Araştırma Makalesi
BibTex RIS Kaynak Göster

PASİF AKIŞ KONTROL ANALİZİ VE AERODINAMIK ŞEKİL OPTİMİZASYONUNUN HAD SİMÜLASYON YOLUYLA ARAŞTIRILMASI

Yıl 2025, Cilt: 28 Sayı: 3, 1293 - 1308, 03.09.2025
https://doi.org/10.17780/ksujes.1661632

Öz

Bu çalışma, aerodinamik şekil optimizasyonunu kullanarak pasif kontrol uygulamalarının etkisini araştırmayı amaçlamaktadır. Girdap üreteçleri (VG) ve aerodinamik şekil optimizasyonu ile akış kontrol analizlerinin sunulduğu bu çalışma, literatürde az sayıda bulunan çalışmalar arasındadır. Bu çalışmada, Eppler 193 kanat profili seçilerek, analizler hem VG ile hem de VG olmadan yapılmıştır. Aerodinamik analizleri gerçekleştirmek için Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi kullanılmıştır. Doğrulama çalışması, literatürde var olan deneysel bir çalışma ile karşılaştırılarak gerçekleştirilmiştir. Sonuçlar, HAD çözümleri ile deneysel sonuçların uyum içinde olduğunu göstermiştir. VG'lerin optimum tasarım parametrelerini bulmak için Çok Amaçlı Genetik Algoritma (MOGA) kullanılmıştır. VG'nin uzunluğu ve yüksekliği, hücum kenarına göre konumu, konumlandırma açısı ve VG'ler arasındaki boşluk tasarım parametreleri olarak belirlenirken, sürükleme (CD) ve taşıma (CL) katsayıları çıktı parametreleri olarak seçilmiştir. Sonuçlar, VG uygulamasının akışkana momentum kazandırdığını ve kanat profilinin üst yüzeyinde yeniden akışın yüzeye tutunduğunu göstermiştir. Optimizasyon sonuçları CL/CD oranının, optimize edilmemiş VG’ li kanat profiline kıyasla yaklaşık %6.07'ye kadar iyileştiğini göstermiştir. VG'siz kanat profili (temel kanat profili geometrisi) ile karşılaştırıldığında ise toplam iyileşmenin yaklaşık %17.11 oranında elde edildiği sonucuna varılmıştır.

Kaynakça

  • Ali, H., Rasani, M. R., Harun, Z., & Shahid, M. A. (2025). CFD based design optimization of dimples induced on Blended Wing Body airframe using the Taguchi method. PloS one, 20(4), https://doi.org/10.1371/journal.pone.0320885
  • Benaouali A., & Kachel S. (2019). Multidisciplinary design optimization of aircraft wing using commercial software integration. Aerospace Science and Technology, 92, 766-776. https://doi.org/10.1016/j.ast.2019.06.040
  • Bhattacharyya, A., Bashkawi, M., Kim, S. Y., Zheng, W., Saxton-Fox, T., & James, K. A. (2021). Computational design and experimental testing of a flexible bi-stable airfoil for passive flow control. In AIAA Aviation 2021 Forum (p. 3087). https://doi.org/10.2514/6.2021-3087
  • Box G.E., & Wilson K.B. (1951). On the experimental attainment of optimum conditions. Journal of the royal statistical society: Series b (Methodological), 13(1), 1-38.
  • Cui, K., Li, G., & Xiao, Y. (2015). Aerodynamic performance study of high pressure zone capture wing configurations. In 33rd AIAA Applied Aerodynamics Conference (p. 3388). https://doi.org/10.2514/6.2015-3388
  • De Tavernier D., Ferreira C., Viré A., LeBlanc B., & Bernardy S. (2021). Controlling dynamic stall using vortex generators on a wind turbine airfoil. Renewable Energy, 172, 1194-1211. https://doi.org/10.1016/j.renene.2021.03.019
  • Deb K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary computation 7(3), 205-230. https://doi.org/10.1162/evco.1999.7.3.205
  • Duarte Neto, J. B., Martinez, M. E. M., Reis, M. C. D., & Wehmann, C. F. (2020). Vortex generators project for an unmanned small airplane. 10.3895/rbfta.v7n1.11844
  • Ejeh, C. J., Akhabue, G. P., Boah, E. A., & Tandoh, K. K. (2019). Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics. Results in Engineering, 4, 100037. https://doi.org/10.1016/j.rineng.2019.100037
  • Eraslan Y., & Oktay T. (2023). Multidisciplinary Performance Enhancement on a Fixed-wing Unmanned Aerial Vehicle via Simultaneous Morphing Wing and Control System Design. Information Technology and Control, 52(4), 833-848. https://doi.org/10.5755/j01.itc.52.4.33527
  • Fluent (2009). ANSYS Fluent 12.0 Theory Guide. ANSYS Inc., Canonsburg, PA.
  • Fouatih O.M., Medale M., Imine O., & Imine B. (2016). Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators. European Journal of Mechanics-B/Fluids, 56, 82-96. https://doi.org/10.1016/j.euromechflu.2015.11.006
  • Goldberg D.E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading MA: Addison-Wesley
  • Gönül, A., Okbaz A., Kayaci N., & Dalkilic A.S. (2022). Flow optimization in a microchannel with vortex generators using genetic algorithm. Applied Thermal Engineering, 201, 117738. https://doi.org/10.1016/j.applthermaleng.2021.117738
  • Gyatt G. W. (1986). Development and testing of vortex generators for small horizontal axis wind turbines (No. DOE/NASA-0367-1; NASA-CR-179514; AV-FR-86/822). AeroVironment, Inc., Monrovia, CA (USA).
  • Holland J. (1975). Adaptation in natural and artificial systems: an introductory analysis with application to biology,” Control and artificial intelligence.
  • Hu H., Zhang G., Shi Y., Zhang Z., Sun T., & Zong Z. (2024). Influence of wingspan on aerodynamic properties of rectangular NACA4412 wing in ground effect. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(2), 71. https://doi.org/10.1007/s40430-023-04629-5
  • Kallath, H., Lee, J. S., Kholi, F. K., Ha, M. Y., & Min, J. K. (2021). A multi-objective airfoil shape optimization study using mesh morphing and response surface method. Journal of Mechanical Science and Technology, 35 (3) 1075~1086. http://doi.org/10.1007/s12206-021-0221-0
  • Karasu, İ., Özden, M., & Genç, M. S. (2018). Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers. Journal of Fluids Engineering, 140(12), 121102. https://doi.org/10.1115/1.4040228
  • Karkoulias, D. G., Bourdousi, P. V. N., & Margaris, D. P. (2023). Passive Control of Boundary Layer on Wing: Numerical and Experimental Study of Two Configurations of Wing Surface Modification in Cruise and Landing Speed. Computation, 11(3), 67. https://doi.org/10.3390/computation11030067
  • Khuntia S.K., & Ahuja A.S. (2018). Optimal design and CFD analysis of wing of a small-scale UAV to obtain maximum efficiency. Journal of Aeronautics & Aerospace Engineering, 7(01). 10.4172/2168-9792.1000207
  • Kulshreshtha A., Gupta S.K., & Singhal P. (2020). FEM/CFD analysis of wings at different angle of attack. Materials Today: Proceedings, 26, 1638-1643. https://doi.org/10.1016/j.matpr.2020.02.342
  • Li, L., Zhang, Y., Bai, J., & Toropov, V. (2024). Morphing wing design of truss-braced-wing aircraft through aerodynamic shape optimization using the adjoint method. Engineering Optimization, 1-38. https://doi.org/10.1080/0305215X.2024.2420746
  • Li X. K., Liu,W., Zhang T.J., Wang P.M., & Wang X.D. (2019a). Analysis of the effect of vortex generator spacing on boundary layer flow separation control. Applied Sciences, 9(24), 5495. https://doi.org/10.3390/app9245495
  • Li X., Yang K., & Wang X. (2019c). Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance. Energies, 12(5), 959. https://doi.org/10.3390/en12050959
  • Li X.K, Liu W, Zhang, T.J., Wang P.M., & Wang X.D. (2019b) Experimental and numerical analysis of the effect of vortex generator installation angle on flow separation control. Energies, 12(23) 4583. https://doi.org/10.3390/en12234583
  • Liu, R.L., Zhao, Q., He, X.J., Yuan, X.Y., Wu, W.T., & Wu, M.Y. (2022). Airfoil optimization based on multi-objective bayesian. Journal of Mechanical Science and Technology, 36 (11) (2022) 5561~5573. http://doi.org/10.1007/s12206-022-1020-y
  • Lyu Z., Kenway G.K., & Martins J.R. (2015). Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA journal, 53(4), 968-985. https://doi.org/10.2514/1.J053318
  • Mader C.A., & Martins J.R. (2013). Stability-constrained aerodynamic shape optimization of flying wings. Journal of Aircraft, 50(5), 1431-1449. https://doi.org/10.2514/1.C031956
  • Martinez D., Meaurio C., Alviso D., Chaparro J., Vargas E., & Rolon J.C. (2016). Design and Implementation of an Aerodynamic Balance in a Subsonic Wind Tunnel and Validation Through Numerical and Experimental Investigations of Lift and Drag Performances on Airfoils. 16 th Brazilian Congress of Thermal Sciences and Engineering November 07-10, 2016, Vitoria, ES, Brazil.
  • McCormick, D. C. (1993). Shock/boundary-layer interaction control with vortex generators and passive cavity. AIAA journal, 31(1), 91-96. https://doi.org/10.2514/3.11323
  • McLean Doug (2012). Continuum Fluid Mechanics and the Navier-Stokes Equations. Understanding Aerodynamics: Arguing from the Real Physics. John Wiley & Sons. pp. 13–78. ISBN 9781119967514.
  • Munshi A., Sulaeman, E., Omar N., & Ali M.Y. (2018). CFD analysis on the effect of winglet cant angle on aerodynamics of ONERA M6 wing. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), 44-54.
  • Nabawy M.R., ElNomrossy M.M., Abdelrahman M.M., & ElBayoumi G.M. (2012). Aerodynamic shape optimisation, wind tunnel measurements and CFD analysis of a MAV wing. The Aeronautical Journal, 116(1181), 685-708. https://doi.org/10.1017/S000192400000717X
  • Namura N., Obayashi S., & Jeong S. (2016). Efficient global optimization of vortex generators on a supercritical infinite wing. Journal of Aircraft, 53(6), 1670-1679. https://doi.org/10.2514/1.C033753
  • Nikolaou, I. G., Politis, E. S., & Chaviaropoulos, P. K. (2005). Modelling the flow around airfoils equipped with vortex generators using a modified 2d navier–stokes solver. J. Sol. Energy Eng., 127(2), 223-233. https://doi.org/10.1115/1.1850486
  • Özden M, Genç M.S., & Koca K. (2023). Passive flow control application using single and double vortex generator on S809 wind turbine airfoil. Energies, 16(14), 5339. https://doi.org/10.3390/en16145339
  • Pascual, J. M., & Zingg, D. W. (2025). Progress in the Application of an Aerodynamic Shape Optimization Capability Using Hybrid Laminar Flow Control to Airfoils and Infinite Swept Wings. In AIAA SCITECH 2025 Forum (p. 0484). https://doi.org/10.2514/6.2025-0484
  • Pouryoussefi S.G., Abdolali G., Bakhsheshizanjani M., Khoshnejad A., & Doostmahmoudi A. (2023). Experimental investigation of aerodynamic characteristics of an embedded wing-electric ducted fan boundary layer ingestion setup. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(6), 301. https://doi.org/10.1007/s40430-023-04205-x
  • Selig M.S., Donovan J.F., Fraser D.B. (1989). Airfoils at low speeds. Virginia: H.A. Stokely.
  • Shi, J., Han, F., Li, T., & Liu, C. (2024). Numerical investigation of aerodynamic performance in a morphing wing with flexible leading edge using computational fluid dynamics. Journal of Engineering and Applied Science, 71(1), 229. https://doi.org/10.1186/s44147-024-00564-x
  • Sørensen, N. N., Zahle, F., Bak, C., & Vronsky, T. (2014, June). Prediction of the effect of vortex generators on airfoil performance. In Journal of physics: conference series (Vol. 524, No. 1, p. 012019). IOP Publishing. 10.1088/1742-6596/524/1/012019
  • Stanewsky, E. (2001). Adaptive wing and flow control technology. Progress in Aerospace Sciences, 37(7), 583-667. https://doi.org/10.1016/S0376-0421(01)00017-3
  • Sumnu A., & Guzelbey I.H. (2021). CFD simulations and external shape optimization of missile with wing and tailfin configuration to improve aerodynamic performance. Journal of Applied Fluid Mechanics, 14 (6) 1795-1807. https://doi.org/10.47176/jafm.14.06.32667
  • Suresh C., Ramesh K., & Paramaguru V. (2015). Aerodynamic performance analysis of a non-planar C-wing using CFD. Aerospace Science and Technology, 40, 56-61. https://doi.org/10.1016/j.ast.2014.10.014
  • UIUC (2020). Airfoil Database: © 2020 UIUC Applied Aerodynamics Group. [accessed 24 Oct 2016]. https://m-selig.ae.illinois.edu/ ads/coord/e193.dat
  • Wilcox D.C. (1998). Turbulence modeling for CFD. Vol. 2, 103-217. La Canada, CA: DCW industries.
  • Yan X., Zhu J., Kuang M., & Wang X. (2019). Aerodynamic shape optimization using a novel optimizer based on machine learning techniques. Aerospace Science and Technology, 86, 826-835. https://doi.org/10.1016/j.ast.2019.02.003
  • Yu Y., Lyu Z., Xu Z., & Martins J.R. (2018). On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerospace Science and Technology, 75, 183-199. https://doi.org/10.1016/j.ast.2018.01.016

INVESTIGATION OF PASSIVE FLOW CONTROL ANALYSIS AND AERODYNAMIC SHAPE OPTIMIZATION VIA CFD SIMULATION

Yıl 2025, Cilt: 28 Sayı: 3, 1293 - 1308, 03.09.2025
https://doi.org/10.17780/ksujes.1661632

Öz

This study aims to investigate the influence of passive control applications by employing aerodynamic shape optimization. Hence, the study, which is rare in the literature, presents flow control analyses with vortex generators (VG) and aerodynamic shape optimization. In this study, Eppler 193 airfoil was selected to perform aerodynamic analysis using Computational Fluid Dynamics (CFD) method for a wing with and without VGs. The validation study was carried out by comparing it with an experimental study reported in the literature. The results showed that CFD solutions were in good agreement with experimental results. Multi-Objective Genetic Algorithm (MOGA) was used to find optimal design parameters of VGs. The length and height of VG, its position concerning the leading edge, its positioning angle, and spacing between VGs were determined as design parameters, while drag (CD) and lift (CL) coefficients were selected output parameters. The results showed that the application of VG at wake region gained momentum and provided reattached flow on the upper surface of the wing. Eventually, the optimization results showed that the CL/CD ratio improved to about 6.07% compared to the wing with baseline VG geometry. It was concluded that total improvement was obtained by about 17.11% when comparing wing without VG (baseline wing geometry).

Kaynakça

  • Ali, H., Rasani, M. R., Harun, Z., & Shahid, M. A. (2025). CFD based design optimization of dimples induced on Blended Wing Body airframe using the Taguchi method. PloS one, 20(4), https://doi.org/10.1371/journal.pone.0320885
  • Benaouali A., & Kachel S. (2019). Multidisciplinary design optimization of aircraft wing using commercial software integration. Aerospace Science and Technology, 92, 766-776. https://doi.org/10.1016/j.ast.2019.06.040
  • Bhattacharyya, A., Bashkawi, M., Kim, S. Y., Zheng, W., Saxton-Fox, T., & James, K. A. (2021). Computational design and experimental testing of a flexible bi-stable airfoil for passive flow control. In AIAA Aviation 2021 Forum (p. 3087). https://doi.org/10.2514/6.2021-3087
  • Box G.E., & Wilson K.B. (1951). On the experimental attainment of optimum conditions. Journal of the royal statistical society: Series b (Methodological), 13(1), 1-38.
  • Cui, K., Li, G., & Xiao, Y. (2015). Aerodynamic performance study of high pressure zone capture wing configurations. In 33rd AIAA Applied Aerodynamics Conference (p. 3388). https://doi.org/10.2514/6.2015-3388
  • De Tavernier D., Ferreira C., Viré A., LeBlanc B., & Bernardy S. (2021). Controlling dynamic stall using vortex generators on a wind turbine airfoil. Renewable Energy, 172, 1194-1211. https://doi.org/10.1016/j.renene.2021.03.019
  • Deb K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary computation 7(3), 205-230. https://doi.org/10.1162/evco.1999.7.3.205
  • Duarte Neto, J. B., Martinez, M. E. M., Reis, M. C. D., & Wehmann, C. F. (2020). Vortex generators project for an unmanned small airplane. 10.3895/rbfta.v7n1.11844
  • Ejeh, C. J., Akhabue, G. P., Boah, E. A., & Tandoh, K. K. (2019). Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics. Results in Engineering, 4, 100037. https://doi.org/10.1016/j.rineng.2019.100037
  • Eraslan Y., & Oktay T. (2023). Multidisciplinary Performance Enhancement on a Fixed-wing Unmanned Aerial Vehicle via Simultaneous Morphing Wing and Control System Design. Information Technology and Control, 52(4), 833-848. https://doi.org/10.5755/j01.itc.52.4.33527
  • Fluent (2009). ANSYS Fluent 12.0 Theory Guide. ANSYS Inc., Canonsburg, PA.
  • Fouatih O.M., Medale M., Imine O., & Imine B. (2016). Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators. European Journal of Mechanics-B/Fluids, 56, 82-96. https://doi.org/10.1016/j.euromechflu.2015.11.006
  • Goldberg D.E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading MA: Addison-Wesley
  • Gönül, A., Okbaz A., Kayaci N., & Dalkilic A.S. (2022). Flow optimization in a microchannel with vortex generators using genetic algorithm. Applied Thermal Engineering, 201, 117738. https://doi.org/10.1016/j.applthermaleng.2021.117738
  • Gyatt G. W. (1986). Development and testing of vortex generators for small horizontal axis wind turbines (No. DOE/NASA-0367-1; NASA-CR-179514; AV-FR-86/822). AeroVironment, Inc., Monrovia, CA (USA).
  • Holland J. (1975). Adaptation in natural and artificial systems: an introductory analysis with application to biology,” Control and artificial intelligence.
  • Hu H., Zhang G., Shi Y., Zhang Z., Sun T., & Zong Z. (2024). Influence of wingspan on aerodynamic properties of rectangular NACA4412 wing in ground effect. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(2), 71. https://doi.org/10.1007/s40430-023-04629-5
  • Kallath, H., Lee, J. S., Kholi, F. K., Ha, M. Y., & Min, J. K. (2021). A multi-objective airfoil shape optimization study using mesh morphing and response surface method. Journal of Mechanical Science and Technology, 35 (3) 1075~1086. http://doi.org/10.1007/s12206-021-0221-0
  • Karasu, İ., Özden, M., & Genç, M. S. (2018). Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers. Journal of Fluids Engineering, 140(12), 121102. https://doi.org/10.1115/1.4040228
  • Karkoulias, D. G., Bourdousi, P. V. N., & Margaris, D. P. (2023). Passive Control of Boundary Layer on Wing: Numerical and Experimental Study of Two Configurations of Wing Surface Modification in Cruise and Landing Speed. Computation, 11(3), 67. https://doi.org/10.3390/computation11030067
  • Khuntia S.K., & Ahuja A.S. (2018). Optimal design and CFD analysis of wing of a small-scale UAV to obtain maximum efficiency. Journal of Aeronautics & Aerospace Engineering, 7(01). 10.4172/2168-9792.1000207
  • Kulshreshtha A., Gupta S.K., & Singhal P. (2020). FEM/CFD analysis of wings at different angle of attack. Materials Today: Proceedings, 26, 1638-1643. https://doi.org/10.1016/j.matpr.2020.02.342
  • Li, L., Zhang, Y., Bai, J., & Toropov, V. (2024). Morphing wing design of truss-braced-wing aircraft through aerodynamic shape optimization using the adjoint method. Engineering Optimization, 1-38. https://doi.org/10.1080/0305215X.2024.2420746
  • Li X. K., Liu,W., Zhang T.J., Wang P.M., & Wang X.D. (2019a). Analysis of the effect of vortex generator spacing on boundary layer flow separation control. Applied Sciences, 9(24), 5495. https://doi.org/10.3390/app9245495
  • Li X., Yang K., & Wang X. (2019c). Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance. Energies, 12(5), 959. https://doi.org/10.3390/en12050959
  • Li X.K, Liu W, Zhang, T.J., Wang P.M., & Wang X.D. (2019b) Experimental and numerical analysis of the effect of vortex generator installation angle on flow separation control. Energies, 12(23) 4583. https://doi.org/10.3390/en12234583
  • Liu, R.L., Zhao, Q., He, X.J., Yuan, X.Y., Wu, W.T., & Wu, M.Y. (2022). Airfoil optimization based on multi-objective bayesian. Journal of Mechanical Science and Technology, 36 (11) (2022) 5561~5573. http://doi.org/10.1007/s12206-022-1020-y
  • Lyu Z., Kenway G.K., & Martins J.R. (2015). Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA journal, 53(4), 968-985. https://doi.org/10.2514/1.J053318
  • Mader C.A., & Martins J.R. (2013). Stability-constrained aerodynamic shape optimization of flying wings. Journal of Aircraft, 50(5), 1431-1449. https://doi.org/10.2514/1.C031956
  • Martinez D., Meaurio C., Alviso D., Chaparro J., Vargas E., & Rolon J.C. (2016). Design and Implementation of an Aerodynamic Balance in a Subsonic Wind Tunnel and Validation Through Numerical and Experimental Investigations of Lift and Drag Performances on Airfoils. 16 th Brazilian Congress of Thermal Sciences and Engineering November 07-10, 2016, Vitoria, ES, Brazil.
  • McCormick, D. C. (1993). Shock/boundary-layer interaction control with vortex generators and passive cavity. AIAA journal, 31(1), 91-96. https://doi.org/10.2514/3.11323
  • McLean Doug (2012). Continuum Fluid Mechanics and the Navier-Stokes Equations. Understanding Aerodynamics: Arguing from the Real Physics. John Wiley & Sons. pp. 13–78. ISBN 9781119967514.
  • Munshi A., Sulaeman, E., Omar N., & Ali M.Y. (2018). CFD analysis on the effect of winglet cant angle on aerodynamics of ONERA M6 wing. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), 44-54.
  • Nabawy M.R., ElNomrossy M.M., Abdelrahman M.M., & ElBayoumi G.M. (2012). Aerodynamic shape optimisation, wind tunnel measurements and CFD analysis of a MAV wing. The Aeronautical Journal, 116(1181), 685-708. https://doi.org/10.1017/S000192400000717X
  • Namura N., Obayashi S., & Jeong S. (2016). Efficient global optimization of vortex generators on a supercritical infinite wing. Journal of Aircraft, 53(6), 1670-1679. https://doi.org/10.2514/1.C033753
  • Nikolaou, I. G., Politis, E. S., & Chaviaropoulos, P. K. (2005). Modelling the flow around airfoils equipped with vortex generators using a modified 2d navier–stokes solver. J. Sol. Energy Eng., 127(2), 223-233. https://doi.org/10.1115/1.1850486
  • Özden M, Genç M.S., & Koca K. (2023). Passive flow control application using single and double vortex generator on S809 wind turbine airfoil. Energies, 16(14), 5339. https://doi.org/10.3390/en16145339
  • Pascual, J. M., & Zingg, D. W. (2025). Progress in the Application of an Aerodynamic Shape Optimization Capability Using Hybrid Laminar Flow Control to Airfoils and Infinite Swept Wings. In AIAA SCITECH 2025 Forum (p. 0484). https://doi.org/10.2514/6.2025-0484
  • Pouryoussefi S.G., Abdolali G., Bakhsheshizanjani M., Khoshnejad A., & Doostmahmoudi A. (2023). Experimental investigation of aerodynamic characteristics of an embedded wing-electric ducted fan boundary layer ingestion setup. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(6), 301. https://doi.org/10.1007/s40430-023-04205-x
  • Selig M.S., Donovan J.F., Fraser D.B. (1989). Airfoils at low speeds. Virginia: H.A. Stokely.
  • Shi, J., Han, F., Li, T., & Liu, C. (2024). Numerical investigation of aerodynamic performance in a morphing wing with flexible leading edge using computational fluid dynamics. Journal of Engineering and Applied Science, 71(1), 229. https://doi.org/10.1186/s44147-024-00564-x
  • Sørensen, N. N., Zahle, F., Bak, C., & Vronsky, T. (2014, June). Prediction of the effect of vortex generators on airfoil performance. In Journal of physics: conference series (Vol. 524, No. 1, p. 012019). IOP Publishing. 10.1088/1742-6596/524/1/012019
  • Stanewsky, E. (2001). Adaptive wing and flow control technology. Progress in Aerospace Sciences, 37(7), 583-667. https://doi.org/10.1016/S0376-0421(01)00017-3
  • Sumnu A., & Guzelbey I.H. (2021). CFD simulations and external shape optimization of missile with wing and tailfin configuration to improve aerodynamic performance. Journal of Applied Fluid Mechanics, 14 (6) 1795-1807. https://doi.org/10.47176/jafm.14.06.32667
  • Suresh C., Ramesh K., & Paramaguru V. (2015). Aerodynamic performance analysis of a non-planar C-wing using CFD. Aerospace Science and Technology, 40, 56-61. https://doi.org/10.1016/j.ast.2014.10.014
  • UIUC (2020). Airfoil Database: © 2020 UIUC Applied Aerodynamics Group. [accessed 24 Oct 2016]. https://m-selig.ae.illinois.edu/ ads/coord/e193.dat
  • Wilcox D.C. (1998). Turbulence modeling for CFD. Vol. 2, 103-217. La Canada, CA: DCW industries.
  • Yan X., Zhu J., Kuang M., & Wang X. (2019). Aerodynamic shape optimization using a novel optimizer based on machine learning techniques. Aerospace Science and Technology, 86, 826-835. https://doi.org/10.1016/j.ast.2019.02.003
  • Yu Y., Lyu Z., Xu Z., & Martins J.R. (2018). On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerospace Science and Technology, 75, 183-199. https://doi.org/10.1016/j.ast.2018.01.016
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makine Mühendisliği
Yazarlar

Ahmet Şumnu 0000-0003-1514-6048

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 17 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Şumnu, A. (2025). INVESTIGATION OF PASSIVE FLOW CONTROL ANALYSIS AND AERODYNAMIC SHAPE OPTIMIZATION VIA CFD SIMULATION. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1293-1308. https://doi.org/10.17780/ksujes.1661632