Araştırma Makalesi
BibTex RIS Kaynak Göster

BİGA YARIMADASI'NDAKI METAMORFİK KAYAÇLARDA BULUNAN GRAFİTLERİN JEOLOJİK, MİNERALOJİK VE JEOKİMYASAL İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 3, 1255 - 1272, 03.09.2025
https://doi.org/10.17780/ksujes.1650058

Öz

Bu çalışma, Biga Yarımadası’nın güneydoğusunda, Yolindi Köyü civarında bulunan metamorfik kayaçlar içerisindeki grafit mineralizasyonunun jeolojik, mineralojik, petrografik ve jeokimyasal özelliklerini incelemektedir. Bölgedeki kayaçlar, geniş ölçüde Paleozoyik yaşlı metamorfik birimler ile metagranodiyorit bileşimli kayaçlardan oluşmaktadır. Çalışma alanındaki grafitler, Torasan Formasyonu’na ait kuvarsşistler ile ardalanmalı şekilde bulunmaktadır. Saha gözlemleri, petrografik analizler, jeokimya çalışmaları, X-Işını Kırınımı (XRD), Raman spektroskopisi, Elektron Prob Mikro Analiz (EPMA) ve duraylı izotop analizleri kullanılarak bölgedeki grafitin oluşum süreçleri detaylandırılmıştır. XRD ve Raman spektroskopisi sonuçları, grafitin yüksek derecede kristalize olduğunu ve bölgesel metamorfizmanın etkisi altında şekillendiğini göstermektedir. EPMA analizleri, grafitin saflık derecesini ve kimyasal bileşimini ortaya koyarken, pirit ile birlikteliği, hidrotermal akışkanlarla etkileşim olabileceğini düşündürmektedir. Karbon izotop analizleri (-9,56‰ ile -9,80‰ arasında) ve oksijen izotop analizleri (14,64‰ ile 14,90‰ arasında), grafitin metamorfik kökenli olduğunu göstermektedir. Sonuçlar, grafitin büyük ölçüde manto kökeni karbon kaynaklarının metamorfik süreçlerle yeniden kristalleşmesi sonucu oluştuğunu, ancak bazı örneklerde hidrotermal süreçlerden de etkilendiğini göstermektedir.

Kaynakça

  • Akıska, S. (2020). Crystallization conditions and compositional variations of silicate and sulfide minerals in the Pb-Zn skarn deposits, Biga Peninsula, NW Turkey. Ore Geology Reviews, 118, 103322. https://doi.org/10.1016/j.oregeorev.2020.103322
  • Akıska, S., & Demirela, G. (2014). Handeresi, Bağırkaçdere ve Fırıncıkdere (Kalkım, Yenice-Çanakkale) Pb-Zn±Cu distal skarn yataklarında akışkanların kökeni. Yerbilimleri, 35(3), 141–168.
  • Armstrong, J. T. (1995). Citzaf-a package of correction programs for the quantitative Electron Microbeam X-ray-Analysis of thick polished materials, thin-films, and particles. Microbeam Analysis, 4, 177–200.
  • Beccaletto, L. (2003). Geology, correlations, and geodynamic evolution of the Biga Peninsula (NW Turkey) (Doctoral dissertation, Université de Lausanne).
  • Birkle, P., Satir, M., Erler, A., Ercan, T., Bingöl, E., & Orcen, S. (1995). Dating, geochemistry and geodynamic significance of the Tertiary magmatism of the Biga Peninsula, NW Turkey. In A. Erler (Ed.), Geology of the Black Sea Region: Ankara, Turkey (pp. 171–180). Mineral Research and Exploration Institute of Turkey (MTA).
  • Bonev, N., Beccaletto, L., Robyr, M., & Monié, P. (2009). Metamorphic and age constraints on the Alakeçi shear zone: implications for the extensional exhumation history of the northern Kazdağ Massif, NW Turkey. Lithos, 113(1-2), 331-345.https://doi.org/10.1016/j.lithos.2009.02.010
  • Buzlu, H. B. (1992). Balıkesir-Gönen-Çığmış köyü çevresinin jeolojisi ve ekonomik potansiyeli (Yayınlanmamış yüksek lisans tezi). Akdeniz Üniversitesi, Antalya.
  • Croat, T. K., Bernatowicz, T., Amari, S., Messenger, S., & Stadermann, F. J. (2003). Structural, chemical, and isotopic microanalytical investigations of graphite from supernovae. Geochimica et Cosmochimica Acta, 67(24), 4705–4725. https://doi.org/10.1016/S0016-7037(03)00463-0
  • Çakın, E. G. (2016). Gökçeyayla ile Akhisar köyleri (Han-Eskişehir) arasında kalan grafit yataklarının jeolojisi, mineralojisi ve jeokimyasal özellikleri (Yüksek Lisans Tezi). Fen Bilimleri Enstitüsü.
  • Çuhadaroğlu, A. D., & Kara, E. (2018). Grafit: Bir genel değerlendirme. Teknik Bilimler Dergisi, 8(1), 14-33.
  • Demirela, G., Akiska, S., & Akiska, E. (2023). Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences, 32(6), 772–807. https://doi.org/10.55730/1300-0985.1874
  • Desouqi, D., Salleh, M. A. M., Roselee, M. H., Yahya, A. M., Alsalam, B. A., & Rashid, S. A. (2025). Mineralogical and petrographic characterisation of flake graphite in the graphite mica schist rocks from the Nubian Desert, Sudan. Scientific African, 27, e02602.https://doi.org/10.1016/j.sciaf.2025.e02602
  • Dilek, Y., & Altunkaynak, Ş. (2007). Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. International Geology Review, 49, 431–453. https://doi.org/10.2747/0020-6814.49.5.431
  • Fernandez, A., & Moro, M. C. (1998). Origin and depositional environment of Ordovician stratiform iron mineralization from Zamora (NW Iberian Peninsula). Mineralium Deposita, 33, 606–619. https://doi.org/10.1007/s001260050176
  • Gao, L., Li, R., Liang, Z., Wu, Q., Yang, Z., Li, M., ... & Hou, L. (2021). Mobilization mechanisms and toxicity risk of sediment trace metals (Cu, Zn, Ni, and Pb) based on diffusive gradients in thin films: A case study in the Xizhi River basin, South China. Journal of Hazardous Materials, 410, 124590. https://doi.org/10.1016/j.jhazmat.2020.124590
  • Huang, Y., Jiao, W., Liu, L., Chen, J., & Ma, Y. (2024). Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China. Minerals, 14(11), 1103. https://doi.org/10.3390/min14111103
  • İlhan, A., Sarı, R., & Yıldırım, Y. (2020). Hidden graphite resources in Turkey: a new supply candidate for Europe?. European Geologist, 32-37.
  • Jolivet, L., & Brun, J.-P. (2010). Cenozoic geodynamic evolution of the Aegean. International Journal of Earth Sciences, 99, 109–138. https://doi.org/10.1007/s00531-008-0366-4
  • Karaman, M. (2024). Capability assessment of Sentinel-2 imagery for graphite deposits exploration. Geochemistry, 84(4), 126117. https://doi.org/10.1016/j.chemer.2024.126117.
  • Karaman, M. (2021). Grafit Cevherleşmelerinin Sentinel-2 Uydu Görüntülerinden Belirlenmesinde En Uygun Bant Kombinasyonları. Avrupa Bilim Ve Teknoloji Dergisi(25), 749-757. https://doi.org/10.31590/ejosat.945779.
  • Kaya, M. (2023). Yolindi (Biga, Çanakkale) Fe-Cu skarn cevherleşmesinin evrimi: Mineralojik, jeokimyasal ve izotopik yaklaşımlar. Doktora Tezi, İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü. YÖK Tez No: 842154.
  • Kaya, M., Kumral, M., Yalçın, C., & Abdelnasser, A. (2023a). Genesis and Evolution of the Yolindi Cu-Fe Skarn Deposit in the Biga Peninsula (NW Turkey): Insights from Genetic Relationships with Calc-Alkaline Magmatic Activity. Minerals, 13(10), 1304. https://doi.org/10.3390/min13101304
  • Kaya, M., Kumral, M., Yalçın, C., & Abdelnasser, A. (2023b). Sulfur and Carbon–Oxygen Isotopic Geochemistry and Fluid Inclusion Characteristics of the Yolindi Cu-Fe Skarn Mineralization, Biga Peninsula, NW Turkey: Implications for the Source and Evolution of Hydrothermal Fluids. Minerals, 13(12), 1542. https://doi.org/10.3390/min13121542
  • Kaya, M., Kumral, M., Abdelnasser, A., Yalçın, C., Öztürk, S., Bayram, H. N., and Tanç-Kaya, B. (2023c). Evolution of the hydrothermal fluids of the Yolindi Fe-Cu skarn deposit, Biga peninsula, NW Turkiye: Evidence from carbon-oxygen isotopic variations of calcite minerals, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13798, https://doi.org/10.5194/egusphere-egu23-13798
  • Kuşcu, İ. (2019). Skarns and skarn deposits of Turkey. In F. Pirajno, T. Ünlü, C. Dönmez, & M. B. Şahin (Eds.), Mineral Resources of Turkey (Vol. 16, pp. 283- 336). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-02950-0_7.
  • Li, J., Wang, L., & Cao, D. (2024). Investigation on spectroscopy characteristics of different metamorphic degrees of coal-based graphite. Frontiers in Earth Science, 12, 1413019. https://doi.org/10.3389/feart.2024.1413019
  • Luque, F. J., Crespo-Feo, E., Barrenechea, J. F., & Ortega, L. (2012). Carbon isotopes of graphite: Implications on fluid history. Geoscience Frontiers, 3(2), 197–207. https://doi.org/10.1016/j.gsf.2011.11.006
  • Machel, H. G. (1989). Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits. Carbonates and Evaporites, 4(2), 137–151. https://doi.org/10.1007/BF03175104
  • Maral, D. (2006). Biga Yarımadası sülfür mineralizasyonlarına bağlı kıymetli iz metallerin incelenmesi (Yayınlanmamış doktora tezi). İstanbul Üniversitesi, İstanbul.
  • Meng, J. F., Katiyar, R. S., Zou, G. T., & Wang, X. H. (1997). Raman phonon modes and ferroelectric phase transitions in nanocrystalline lead zirconate titanate. Physica Status Solidi A, 164, 851. https://doi.org/10.1002/1521-396
  • Okay, A. I., & Satir, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495–516. https://doi:10.1017/S0016756800004532
  • Okay, A. I., Satir, M., & Siebel, W. (2006). Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. Geological Society, London, Memoirs, 32, 389–405. https://doi.org/10.1144/GSL.MEM.2006.032.01.23
  • Okay, A. I., Siyako, M., & Bürkan, K. A. (1991). Geology and tectonic evolution of the Biga Peninsula, northwest Turkey. Bulletin of the Technical University of Istanbul, 44(1-2), 191–256.
  • Özden, S., Över, S., Poyraz, S. A., Güneş, Y., & Pınar, A. (2018). Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey. Journal of Asian Earth Sciences, 154, 125–141.https://doi.org/10.1016/j.jseaes.2017.12.021
  • Pearson, D. G., Boyd, F. R., Haggerty, S. E., Pasteris, J. D., Field, S. W., Nixon, P. H., & Pokhilenko, N. P. (1994). The characterisation and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contributions to Mineralogy and Petrology, 115, 449–466. https://doi.org/10.1007/BF00320978
  • Pozzato, G., Li, X., Lee, D., Ko, J., & Onori, S. (2024). Accelerating the transition to cobalt-free batteries: a hybrid model for LiFePO4/graphite chemistry. npj Computational Materials, 10(1), 14. https://doi.org/10.1038/s41524-024-01197-7
  • Satish-Kumar, M. (2005). Graphite-bearing CO₂-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution. Geochimica et Cosmochimica Acta, 69(15), 3841–3856. https://doi.org/10.1016/j.gca.2005.02.007
  • Simandl, G. J., Paradis, S., & Akam, C. (2015). Graphite deposit types, their origin, and economic significance. British Columbia Ministry of Energy and Mines & British Columbia Geological Survey, 3, 163–171.
  • Sreehari, L., Kiran, S., Hokada, T., Satish‐Kumar, M., Toyoshima, T., Sajeev, K., & Antony, J. K. (2025). Assessing Thermal Gradients Across Archean Stratigraphy Using Raman Spectra of Carbonaceous Material Thermometry and Mineral Chemistry in the Western Dharwar Craton, India. Geological Journal, 60(2), 560-581. https://doi.org/10.1002/gj.5135
  • Şengün, F., Yiğitbaş, E., & Tunç, İ. O. (2011). Geology and tectonic emplacement of eclogite and blueschists, Biga Peninsula, northwest Turkey. Turkish Journal of Earth Sciences, 20(3), 273–285. https://doi.org/10.3906/yer-0912-75
  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of geophysics, 33(2), 241-265. https://doi.org/10.1029/95RG00262
  • Tufan, B., & Batar, T. (2015). Oysu Grafit Cevheri Flotasyon Parametrelerinin İyileştirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 17-25.
  • Uysal, S. (2012). Grafit. Türkiye ve Mena Endüstriyel Mineraller ve Madencilik Zirvesi, Mayıs.
  • Uzumer, A., Tiringa, D., Gülez, B., Kıral, N., & Özkümüş, S. (2023). Büyükeceli (Silifke-Mersin) grafit mineralizasyonu köken yaklaşımı ve benzer mineralizasyonlar açısından önemi. MTA Yerbilimleri ve Madencilik Dergisi, 3(3), 43-60.
  • Yalçın, C., (2022). Yeni Nesil Enerji Kaynaklarında Grafitin Önemi ve Kullanımı, Farklı Yaklaşımlarla Enerji ve Kaynakları. Kavak, O., Haspolat, Y.K. (Ed.), Orient/Kadim Yayınevi, p. 530-543, ISBN: 978-975-6124-96-3, e-ISBN: 978-975-6124-97-0.
  • Yigit, O. (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148. https://doi.org/10.1016/j.oregeorev.2011.09.015
  • Yiğitbaş, E., Tunç, İ. O., & Şengün, F. (2009, April). Some Major Geological Problems in the Biga Peninsula: The Çetmi Melange. In EGU General Assembly Conference Abstracts (p. 2468).
  • Yiğitbaş, E., & Tunç, İ. (2020). Pre-cambrian metamorphic rocks of the Sakarya Zone in the Biga Peninsula; late Ediacaran Gondwanaland active continental margin. Türkiye Jeoloji Bülteni- Geological Bulletin of Turkey, 63(3).

GEOLOGICAL, MINERALOGICAL, AND GEOCHEMICAL INVESTIGATION OF GRAPHITE IN THE METAMORPHIC ROCKS OF BIGA PENINSULA

Yıl 2025, Cilt: 28 Sayı: 3, 1255 - 1272, 03.09.2025
https://doi.org/10.17780/ksujes.1650058

Öz

This study presents a comprehensive investigation of the geological, mineralogical, petrographic, and geochemical characteristics of graphite mineralization in metamorphic rocks hosted within the southeastern region of the Biga Peninsula, near Yolindi Village. The region's metamorphic rocks mainly comprise Paleozoic-aged metamorphic units and metagranodioritic rocks. The graphite deposits in the research area are interlayered with quartz-schist of the Torasan Formation. Field observations, petrographic investigations, geochemical analyses, X-ray diffraction (XRD), Raman spectroscopy, electron probe microanalysis (EPMA), and isotope analyses were integrated to elucidate the formation processes of graphite in the region. The results from XRD and Raman spectroscopy indicate that the graphite is highly crystalline and has been influenced by regional metamorphism. EPMA analysis indicates the graphite's cleanliness and chemical composition, while its correlation with pyrite implies potential contact with hydrothermal fluids. Carbon isotope measurements (-9.56‰ to -9.80‰) and oxygen isotope analyses (14.64‰ to 14.90‰) suggest that the graphite possesses a metamorphic origin. The results demonstrate that the graphite primarily originated from the recrystallization of mantle-origin carbon sources during metamorphic processes; however, specific samples exhibit hydrothermal impacts.

Kaynakça

  • Akıska, S. (2020). Crystallization conditions and compositional variations of silicate and sulfide minerals in the Pb-Zn skarn deposits, Biga Peninsula, NW Turkey. Ore Geology Reviews, 118, 103322. https://doi.org/10.1016/j.oregeorev.2020.103322
  • Akıska, S., & Demirela, G. (2014). Handeresi, Bağırkaçdere ve Fırıncıkdere (Kalkım, Yenice-Çanakkale) Pb-Zn±Cu distal skarn yataklarında akışkanların kökeni. Yerbilimleri, 35(3), 141–168.
  • Armstrong, J. T. (1995). Citzaf-a package of correction programs for the quantitative Electron Microbeam X-ray-Analysis of thick polished materials, thin-films, and particles. Microbeam Analysis, 4, 177–200.
  • Beccaletto, L. (2003). Geology, correlations, and geodynamic evolution of the Biga Peninsula (NW Turkey) (Doctoral dissertation, Université de Lausanne).
  • Birkle, P., Satir, M., Erler, A., Ercan, T., Bingöl, E., & Orcen, S. (1995). Dating, geochemistry and geodynamic significance of the Tertiary magmatism of the Biga Peninsula, NW Turkey. In A. Erler (Ed.), Geology of the Black Sea Region: Ankara, Turkey (pp. 171–180). Mineral Research and Exploration Institute of Turkey (MTA).
  • Bonev, N., Beccaletto, L., Robyr, M., & Monié, P. (2009). Metamorphic and age constraints on the Alakeçi shear zone: implications for the extensional exhumation history of the northern Kazdağ Massif, NW Turkey. Lithos, 113(1-2), 331-345.https://doi.org/10.1016/j.lithos.2009.02.010
  • Buzlu, H. B. (1992). Balıkesir-Gönen-Çığmış köyü çevresinin jeolojisi ve ekonomik potansiyeli (Yayınlanmamış yüksek lisans tezi). Akdeniz Üniversitesi, Antalya.
  • Croat, T. K., Bernatowicz, T., Amari, S., Messenger, S., & Stadermann, F. J. (2003). Structural, chemical, and isotopic microanalytical investigations of graphite from supernovae. Geochimica et Cosmochimica Acta, 67(24), 4705–4725. https://doi.org/10.1016/S0016-7037(03)00463-0
  • Çakın, E. G. (2016). Gökçeyayla ile Akhisar köyleri (Han-Eskişehir) arasında kalan grafit yataklarının jeolojisi, mineralojisi ve jeokimyasal özellikleri (Yüksek Lisans Tezi). Fen Bilimleri Enstitüsü.
  • Çuhadaroğlu, A. D., & Kara, E. (2018). Grafit: Bir genel değerlendirme. Teknik Bilimler Dergisi, 8(1), 14-33.
  • Demirela, G., Akiska, S., & Akiska, E. (2023). Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences, 32(6), 772–807. https://doi.org/10.55730/1300-0985.1874
  • Desouqi, D., Salleh, M. A. M., Roselee, M. H., Yahya, A. M., Alsalam, B. A., & Rashid, S. A. (2025). Mineralogical and petrographic characterisation of flake graphite in the graphite mica schist rocks from the Nubian Desert, Sudan. Scientific African, 27, e02602.https://doi.org/10.1016/j.sciaf.2025.e02602
  • Dilek, Y., & Altunkaynak, Ş. (2007). Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. International Geology Review, 49, 431–453. https://doi.org/10.2747/0020-6814.49.5.431
  • Fernandez, A., & Moro, M. C. (1998). Origin and depositional environment of Ordovician stratiform iron mineralization from Zamora (NW Iberian Peninsula). Mineralium Deposita, 33, 606–619. https://doi.org/10.1007/s001260050176
  • Gao, L., Li, R., Liang, Z., Wu, Q., Yang, Z., Li, M., ... & Hou, L. (2021). Mobilization mechanisms and toxicity risk of sediment trace metals (Cu, Zn, Ni, and Pb) based on diffusive gradients in thin films: A case study in the Xizhi River basin, South China. Journal of Hazardous Materials, 410, 124590. https://doi.org/10.1016/j.jhazmat.2020.124590
  • Huang, Y., Jiao, W., Liu, L., Chen, J., & Ma, Y. (2024). Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China. Minerals, 14(11), 1103. https://doi.org/10.3390/min14111103
  • İlhan, A., Sarı, R., & Yıldırım, Y. (2020). Hidden graphite resources in Turkey: a new supply candidate for Europe?. European Geologist, 32-37.
  • Jolivet, L., & Brun, J.-P. (2010). Cenozoic geodynamic evolution of the Aegean. International Journal of Earth Sciences, 99, 109–138. https://doi.org/10.1007/s00531-008-0366-4
  • Karaman, M. (2024). Capability assessment of Sentinel-2 imagery for graphite deposits exploration. Geochemistry, 84(4), 126117. https://doi.org/10.1016/j.chemer.2024.126117.
  • Karaman, M. (2021). Grafit Cevherleşmelerinin Sentinel-2 Uydu Görüntülerinden Belirlenmesinde En Uygun Bant Kombinasyonları. Avrupa Bilim Ve Teknoloji Dergisi(25), 749-757. https://doi.org/10.31590/ejosat.945779.
  • Kaya, M. (2023). Yolindi (Biga, Çanakkale) Fe-Cu skarn cevherleşmesinin evrimi: Mineralojik, jeokimyasal ve izotopik yaklaşımlar. Doktora Tezi, İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü. YÖK Tez No: 842154.
  • Kaya, M., Kumral, M., Yalçın, C., & Abdelnasser, A. (2023a). Genesis and Evolution of the Yolindi Cu-Fe Skarn Deposit in the Biga Peninsula (NW Turkey): Insights from Genetic Relationships with Calc-Alkaline Magmatic Activity. Minerals, 13(10), 1304. https://doi.org/10.3390/min13101304
  • Kaya, M., Kumral, M., Yalçın, C., & Abdelnasser, A. (2023b). Sulfur and Carbon–Oxygen Isotopic Geochemistry and Fluid Inclusion Characteristics of the Yolindi Cu-Fe Skarn Mineralization, Biga Peninsula, NW Turkey: Implications for the Source and Evolution of Hydrothermal Fluids. Minerals, 13(12), 1542. https://doi.org/10.3390/min13121542
  • Kaya, M., Kumral, M., Abdelnasser, A., Yalçın, C., Öztürk, S., Bayram, H. N., and Tanç-Kaya, B. (2023c). Evolution of the hydrothermal fluids of the Yolindi Fe-Cu skarn deposit, Biga peninsula, NW Turkiye: Evidence from carbon-oxygen isotopic variations of calcite minerals, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13798, https://doi.org/10.5194/egusphere-egu23-13798
  • Kuşcu, İ. (2019). Skarns and skarn deposits of Turkey. In F. Pirajno, T. Ünlü, C. Dönmez, & M. B. Şahin (Eds.), Mineral Resources of Turkey (Vol. 16, pp. 283- 336). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-02950-0_7.
  • Li, J., Wang, L., & Cao, D. (2024). Investigation on spectroscopy characteristics of different metamorphic degrees of coal-based graphite. Frontiers in Earth Science, 12, 1413019. https://doi.org/10.3389/feart.2024.1413019
  • Luque, F. J., Crespo-Feo, E., Barrenechea, J. F., & Ortega, L. (2012). Carbon isotopes of graphite: Implications on fluid history. Geoscience Frontiers, 3(2), 197–207. https://doi.org/10.1016/j.gsf.2011.11.006
  • Machel, H. G. (1989). Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits. Carbonates and Evaporites, 4(2), 137–151. https://doi.org/10.1007/BF03175104
  • Maral, D. (2006). Biga Yarımadası sülfür mineralizasyonlarına bağlı kıymetli iz metallerin incelenmesi (Yayınlanmamış doktora tezi). İstanbul Üniversitesi, İstanbul.
  • Meng, J. F., Katiyar, R. S., Zou, G. T., & Wang, X. H. (1997). Raman phonon modes and ferroelectric phase transitions in nanocrystalline lead zirconate titanate. Physica Status Solidi A, 164, 851. https://doi.org/10.1002/1521-396
  • Okay, A. I., & Satir, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495–516. https://doi:10.1017/S0016756800004532
  • Okay, A. I., Satir, M., & Siebel, W. (2006). Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. Geological Society, London, Memoirs, 32, 389–405. https://doi.org/10.1144/GSL.MEM.2006.032.01.23
  • Okay, A. I., Siyako, M., & Bürkan, K. A. (1991). Geology and tectonic evolution of the Biga Peninsula, northwest Turkey. Bulletin of the Technical University of Istanbul, 44(1-2), 191–256.
  • Özden, S., Över, S., Poyraz, S. A., Güneş, Y., & Pınar, A. (2018). Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey. Journal of Asian Earth Sciences, 154, 125–141.https://doi.org/10.1016/j.jseaes.2017.12.021
  • Pearson, D. G., Boyd, F. R., Haggerty, S. E., Pasteris, J. D., Field, S. W., Nixon, P. H., & Pokhilenko, N. P. (1994). The characterisation and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contributions to Mineralogy and Petrology, 115, 449–466. https://doi.org/10.1007/BF00320978
  • Pozzato, G., Li, X., Lee, D., Ko, J., & Onori, S. (2024). Accelerating the transition to cobalt-free batteries: a hybrid model for LiFePO4/graphite chemistry. npj Computational Materials, 10(1), 14. https://doi.org/10.1038/s41524-024-01197-7
  • Satish-Kumar, M. (2005). Graphite-bearing CO₂-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution. Geochimica et Cosmochimica Acta, 69(15), 3841–3856. https://doi.org/10.1016/j.gca.2005.02.007
  • Simandl, G. J., Paradis, S., & Akam, C. (2015). Graphite deposit types, their origin, and economic significance. British Columbia Ministry of Energy and Mines & British Columbia Geological Survey, 3, 163–171.
  • Sreehari, L., Kiran, S., Hokada, T., Satish‐Kumar, M., Toyoshima, T., Sajeev, K., & Antony, J. K. (2025). Assessing Thermal Gradients Across Archean Stratigraphy Using Raman Spectra of Carbonaceous Material Thermometry and Mineral Chemistry in the Western Dharwar Craton, India. Geological Journal, 60(2), 560-581. https://doi.org/10.1002/gj.5135
  • Şengün, F., Yiğitbaş, E., & Tunç, İ. O. (2011). Geology and tectonic emplacement of eclogite and blueschists, Biga Peninsula, northwest Turkey. Turkish Journal of Earth Sciences, 20(3), 273–285. https://doi.org/10.3906/yer-0912-75
  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of geophysics, 33(2), 241-265. https://doi.org/10.1029/95RG00262
  • Tufan, B., & Batar, T. (2015). Oysu Grafit Cevheri Flotasyon Parametrelerinin İyileştirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 17-25.
  • Uysal, S. (2012). Grafit. Türkiye ve Mena Endüstriyel Mineraller ve Madencilik Zirvesi, Mayıs.
  • Uzumer, A., Tiringa, D., Gülez, B., Kıral, N., & Özkümüş, S. (2023). Büyükeceli (Silifke-Mersin) grafit mineralizasyonu köken yaklaşımı ve benzer mineralizasyonlar açısından önemi. MTA Yerbilimleri ve Madencilik Dergisi, 3(3), 43-60.
  • Yalçın, C., (2022). Yeni Nesil Enerji Kaynaklarında Grafitin Önemi ve Kullanımı, Farklı Yaklaşımlarla Enerji ve Kaynakları. Kavak, O., Haspolat, Y.K. (Ed.), Orient/Kadim Yayınevi, p. 530-543, ISBN: 978-975-6124-96-3, e-ISBN: 978-975-6124-97-0.
  • Yigit, O. (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148. https://doi.org/10.1016/j.oregeorev.2011.09.015
  • Yiğitbaş, E., Tunç, İ. O., & Şengün, F. (2009, April). Some Major Geological Problems in the Biga Peninsula: The Çetmi Melange. In EGU General Assembly Conference Abstracts (p. 2468).
  • Yiğitbaş, E., & Tunç, İ. (2020). Pre-cambrian metamorphic rocks of the Sakarya Zone in the Biga Peninsula; late Ediacaran Gondwanaland active continental margin. Türkiye Jeoloji Bülteni- Geological Bulletin of Turkey, 63(3).
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Yatakları ve Jeokimya
Bölüm Jeoloji Mühendisliği
Yazarlar

Mustafa Kaya 0000-0003-0694-9754

Cihan Yalçın 0000-0002-0510-2992

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 3 Mart 2025
Kabul Tarihi 26 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Kaya, M., & Yalçın, C. (2025). BİGA YARIMADASI’NDAKI METAMORFİK KAYAÇLARDA BULUNAN GRAFİTLERİN JEOLOJİK, MİNERALOJİK VE JEOKİMYASAL İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1255-1272. https://doi.org/10.17780/ksujes.1650058