ZnO STRUCTURES: THE ROLE OF MORPHOLOGY IN PHOTOCATALYTIC DEGRADATION OF REACTIVE RED-194 DYE
Yıl 2025,
Cilt: 28 Sayı: 3, 1234 - 1245, 03.09.2025
Nazlı Türkten
,
Yunus Karataş
Öz
ZnO structures are accessible photocatalysts that can be synthesized using significantly cheaper resources than other catalyst alternatives, addressing current environmental concerns. The present research proposed a design and synthesis of ZnO structures with two different morphologies, namely flower-like ZnO (ZnO-F) and rod-like ZnO (ZnO-R) using a simple hydrothermal method. These efficient catalysts were characterized using FTIR, Raman spectroscopy, XRD, SEM, BET, and XPS analyses. Both synthesis routes resulted in the formation of wurtzite crystalline ZnO. The variation in the synthesis route affected the morphology, crystallite size, and surface area of the ZnO structures. The crystallite sizes of ZnO-F and ZnO-R specimens were 24.46 nm and 31.10 nm, respectively. SEM indicated remarkable alterations in the morphology of ZnO structures. The surface area of ZnO-F (20 m2/g) was almost doubled compared to ZnO-R specimen (9.5 m2/g). XPS analysis confirmed the chemical states of ZnO structures. The impact of morphology and reaction conditions on the photoactivity of ZnO structures was tested on the degradation of Reactive Red 194 (RR-194) dye and ZnO-F specimen exhibited an improved photocatalytic performance than ZnO-R.
Proje Numarası
This work was supported by Research Fund of Kirsehir Ahi Evran University through Project FEF.A4.22.008.
Kaynakça
-
Ahmed, F., Arshi, N., Anwar, M. S., Danish, R., & Koo, B. H. (2014). Morphological evolution of ZnO nanostructures and their aspect ratio-induced enhancement in photocatalytic properties. RSC Advances, 4(55), 29249-29263. doi:10.1039/C4RA02470B
-
Aksoy, Y. (2024). Direct Hf Etching-Derived Ti3c2tx: A Potent Adsorbent for Basic Red 46 Dye. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1571-1581. https://doi.org/10.17780/ksujes.1500888
-
Ali, J., Bibi, S., Jatoi, W. B., Tuzen, M., Jakhrani, M. A., Feng, X., & Saleh, T. A. (2023). Green synthesized zinc oxide nanostructures and their applications in dye-sensitized solar cells and photocatalysis: A review. Materials Today Communications, 36, 106840. doi:https://doi.org/10.1016/j.mtcomm.2023.106840
-
Basnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures & Nano-Objects, 22, 100426. doi:https://doi.org/10.1016/j.nanoso.2020.100426
-
Batista-Grau, P., Fernández-Domene, R. M., Sánchez-Tovar, R., Blasco-Tamarit, E., Solsona, B., & García-Antón, J. (2022). Indirect charge transfer of holes via surface states in ZnO nanowires for photoelectrocatalytic applications. Ceramics International, 48(15), 21856-21867. doi:https://doi.org/10.1016/j.ceramint.2022.04.170
-
Bhapkar, A. R., & Bhame, S. (2024). A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. Journal of Environmental Chemical Engineering, 12(3), 112553. doi:https://doi.org/10.1016/j.jece.2024.112553
-
Bhatti, M. A., Shah, A. A., Almani, K. F., Tahira, A., Chalangar, S. E., Chandio, A. d., . . . Ibupoto, Z. H. (2019). Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceramics International, 45(17), 23289-23297. doi:10.1016/j.ceramint.2019.08.027
-
Cai, Y., Fan, H., Xu, M., & Li, Q. (2013). Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 787-795. doi:https://doi.org/10.1016/j.colsurfa.2013.08.008
-
Das, A., S.K, N., & Nair, R. G. (2019). Influence of surface morphology on photocatalytic performance of zinc oxide: A review. Nano-Structures & Nano-Objects, 19, 100353. doi:https://doi.org/10.1016/j.nanoso.2019.100353
-
Das, J., Pradhan, S. K., Sahu, D. R., Mishra, D. K., Sarangi, S. N., Nayak, B. B.,Verma, S., & Roul, B. K. (2010). Micro-Raman and XPS studies of pure ZnO ceramics. Physica B: Condensed Matter, 405(10), 2492-2497. doi:https://doi.org/10.1016/j.physb.2010.03.020
-
Duo, S., Li, Y., Liu, Z., Zhong, R., & Liu, T. (2016). Novel hybrid self-assembly of an ultralarge ZnO macroflower and defect intensity-induced photocurrent and photocatalytic properties by facile hydrothermal synthesis using CO(NH2)2–N2H4 as alkali sources. Materials Science in Semiconductor Processing, 56, 196-212. doi:https://doi.org/10.1016/j.mssp.2016.08.018
-
Hafez, H. S. (2012). Highly active ZnO rod-like nanomaterials: Synthesis, characterization and photocatalytic activity for dye removal. Physica E: Low-dimensional Systems and Nanostructures, 44(7), 1522-1527. doi:https://doi.org/10.1016/j.physe.2012.03.020
-
Hahn, Y.-B. (2011). Zinc oxide nanostructures and their applications. Korean Journal of Chemical Engineering, 28(9), 1797-1813. doi:10.1007/s11814-011-0213-3
-
Han, Z., Liao, L., Wu, Y., Pan, H., Shen, S., & Chen, J. (2012). Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. Journal of Hazardous materials, 217-218, 100-106. doi:https://doi.org/10.1016/j.jhazmat.2012.02.074
-
Hussain, R. T., Hossain, M. S., & Shariffuddin, J. H. (2024). Green synthesis and photocatalytic insights: A review of zinc oxide nanoparticles in wastewater treatment. Materials Today Sustainability, 26, 100764. doi:https://doi.org/10.1016/j.mtsust.2024.100764
-
Islam, M., Kumar, S., Saxena, N., & Nafees, A. (2023). Photocatalytic Degradation of Dyes Present in Industrial Effluents: A Review. ChemistrySelect, 8(26), e202301048. doi:https://doi.org/10.1002/slct.202301048
-
Janaki, A. C., Sailatha, E., & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17-22. doi:https://doi.org/10.1016/j.saa.2015.02.041
-
Jung, H. J., Lee, S., Yu, Y., Hong, S. M., Choi, H. C., & Choi, M. Y. (2012). Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions. Thin Solid Films, 524, 144-150. doi:https://doi.org/10.1016/j.tsf.2012.10.007
-
Kim, D. S., Han, S. J., & Kwak, S.-Y. (2007). Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science, 316(1), 85-91. doi:https://doi.org/10.1016/j.jcis.2007.07.037
-
Krishna, M. S., Singh, S., Batool, M., Fahmy, H. M., Seku, K., Shalan, A. E., . . . Zafar, M. N. (2023). A review on 2D-ZnO nanostructure based biosensors: from materials to devices. Materials Advances, 4(2), 320-354. doi:10.1039/D2MA00878E
-
Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K., & Moorthy Babu, S. (2017). Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Applied Surface Science, 418, 138-146. doi:https://doi.org/10.1016/j.apsusc.2016.12.231
-
Kumari, H., Sonia, Suman, Ranga, R., Chahal, S., Devi, S., . . . Parmar, R. (2023). A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollution, 234(6), 349. doi:10.1007/s11270-023-06359-9
-
Lai, Y., Meng, M., & Yu, Y. (2010). One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation. Applied Catalysis B: Environmental, 100(3), 491-501. doi:https://doi.org/10.1016/j.apcatb.2010.08.027
-
Lin, Y., Hu, H., & Hu, Y. H. (2020). Role of ZnO morphology in its reduction and photocatalysis. Applied Surface Science, 502, 144202. doi:https://doi.org/10.1016/j.apsusc.2019.144202
-
Miao, Y., Zhang, H., Yuan, S., Jiao, Z., & Zhu, X. (2016). Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 462, 9-18. doi:https://doi.org/10.1016/j.jcis.2015.09.064
-
Moulder, J. F., & Chastain, J. (1992). Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data: Physical Electronics Division, Perkin-Elmer Corporation.
-
Mukhopadhyay, S., Das, P. P., Maity, S., Ghosh, P., & Devi, P. S. (2015). Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Applied Catalysis B: Environmental, 165, 128-138. doi:https://doi.org/10.1016/j.apcatb.2014.09.045
-
Rahimi, K., & Yazdani, A. (2018). Improving photocatalytic activity of ZnO nanorods: A comparison between thermal decomposition of zinc acetate under vacuum and in ambient air. Materials Science in Semiconductor Processing, 80, 38-43. doi:https://doi.org/10.1016/j.mssp.2018.02.018
-
Raub, A. A. M., Bahru, R., Nashruddin, S. N. A. M., & Yunas, J. (2024). A review on vertical aligned zinc oxide nanorods: Synthesis methods, properties, and applications. Journal of Nanoparticle Research, 26(8), 186. doi:10.1007/s11051-024-06098-w
-
Saeed, M., Muneer, M., Haq, A. u., & Akram, N. (2022). Photocatalysis: an effective tool for photodegradation of dyes—a review. Environmental Science and Pollution Research, 29(1), 293-311. doi:10.1007/s11356-021-16389-7
-
Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D. K., & Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General, 490, 42-49. doi:https://doi.org/10.1016/j.apcata.2014.10.053
-
Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
-
Sharma, A., Singh, B. P., Dhar, S., Gondorf, A., & Spasova, M. (2012). Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol–gel route. Surface Science, 606(3), L13-L17. doi:https://doi.org/10.1016/j.susc.2011.09.006
-
Shi, L.-E., Li, Z.-H., Zheng, W., Zhao, Y.-F., Jin, Y.-F., & Tang, Z.-X. (2014). Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additives & Contaminants: Part A, 31(2), 173-186. doi:10.1080/19440049.2013.865147
-
Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:doi:10.1351/pac198557040603
-
Song, Z., Chen, W., Zhang, H., Li, Y., Zeng, W., Tang, S., & Zhu, C. (2019). Highly sensitive and selective acetylene sensors based on p-n heterojunction of NiO nanoparticles on flower-like ZnO structures. Ceramics International, 45(16), 19635-19643. doi:https://doi.org/10.1016/j.ceramint.2019.06.212
-
Sun, H., & Park, S.-J. (2022). Highly efficient reduction of aqueous Cr(VI) with novel ZnO/SnS nanocomposites through the piezoelectric effect. Journal of Environmental Sciences, 118, 57-66. doi:https://doi.org/10.1016/j.jes.2021.08.023
-
Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., Wu, J.,& Ye, D. (2016). The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 6(12), 188. Retrieved from https://www.mdpi.com/2073-4344/6/12/188
-
Şentürk, İ. (2024). Sentezlenen Metal Oksit Nanokompozit Yardımıyla Sucul Çözeltilerden Reaktif Azo Boya Giderimi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 523-538. https://doi.org/10.17780/ksujes.1403697
-
Türkten, N., & Karataş, Y. (2024). A Novel Study On The Synthesis, Characterization, and Photocatalytic Activity of CeO2 Nanoparticles. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 190-198. doi:10.17780/ksujes.1369994
-
Wang, H., Xie, J., Yan, K., & Duan, M. (2011). Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method. Journal of Materials Science & Technology, 27(2), 153-158. doi:https://doi.org/10.1016/S1005-0302(11)60041-8
-
Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., & Dai, Y. (2012). Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Applied Materials & Interfaces, 4(8), 4024-4030. doi:10.1021/am300835p
-
Xie, J., Li, Y., Zhao, W., Bian, L., & Wei, Y. (2011). Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder Technology, 207(1), 140-144. doi:https://doi.org/10.1016/j.powtec.2010.10.019
-
Yıldız, H. (2024). Atıksudan Boya Giderimindeki Gelişmeler: Adsorpsiyon Teknolojisi ve Geleceğe Yönelik Beklentiler. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1544-1556. https://doi.org/10.17780/ksujes.1470859
-
Zhang, R., Yin, P.-G., Wang, N., & Guo, L. (2009). Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sciences, 11(4), 865-869. doi:https://doi.org/10.1016/j.solidstatesciences.2008.10.016
-
Zhu, L., Li, Y., & Zeng, W. (2018). Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Applied Surface Science, 427, 281-287. doi:https://doi.org/10.1016/j.apsusc.2017.08.229
-
Zou, X., Ke, J., Hao, J., Yan, X., & Tian, Y. (2022). A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance. Physica B: Condensed Matter, 624, 413395. doi:https://doi.org/10.1016/j.physb.2021.413395
ZnO YAPILARI: REAKTİF KIRMIZI 194 BOYASININ FOTOKATALİTİK DEGRADASYONUNDA MORFOLOJİNİN ETKİSİ
Yıl 2025,
Cilt: 28 Sayı: 3, 1234 - 1245, 03.09.2025
Nazlı Türkten
,
Yunus Karataş
Öz
ZnO yapıları, çevre sorunlarında kullanılabilecek etkin ve ekonomik katalizörler olarak günümüzde dikkat çekmektedir. Bu çalışmada, basit bir hidrotermal yöntem kullanılarak çiçek benzeri ZnO (ZnO-F) ve çubuk benzeri ZnO (ZnO-R) olmak üzere iki farklı morfolojide ZnO yapılarının tasarımını ve sentezini önerilmiştir. Bu etkin katalizörlerin karakterizasyonu FTIR, Raman spektroskopisi, XRD, SEM, BET ve XPS analizleri ile yapılmıştır. Her iki yöntem ile wurtzit ZnO yapısı elde edilmiştir. Sentez koşullarındaki farklılık ise ZnO yapılarının morfolojisini, kristal boyutunu ve yüzey alanını etkilemiştir. ZnO-F ve ZnO-R örneklerinin kristal boyutları sırasıyla 24,46 nm ve 31,10 nm olarak bulunmuştur. SEM analizi ile ZnO yapılarının morfolojisinde dikkate değer değişiklikler saptanmıştır. ZnO-F örneğinin yüzey alanı (20 m2/g) ise ZnO-R örneğinin yüzey alanının (9,5 m2/g) yaklaşık iki katıdır. XPS analizi ile ZnO yapılarının kimyasal halleri belirlenmiştir. Morfoloji ve reaksiyon koşullarının ZnO yapılarının foto aktivitesi üzerindeki etkisinin belirlenmesi Reaktif Kırmızı 194 (RR-194) boyasının degradasyonu ile incelenmiştir. Fotokatalitik aktivite deneylerinde ise ZnO-F katalizörünün ZnO-R katalizöründen daha iyi bir fotokatalitik performans sergilediği bulunmuştur
Proje Numarası
This work was supported by Research Fund of Kirsehir Ahi Evran University through Project FEF.A4.22.008.
Kaynakça
-
Ahmed, F., Arshi, N., Anwar, M. S., Danish, R., & Koo, B. H. (2014). Morphological evolution of ZnO nanostructures and their aspect ratio-induced enhancement in photocatalytic properties. RSC Advances, 4(55), 29249-29263. doi:10.1039/C4RA02470B
-
Aksoy, Y. (2024). Direct Hf Etching-Derived Ti3c2tx: A Potent Adsorbent for Basic Red 46 Dye. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1571-1581. https://doi.org/10.17780/ksujes.1500888
-
Ali, J., Bibi, S., Jatoi, W. B., Tuzen, M., Jakhrani, M. A., Feng, X., & Saleh, T. A. (2023). Green synthesized zinc oxide nanostructures and their applications in dye-sensitized solar cells and photocatalysis: A review. Materials Today Communications, 36, 106840. doi:https://doi.org/10.1016/j.mtcomm.2023.106840
-
Basnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures & Nano-Objects, 22, 100426. doi:https://doi.org/10.1016/j.nanoso.2020.100426
-
Batista-Grau, P., Fernández-Domene, R. M., Sánchez-Tovar, R., Blasco-Tamarit, E., Solsona, B., & García-Antón, J. (2022). Indirect charge transfer of holes via surface states in ZnO nanowires for photoelectrocatalytic applications. Ceramics International, 48(15), 21856-21867. doi:https://doi.org/10.1016/j.ceramint.2022.04.170
-
Bhapkar, A. R., & Bhame, S. (2024). A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. Journal of Environmental Chemical Engineering, 12(3), 112553. doi:https://doi.org/10.1016/j.jece.2024.112553
-
Bhatti, M. A., Shah, A. A., Almani, K. F., Tahira, A., Chalangar, S. E., Chandio, A. d., . . . Ibupoto, Z. H. (2019). Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceramics International, 45(17), 23289-23297. doi:10.1016/j.ceramint.2019.08.027
-
Cai, Y., Fan, H., Xu, M., & Li, Q. (2013). Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 787-795. doi:https://doi.org/10.1016/j.colsurfa.2013.08.008
-
Das, A., S.K, N., & Nair, R. G. (2019). Influence of surface morphology on photocatalytic performance of zinc oxide: A review. Nano-Structures & Nano-Objects, 19, 100353. doi:https://doi.org/10.1016/j.nanoso.2019.100353
-
Das, J., Pradhan, S. K., Sahu, D. R., Mishra, D. K., Sarangi, S. N., Nayak, B. B.,Verma, S., & Roul, B. K. (2010). Micro-Raman and XPS studies of pure ZnO ceramics. Physica B: Condensed Matter, 405(10), 2492-2497. doi:https://doi.org/10.1016/j.physb.2010.03.020
-
Duo, S., Li, Y., Liu, Z., Zhong, R., & Liu, T. (2016). Novel hybrid self-assembly of an ultralarge ZnO macroflower and defect intensity-induced photocurrent and photocatalytic properties by facile hydrothermal synthesis using CO(NH2)2–N2H4 as alkali sources. Materials Science in Semiconductor Processing, 56, 196-212. doi:https://doi.org/10.1016/j.mssp.2016.08.018
-
Hafez, H. S. (2012). Highly active ZnO rod-like nanomaterials: Synthesis, characterization and photocatalytic activity for dye removal. Physica E: Low-dimensional Systems and Nanostructures, 44(7), 1522-1527. doi:https://doi.org/10.1016/j.physe.2012.03.020
-
Hahn, Y.-B. (2011). Zinc oxide nanostructures and their applications. Korean Journal of Chemical Engineering, 28(9), 1797-1813. doi:10.1007/s11814-011-0213-3
-
Han, Z., Liao, L., Wu, Y., Pan, H., Shen, S., & Chen, J. (2012). Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. Journal of Hazardous materials, 217-218, 100-106. doi:https://doi.org/10.1016/j.jhazmat.2012.02.074
-
Hussain, R. T., Hossain, M. S., & Shariffuddin, J. H. (2024). Green synthesis and photocatalytic insights: A review of zinc oxide nanoparticles in wastewater treatment. Materials Today Sustainability, 26, 100764. doi:https://doi.org/10.1016/j.mtsust.2024.100764
-
Islam, M., Kumar, S., Saxena, N., & Nafees, A. (2023). Photocatalytic Degradation of Dyes Present in Industrial Effluents: A Review. ChemistrySelect, 8(26), e202301048. doi:https://doi.org/10.1002/slct.202301048
-
Janaki, A. C., Sailatha, E., & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17-22. doi:https://doi.org/10.1016/j.saa.2015.02.041
-
Jung, H. J., Lee, S., Yu, Y., Hong, S. M., Choi, H. C., & Choi, M. Y. (2012). Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions. Thin Solid Films, 524, 144-150. doi:https://doi.org/10.1016/j.tsf.2012.10.007
-
Kim, D. S., Han, S. J., & Kwak, S.-Y. (2007). Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science, 316(1), 85-91. doi:https://doi.org/10.1016/j.jcis.2007.07.037
-
Krishna, M. S., Singh, S., Batool, M., Fahmy, H. M., Seku, K., Shalan, A. E., . . . Zafar, M. N. (2023). A review on 2D-ZnO nanostructure based biosensors: from materials to devices. Materials Advances, 4(2), 320-354. doi:10.1039/D2MA00878E
-
Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K., & Moorthy Babu, S. (2017). Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Applied Surface Science, 418, 138-146. doi:https://doi.org/10.1016/j.apsusc.2016.12.231
-
Kumari, H., Sonia, Suman, Ranga, R., Chahal, S., Devi, S., . . . Parmar, R. (2023). A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollution, 234(6), 349. doi:10.1007/s11270-023-06359-9
-
Lai, Y., Meng, M., & Yu, Y. (2010). One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation. Applied Catalysis B: Environmental, 100(3), 491-501. doi:https://doi.org/10.1016/j.apcatb.2010.08.027
-
Lin, Y., Hu, H., & Hu, Y. H. (2020). Role of ZnO morphology in its reduction and photocatalysis. Applied Surface Science, 502, 144202. doi:https://doi.org/10.1016/j.apsusc.2019.144202
-
Miao, Y., Zhang, H., Yuan, S., Jiao, Z., & Zhu, X. (2016). Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 462, 9-18. doi:https://doi.org/10.1016/j.jcis.2015.09.064
-
Moulder, J. F., & Chastain, J. (1992). Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data: Physical Electronics Division, Perkin-Elmer Corporation.
-
Mukhopadhyay, S., Das, P. P., Maity, S., Ghosh, P., & Devi, P. S. (2015). Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Applied Catalysis B: Environmental, 165, 128-138. doi:https://doi.org/10.1016/j.apcatb.2014.09.045
-
Rahimi, K., & Yazdani, A. (2018). Improving photocatalytic activity of ZnO nanorods: A comparison between thermal decomposition of zinc acetate under vacuum and in ambient air. Materials Science in Semiconductor Processing, 80, 38-43. doi:https://doi.org/10.1016/j.mssp.2018.02.018
-
Raub, A. A. M., Bahru, R., Nashruddin, S. N. A. M., & Yunas, J. (2024). A review on vertical aligned zinc oxide nanorods: Synthesis methods, properties, and applications. Journal of Nanoparticle Research, 26(8), 186. doi:10.1007/s11051-024-06098-w
-
Saeed, M., Muneer, M., Haq, A. u., & Akram, N. (2022). Photocatalysis: an effective tool for photodegradation of dyes—a review. Environmental Science and Pollution Research, 29(1), 293-311. doi:10.1007/s11356-021-16389-7
-
Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D. K., & Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General, 490, 42-49. doi:https://doi.org/10.1016/j.apcata.2014.10.053
-
Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
-
Sharma, A., Singh, B. P., Dhar, S., Gondorf, A., & Spasova, M. (2012). Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol–gel route. Surface Science, 606(3), L13-L17. doi:https://doi.org/10.1016/j.susc.2011.09.006
-
Shi, L.-E., Li, Z.-H., Zheng, W., Zhao, Y.-F., Jin, Y.-F., & Tang, Z.-X. (2014). Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additives & Contaminants: Part A, 31(2), 173-186. doi:10.1080/19440049.2013.865147
-
Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:doi:10.1351/pac198557040603
-
Song, Z., Chen, W., Zhang, H., Li, Y., Zeng, W., Tang, S., & Zhu, C. (2019). Highly sensitive and selective acetylene sensors based on p-n heterojunction of NiO nanoparticles on flower-like ZnO structures. Ceramics International, 45(16), 19635-19643. doi:https://doi.org/10.1016/j.ceramint.2019.06.212
-
Sun, H., & Park, S.-J. (2022). Highly efficient reduction of aqueous Cr(VI) with novel ZnO/SnS nanocomposites through the piezoelectric effect. Journal of Environmental Sciences, 118, 57-66. doi:https://doi.org/10.1016/j.jes.2021.08.023
-
Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., Wu, J.,& Ye, D. (2016). The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 6(12), 188. Retrieved from https://www.mdpi.com/2073-4344/6/12/188
-
Şentürk, İ. (2024). Sentezlenen Metal Oksit Nanokompozit Yardımıyla Sucul Çözeltilerden Reaktif Azo Boya Giderimi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 523-538. https://doi.org/10.17780/ksujes.1403697
-
Türkten, N., & Karataş, Y. (2024). A Novel Study On The Synthesis, Characterization, and Photocatalytic Activity of CeO2 Nanoparticles. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 190-198. doi:10.17780/ksujes.1369994
-
Wang, H., Xie, J., Yan, K., & Duan, M. (2011). Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method. Journal of Materials Science & Technology, 27(2), 153-158. doi:https://doi.org/10.1016/S1005-0302(11)60041-8
-
Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., & Dai, Y. (2012). Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Applied Materials & Interfaces, 4(8), 4024-4030. doi:10.1021/am300835p
-
Xie, J., Li, Y., Zhao, W., Bian, L., & Wei, Y. (2011). Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder Technology, 207(1), 140-144. doi:https://doi.org/10.1016/j.powtec.2010.10.019
-
Yıldız, H. (2024). Atıksudan Boya Giderimindeki Gelişmeler: Adsorpsiyon Teknolojisi ve Geleceğe Yönelik Beklentiler. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1544-1556. https://doi.org/10.17780/ksujes.1470859
-
Zhang, R., Yin, P.-G., Wang, N., & Guo, L. (2009). Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sciences, 11(4), 865-869. doi:https://doi.org/10.1016/j.solidstatesciences.2008.10.016
-
Zhu, L., Li, Y., & Zeng, W. (2018). Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Applied Surface Science, 427, 281-287. doi:https://doi.org/10.1016/j.apsusc.2017.08.229
-
Zou, X., Ke, J., Hao, J., Yan, X., & Tian, Y. (2022). A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance. Physica B: Condensed Matter, 624, 413395. doi:https://doi.org/10.1016/j.physb.2021.413395