ZEMİN İYİLEŞTİRME ÖNCESİ VE SONRASI YAPISAL DAVRANIŞ ÜZERİNE KAPSAMLI BİR VAKA ÇALIŞMASI
Yıl 2025,
Cilt: 28 Sayı: 3, 1273 - 1292, 03.09.2025
Serkan Etli
,
Abdullah İçen
Öz
Zemindeki yetersiz mühendislik özellikleri sorununu ele almak, özellikle sismik olaylar sırasında yapısal davranışı iyileştirmek ve hasarları azaltmak için çok önemlidir. Bu çalışma, zeminin yetersiz mühendislik özelliklerini, özellikle sismik olaylar sırasında yapısal davranış üzerindeki etkisi gibi kritik bir sorunu ele almaktadır. Bir vaka çalışması metodolojisi kullanılarak ve sorunun önemi vurgulanarak, zemin iyileştirmesinden önce ve sonra yapısal tepkiler değerlendirilmiştir. İyileştirme öncesi için yapılan zemin tepki analizleri, tasarım yetersizliklerini ve zemin sıvılaşmasına eğilimli alanları ortaya koymaktadır. Önerilen çözüm, çimento enjeksiyonu yoluyla zeminin iyileştirilmesidir. Çeşitli deprem senaryoları ve zemin koşulları altında altı vakayı inceleyerek, özellikle Kat Arası Sürüklenme Oranları (IDR) ve çatı sürüklenme oranlarında zemin iyileştirme sonrası önemli iyileştirmeleri vurgulayan 132 dinamik analiz gerçekleştirilmiştir. Bu bulgular, sismik hasarları azaltmada zemin iyileştirmenin etkinliğini vurgulayarak, yapılacak iyileştirmenin yapısal davranıştaki kritik rolünü ve iyileştirilmiş sismik performans için zemin yetersizliklerini ele almanın daha iyi anlaşılmasına katkıda bulunmaktadır.
Kaynakça
-
Briaud, J. L. (2023). Geotechnical engineering: unsaturated and saturated soils. John Wiley & Sons.
Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves (Doctoral dissertation, University of Texas at Austin). University of Texas at Austin.
-
Dudley, C. (1985). Classification of soils for engineering purposes. Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 395-408.
-
Etli, S., & Güneyisi, E. M. (2021). Assessment of seismic behavior factor of code designed steel–concrete composite buildings. Arabian Journal for Science and Engineering, 46(5), 4271–4292. https://doi.org/10.1007/s13369-020-04913-9
-
Etli, S., & Güneyisi, E. M. (2020a). Seismic performance evaluation of regular and irregular composite moment resisting frames. Latin American Journal of Solids and Structures, 17(7), Article e301. https://doi.org/10.1590/1679‑78255969
-
Etli, S., & Güneyisi, E. M. (2020b). Response of steel buildings under near and far field earthquakes. Civil Engineering Beyond Limits, 1(2), 24–30. https://doi.org/10.36937/cebel.2020.002.004
-
Ghobarah, A. (2001). Performance-based design in earthquake engineering: State of development. Engineering Structures, 23(8), 878–884. https://doi.org/10.1016/S0141-0296(01)00036-0
-
Güneyisi, E. M., & Etli, S. (2021). Investigation of the effect of diagonal eccentricity on behavior of braced composite structures under the impact of near and far field earthquakes (TÜBİTAK project report, Project No: 219M069).
-
Hashash, Y. M. A., Musgrove, M. I., & Harmon, J. A. (2018). Nonlinear and equivalent linear seismic site response of one-dimensional soil columns: User Manual v7.0 (Deepsoil Software Technical Manual). Urbana, IL: Board of Trustees of the University of Illinois at Urbana Champaign
-
Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (EPRI Report No. EL 6800, Project 1493 6). Electric Power Research Institute; Cornell University Geotechnical Engineering Group
-
Martínez Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures, 30(3), 139–147. https://doi.org/10.1007/BF02486385
-
Matasović, N., & Vucetic, M. (1992). A pore pressure model for cyclic straining of clay. Soils and Foundations, 32(3), 156–173. https://doi.org/10.3208/sandf1972.32.3_156
-
Monti, G., Nuti, C., & Santini, S. (1996). CYRUS: Cyclic response of upgraded sections: A program for the analysis of retrofitted or repaired reinforced concrete sections under biaxial cyclic loading including buckling of rebars (Report No. 96 2). University of Chieti, Italy
-
Pacific Earthquake Engineering Research Center (PEER). (2014). NGA West2 ground motion database [Online database]. PEER, University of California, Berkeley. Retrieved from https://ngawest2.berkeley.edu
-
Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analyses (Report No. UCB/EERC 70/10). Earthquake Engineering Research Center, University of California, Berkeley
-
Seismosoft. (2016). SeismoMatch: A computer program for spectrum matching of earthquake records (Version 2016). Seismosoft Ltd. Retrieved from https://www.seismosoft.com
-
Sowers, G. B., & Sowers, G. F. (1951). Introductory soil mechanics and foundations (Vol. 72, No. 5, p. 405). The Macmillan Company.
-
Stroud, M. A. (1974, June). The standard penetration test in insensitive clays and soft rocks. In Proceedings of the 1st European Symposium on Penetration Testing (Vol. 2, No. 2, pp. 367–375). Stockholm, Sweden
-
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice (3rd ed.). John Wiley & Sons.
-
Afet ve Acil Durum Yönetimi Başkanlığı. (2018, 18 March). Türkiye Bina Deprem Yönetmeliği (Resmî Gazete, Sayı 30364 [Mükerrer]). Retrieved from https://www.resmigazete.gov.tr
-
Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117(1), 89–107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
A COMPREHENSIVE CASE STUDY ON STRUCTURAL BEHAVIOR BEFORE AND AFTER SOIL IMPROVEMENT
Yıl 2025,
Cilt: 28 Sayı: 3, 1273 - 1292, 03.09.2025
Serkan Etli
,
Abdullah İçen
Öz
Addressing the issue of inadequate engineering properties in soil is crucial for enhancing structural behavior and reducing damages, especially during seismic events. This study addresses the critical issue of inadequate engineering properties in soil and their impact on structural behavior, particularly during seismic events. Employing a case study methodology, structural responses are assessed before and after soil improvement, emphasizing the problem's significance. Site response analyses for pre-improvement phases reveal design insufficiencies and areas prone to soil liquefaction. The proposed solution is soil reinforcement through cement injection. Examining six cases under various earthquake scenarios and ground conditions, 132 dynamic analyses are conducted, highlighting substantial improvements post-soil improvement, especially in Interstory Drift Ratios (IDR) and roof drift ratios. These findings underscore the effectiveness of soil reinforcement in mitigating seismic damage, emphasizing its critical role in enhancing structural behavior and contributing to a better understanding of addressing soil inadequacies for improved seismic performance.
Kaynakça
-
Briaud, J. L. (2023). Geotechnical engineering: unsaturated and saturated soils. John Wiley & Sons.
Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves (Doctoral dissertation, University of Texas at Austin). University of Texas at Austin.
-
Dudley, C. (1985). Classification of soils for engineering purposes. Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 395-408.
-
Etli, S., & Güneyisi, E. M. (2021). Assessment of seismic behavior factor of code designed steel–concrete composite buildings. Arabian Journal for Science and Engineering, 46(5), 4271–4292. https://doi.org/10.1007/s13369-020-04913-9
-
Etli, S., & Güneyisi, E. M. (2020a). Seismic performance evaluation of regular and irregular composite moment resisting frames. Latin American Journal of Solids and Structures, 17(7), Article e301. https://doi.org/10.1590/1679‑78255969
-
Etli, S., & Güneyisi, E. M. (2020b). Response of steel buildings under near and far field earthquakes. Civil Engineering Beyond Limits, 1(2), 24–30. https://doi.org/10.36937/cebel.2020.002.004
-
Ghobarah, A. (2001). Performance-based design in earthquake engineering: State of development. Engineering Structures, 23(8), 878–884. https://doi.org/10.1016/S0141-0296(01)00036-0
-
Güneyisi, E. M., & Etli, S. (2021). Investigation of the effect of diagonal eccentricity on behavior of braced composite structures under the impact of near and far field earthquakes (TÜBİTAK project report, Project No: 219M069).
-
Hashash, Y. M. A., Musgrove, M. I., & Harmon, J. A. (2018). Nonlinear and equivalent linear seismic site response of one-dimensional soil columns: User Manual v7.0 (Deepsoil Software Technical Manual). Urbana, IL: Board of Trustees of the University of Illinois at Urbana Champaign
-
Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (EPRI Report No. EL 6800, Project 1493 6). Electric Power Research Institute; Cornell University Geotechnical Engineering Group
-
Martínez Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures, 30(3), 139–147. https://doi.org/10.1007/BF02486385
-
Matasović, N., & Vucetic, M. (1992). A pore pressure model for cyclic straining of clay. Soils and Foundations, 32(3), 156–173. https://doi.org/10.3208/sandf1972.32.3_156
-
Monti, G., Nuti, C., & Santini, S. (1996). CYRUS: Cyclic response of upgraded sections: A program for the analysis of retrofitted or repaired reinforced concrete sections under biaxial cyclic loading including buckling of rebars (Report No. 96 2). University of Chieti, Italy
-
Pacific Earthquake Engineering Research Center (PEER). (2014). NGA West2 ground motion database [Online database]. PEER, University of California, Berkeley. Retrieved from https://ngawest2.berkeley.edu
-
Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analyses (Report No. UCB/EERC 70/10). Earthquake Engineering Research Center, University of California, Berkeley
-
Seismosoft. (2016). SeismoMatch: A computer program for spectrum matching of earthquake records (Version 2016). Seismosoft Ltd. Retrieved from https://www.seismosoft.com
-
Sowers, G. B., & Sowers, G. F. (1951). Introductory soil mechanics and foundations (Vol. 72, No. 5, p. 405). The Macmillan Company.
-
Stroud, M. A. (1974, June). The standard penetration test in insensitive clays and soft rocks. In Proceedings of the 1st European Symposium on Penetration Testing (Vol. 2, No. 2, pp. 367–375). Stockholm, Sweden
-
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice (3rd ed.). John Wiley & Sons.
-
Afet ve Acil Durum Yönetimi Başkanlığı. (2018, 18 March). Türkiye Bina Deprem Yönetmeliği (Resmî Gazete, Sayı 30364 [Mükerrer]). Retrieved from https://www.resmigazete.gov.tr
-
Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117(1), 89–107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)