ballistreri, A., Foti, S., Montaudo, G., & Scamporrino, E. (1980). Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. Journal of Polymer Science: Polymer Chemistry Edition, 18(4), 1147–1153.
-
Bátori, V. (2018). Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system. Högskolan i Borås.
-
Bin‐Dahman, O. A., Jose, J., & Al‐Harthi, M. A. (2015). Compatibility of poly (acrylic acid)/starch blends. Starch‐Stärke, 67(11–12), 1061–1069.
-
Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., & Hoque, M. E. (2022). Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment, 1–24.
-
Debiagi, F., Kobayashi, R. K. T., Nakazato, G., Panagio, L. A., & Mali, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Industrial Crops and Products, 52, 664–670.
-
Devangamath, S. S., & Lobo, B. (2019). Structural, optical and electrical studies on hybrid material of in situ formed silver sulfide in polymer blend matrix. Journal of Inorganic and Organometallic Polymers and Materials, 29, 1466–1475.
-
Devangamath, S. S., Lobo, B., Masti, S. P., & Narasagoudr, S. (2020). Thermal, mechanical, and AC electrical studies of PVA–PEG–Ag2S polymer hybrid material. Journal of Materials Science: Materials in Electronics, 31(4), 2904–2917.
-
Dong, C., Zheng, W., Wang, L., Zhen, W., & Zhao, L. (2021). Insight into glass transition temperature and mechanical properties of PVA/TRIS functionalized graphene oxide composites by molecular dynamics simulation. Materials & Design, 206, 109770.
-
Durkin, A., Taptygin, I., Kong, Q., Gunam Resul, M. F. M., Rehman, A., Fernández, A. M. L., Harvey, A. P., Shah, N., & Guo, M. (2019). Scale‐up and sustainability evaluation of biopolymer production from citrus waste offering carbon capture and utilisation pathway. ChemistryOpen, 8(6), 668–688.
-
Falqi, F. H., Bin-Dahman, O. A., Hussain, M., & Al-Harthi, M. A. (2018). Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal, crystallization, morphological, and mechanical properties of PVA/PEG (10 wt%) blend. International Journal of Polymer Science, 2018(1), 8527693.
-
Feng, Y., Shamsaei, E., Davies, C. H. J., & Wang, H. (2015). Inorganic particle enhanced polymer hollow fiber membranes with high mechanical properties. Materials Chemistry and Physics, 167, 209–218.
-
Fragassa, C., Vannucchi de Camargo, F., & Santulli, C. (2024). Sustainable biocomposites: Harnessing the potential of waste seed-based fillers in eco-friendly materials. Sustainability, 16(4), 1526.
-
Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98(1), 139–145.
-
Jose, J., Al‐Harthi, M. A., AlMa’adeed, M. A., Bhadra Dakua, J., & De, S. K. (2015). Effect of graphene loading on thermomechanical properties of poly (vinyl alcohol)/starch blend. Journal of Applied Polymer Science, 132(16).
-
Jose, J., Shehzad, F., & Al-Harthi, M. A. (2014). Preparation method and physical, mechanical, thermal characterization of poly (vinyl alcohol)/poly (acrylic acid) blends. Polymer Bulletin, 71, 2787–2802.
-
Kaczmar, J. W., Pach, J., & Kozlowski, R. (2007). Use of natural fibres as fillers for polymer composites. International Polymer Science and Technology, 34(6), 45–50.
-
Lett, J. A., Sagadevan, S., Fatimah, I., Hoque, M. E., Lokanathan, Y., Léonard, E., Alshahateet, S. F., Schirhagl, R., & Oh, W. C. (2021). Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 148, 110360.
-
Li, Y., Wu, W., Lin, F., & Xiang, A. (2012). The interaction between poly (vinyl alcohol) and low‐molar‐mass poly (ethylene oxide). Journal of Applied Polymer Science, 126(1), 162–168.
-
Lim, H., & Hoag, S. W. (2013). Plasticizer effects on physical–mechanical properties of solvent cast Soluplus® films. Aaps Pharmscitech, 14, 903–910.
-
Liu, S., Ge, H., Zou, Y., & Chen, J. (2019). Glutaraldehyde/Polyvinyl Alcohol Crosslinked Nanosphere Modified Corn Stalk Reinforced Polypropylene Composite. IOP Conference Series: Materials Science and Engineering, 472(1), 12064.
-
Mansur, H. S., Oréfice, R. L., & Mansur, A. A. P. (2004). Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193–7202.
-
Mondal, A., & Mandal, B. (2014). CO2 separation using thermally stable crosslinked poly (vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 460, 126–138.
-
Monopoli, V. D., Pizzio, L. R., & Blanco, M. N. (2008). Polyvinyl alcohol–polyethylenglycol blends with tungstophosphoric acid addition: Synthesis and characterization. Materials Chemistry and Physics, 108(2–3), 331–336.
-
Nielsen, L. E. (1967). Mechanical properties of particulate-filled systems. Journal of Composite Materials, 1(1), 100–119.
-
Pavalaydon, K., Ramasawmy, H., & Surroop, D. (2022). Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites. Environment, Development and Sustainability, 1–22.
-
Rajan, S., Marimuthu, K., Ayyanar, C. B., & Hoque, M. E. (2022). Development and in-vitro characterization of HAP blended PVA/PEG bio-membrane. Journal of Materials Research and Technology, 18, 4956–4964.
-
Ramaraj, B., & Poomalai, P. (2006). Ecofriendly poly (vinyl alcohol) and coconut shell powder composite films: Physico‐mechanical, thermal properties, and swelling studies. Journal of Applied Polymer Science, 102(4), 3862–3867.
-
Rao, T. R., Omkaram, I., Sumalatha, B., Brahmam, K. V., & Raju, C. L. (2012). Electron paramagnetic resonance and optical absorption studies of manganese ions doped in polyvinyl (alcohol) complexed with polyethylene glycol polymer films. Ionics, 7(18), 695–701.
-
Sapuan, S. M., Jawaid, M., & Hoque, M. E. (2018). Biopolymers and Biocomposites: Chemistry and Technology. Current Analytical Chemistry, 14(3), 184.
-
Saravanakumaar, A., Senthilkumar, A., & Muthu Chozha Rajan, B. (2021). Effect of fillers on natural fiber–Polymer composite: An overview of physical and mechanical properties. Mechanical and Dynamic Properties of Biocomposites, 207–233.
-
Sengwa, R. J., & Choudhary, S. (2014). Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. Journal of Applied Polymer Science, 131(16).
-
Sreekumar, P. A., Al‐Harthi, M. A., & De, S. K. (2012). Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polymer Engineering & Science, 52(10), 2167–2172.
-
Swift, G. (1994). Water-soluble polymers. Polymer Degradation and Stability, 45(2), 215–231.
-
Tsuchiya, Y., & Sumi, K. (1969). Thermal decomposition products of poly (vinyl alcohol). Journal of Polymer Science Part A‐1: Polymer Chemistry, 7(11), 3151–3158.
-
Wang, Y., Wang, W., Zhang, Z., Xu, L., & Li, P. (2016). Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. European Polymer Journal, 75, 36–45.
-
Yi, X., Zhang, Z., Niu, J., Wang, H., Li, T., Gong, J., & Zheng, R. (2024). Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation. Polymers, 16(9), 1260.
-
Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly (ethylene glycol) s with different molecular weights in poly (lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16).
POLİETİLEN GLİKOL VE KİRAZ SAPI ATIK ORANLARININ POLİVİNİL ALKOL BAZLI KOMPOZİT FİLMLERİN NİHAİ TERMAL VE MEKANİK ÖZELLİKLERİ ÜZERİNE ETKİLERİNİN ARAŞTIRILMASI
Yıl 2025,
Cilt: 28 Sayı: 3, 1198 - 1209, 03.09.2025
Sibel Tuna
Öz
Son yıllarda çevre kirliliği ve sürdürülebilirlik çalışmalarında önemli bir alternatif olarak görülen “Yeşil Kompozitler” temelde matris olarak biyopolimer ve takviye fazı olarak doğal bazlı dolgu malzemelerinden oluşan kompozit yapılardır. Bu çalışma, ikincil polimer olarak polietilen glikol (PEG) ve takviye fazı olarak kiraz sapı (CS) tozunun Polivinil alkol (PVA) bazlı kompozit filmlerin termal ve mekanik özellikleri üzerindeki etkilerini araştırmak amacıyla tasarlanmıştır. Kompozit filmler çözücü döküm yöntemiyle üretilmiş ve PEG ve CS oranlarının etkilerini gözlemlemek için Taguchi optimizasyonu gerçekleştirilmiştir. Kompozit filmlerin özelliklerini değerlendirmek için Fourier transform infrared spektroskopisi, termogravimetrik ve mekanik analizler yapılmıştır. PEG kullanımının yüksek termal kararlılığı nedeniyle termal özellikleri iyileştirdiği ve plastikleştirici etkisi nedeniyle gerilme mukavemetini azaltırken kopma uzaması değerlerini iyileştirdiği belirlenmiştir. CS kullanımı genel olarak %5 oranına kadar kadar termal özellikleri ve çekme dayanımı değerlerini iyileştirirken, %10 oranında aglomerasyondan kaynaklanabilecek bir düşüş meydana gelmekte ve CS miktarı arttıkça kopma uzaması değerleri düşmektedir.
Kaynakça
-
Abd Alla, S. G., Said, H. M., & El‐Naggar, A. W. M. (2004). Structural properties of γ‐irradiated poly (vinyl alcohol)/poly (ethylene glycol) polymer blends. Journal of Applied Polymer Science, 94(1), 167–176.
-
Abdel Tawab, K., Magida, M. M., & Ibrahim, S. M. (2011). Effect of ionizing radiation on the morphological, thermal and mechanical properties of polyvinyl alcohol/polyethylene glycol blends. Journal of Polymers and the Environment, 19, 440–446.
-
Abu Ghalia, M., & Dahman, Y. (2015). Radiation crosslinking polymerization of poly (vinyl alcohol) and poly (ethylene glycol) with controlled drug release. Journal of Polymer Research, 22, 1–9.
-
Ali, Z. I., & Eisa, W. H. (2014). Characterization of electron beam irradiated poly vinyl alcohol/poly ethylene glycol blends. Journal of Scientific Research, 6(1), 29–42.
-
Appu, S. P., Kumar De, S., Khan, M. J., & Al-Harthi, M. A. (2013). Natural weather ageing of starch/polyvinyl alcohol blend: effect of glycerol content. Journal of Polymer Engineering, 33(3), 257–263.
-
Arun, R., Shruthy, R., Preetha, R., & Sreejit, V. (2022). Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere, 291, 132786.
-
Ballistreri, A., Foti, S., Montaudo, G., & Scamporrino, E. (1980). Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. Journal of Polymer Science: Polymer Chemistry Edition, 18(4), 1147–1153.
-
Bátori, V. (2018). Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system. Högskolan i Borås.
-
Bin‐Dahman, O. A., Jose, J., & Al‐Harthi, M. A. (2015). Compatibility of poly (acrylic acid)/starch blends. Starch‐Stärke, 67(11–12), 1061–1069.
-
Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., & Hoque, M. E. (2022). Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment, 1–24.
-
Debiagi, F., Kobayashi, R. K. T., Nakazato, G., Panagio, L. A., & Mali, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Industrial Crops and Products, 52, 664–670.
-
Devangamath, S. S., & Lobo, B. (2019). Structural, optical and electrical studies on hybrid material of in situ formed silver sulfide in polymer blend matrix. Journal of Inorganic and Organometallic Polymers and Materials, 29, 1466–1475.
-
Devangamath, S. S., Lobo, B., Masti, S. P., & Narasagoudr, S. (2020). Thermal, mechanical, and AC electrical studies of PVA–PEG–Ag2S polymer hybrid material. Journal of Materials Science: Materials in Electronics, 31(4), 2904–2917.
-
Dong, C., Zheng, W., Wang, L., Zhen, W., & Zhao, L. (2021). Insight into glass transition temperature and mechanical properties of PVA/TRIS functionalized graphene oxide composites by molecular dynamics simulation. Materials & Design, 206, 109770.
-
Durkin, A., Taptygin, I., Kong, Q., Gunam Resul, M. F. M., Rehman, A., Fernández, A. M. L., Harvey, A. P., Shah, N., & Guo, M. (2019). Scale‐up and sustainability evaluation of biopolymer production from citrus waste offering carbon capture and utilisation pathway. ChemistryOpen, 8(6), 668–688.
-
Falqi, F. H., Bin-Dahman, O. A., Hussain, M., & Al-Harthi, M. A. (2018). Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal, crystallization, morphological, and mechanical properties of PVA/PEG (10 wt%) blend. International Journal of Polymer Science, 2018(1), 8527693.
-
Feng, Y., Shamsaei, E., Davies, C. H. J., & Wang, H. (2015). Inorganic particle enhanced polymer hollow fiber membranes with high mechanical properties. Materials Chemistry and Physics, 167, 209–218.
-
Fragassa, C., Vannucchi de Camargo, F., & Santulli, C. (2024). Sustainable biocomposites: Harnessing the potential of waste seed-based fillers in eco-friendly materials. Sustainability, 16(4), 1526.
-
Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98(1), 139–145.
-
Jose, J., Al‐Harthi, M. A., AlMa’adeed, M. A., Bhadra Dakua, J., & De, S. K. (2015). Effect of graphene loading on thermomechanical properties of poly (vinyl alcohol)/starch blend. Journal of Applied Polymer Science, 132(16).
-
Jose, J., Shehzad, F., & Al-Harthi, M. A. (2014). Preparation method and physical, mechanical, thermal characterization of poly (vinyl alcohol)/poly (acrylic acid) blends. Polymer Bulletin, 71, 2787–2802.
-
Kaczmar, J. W., Pach, J., & Kozlowski, R. (2007). Use of natural fibres as fillers for polymer composites. International Polymer Science and Technology, 34(6), 45–50.
-
Lett, J. A., Sagadevan, S., Fatimah, I., Hoque, M. E., Lokanathan, Y., Léonard, E., Alshahateet, S. F., Schirhagl, R., & Oh, W. C. (2021). Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 148, 110360.
-
Li, Y., Wu, W., Lin, F., & Xiang, A. (2012). The interaction between poly (vinyl alcohol) and low‐molar‐mass poly (ethylene oxide). Journal of Applied Polymer Science, 126(1), 162–168.
-
Lim, H., & Hoag, S. W. (2013). Plasticizer effects on physical–mechanical properties of solvent cast Soluplus® films. Aaps Pharmscitech, 14, 903–910.
-
Liu, S., Ge, H., Zou, Y., & Chen, J. (2019). Glutaraldehyde/Polyvinyl Alcohol Crosslinked Nanosphere Modified Corn Stalk Reinforced Polypropylene Composite. IOP Conference Series: Materials Science and Engineering, 472(1), 12064.
-
Mansur, H. S., Oréfice, R. L., & Mansur, A. A. P. (2004). Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193–7202.
-
Mondal, A., & Mandal, B. (2014). CO2 separation using thermally stable crosslinked poly (vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 460, 126–138.
-
Monopoli, V. D., Pizzio, L. R., & Blanco, M. N. (2008). Polyvinyl alcohol–polyethylenglycol blends with tungstophosphoric acid addition: Synthesis and characterization. Materials Chemistry and Physics, 108(2–3), 331–336.
-
Nielsen, L. E. (1967). Mechanical properties of particulate-filled systems. Journal of Composite Materials, 1(1), 100–119.
-
Pavalaydon, K., Ramasawmy, H., & Surroop, D. (2022). Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites. Environment, Development and Sustainability, 1–22.
-
Rajan, S., Marimuthu, K., Ayyanar, C. B., & Hoque, M. E. (2022). Development and in-vitro characterization of HAP blended PVA/PEG bio-membrane. Journal of Materials Research and Technology, 18, 4956–4964.
-
Ramaraj, B., & Poomalai, P. (2006). Ecofriendly poly (vinyl alcohol) and coconut shell powder composite films: Physico‐mechanical, thermal properties, and swelling studies. Journal of Applied Polymer Science, 102(4), 3862–3867.
-
Rao, T. R., Omkaram, I., Sumalatha, B., Brahmam, K. V., & Raju, C. L. (2012). Electron paramagnetic resonance and optical absorption studies of manganese ions doped in polyvinyl (alcohol) complexed with polyethylene glycol polymer films. Ionics, 7(18), 695–701.
-
Sapuan, S. M., Jawaid, M., & Hoque, M. E. (2018). Biopolymers and Biocomposites: Chemistry and Technology. Current Analytical Chemistry, 14(3), 184.
-
Saravanakumaar, A., Senthilkumar, A., & Muthu Chozha Rajan, B. (2021). Effect of fillers on natural fiber–Polymer composite: An overview of physical and mechanical properties. Mechanical and Dynamic Properties of Biocomposites, 207–233.
-
Sengwa, R. J., & Choudhary, S. (2014). Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. Journal of Applied Polymer Science, 131(16).
-
Sreekumar, P. A., Al‐Harthi, M. A., & De, S. K. (2012). Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polymer Engineering & Science, 52(10), 2167–2172.
-
Swift, G. (1994). Water-soluble polymers. Polymer Degradation and Stability, 45(2), 215–231.
-
Tsuchiya, Y., & Sumi, K. (1969). Thermal decomposition products of poly (vinyl alcohol). Journal of Polymer Science Part A‐1: Polymer Chemistry, 7(11), 3151–3158.
-
Wang, Y., Wang, W., Zhang, Z., Xu, L., & Li, P. (2016). Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. European Polymer Journal, 75, 36–45.
-
Yi, X., Zhang, Z., Niu, J., Wang, H., Li, T., Gong, J., & Zheng, R. (2024). Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation. Polymers, 16(9), 1260.
-
Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly (ethylene glycol) s with different molecular weights in poly (lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16).