Araştırma Makalesi
BibTex RIS Kaynak Göster

HİBRİT KOMPOZİTLERİN GELİŞTİRİLMİŞ DARBE DİRENCİ: UD KARBON VE CAM ELYAF TAKVİYELİ LAMİNATLAR ÜZERİNE KARŞILAŞTIRMALI BİR ÇALIŞMA

Yıl 2025, Cilt: 28 Sayı: 3, 1320 - 1330, 03.09.2025
https://doi.org/10.17780/ksujes.1666801

Öz

Bu çalışma, tek yönlü (UD) karbon fiber, tek yönlü (UD) cam fiber ve hibrit kompozit malzemelerin Charpy darbe dayanımını araştırmaktadır. Sonuçlar, enerji emme kapasiteleri ve kırılma davranışlarında belirgin farklar ortaya koymuştur. Karbon fiber kompozitler, kırılgan kırılmalar ve düşük enerji emilimi sergilerken, cam fiber kompozitler, tam kırılma olmadan önemli bir deformasyon göstererek daha fazla enerji emmiştir. Hibrit laminat, karbon fiber muadiline göre yaklaşık üçte bir daha fazla enerji emerek gelişmiş darbe dayanımı sergiledi ve fiber hibridizasyonu sayesinde dengeli bir performans artışı sağladı. Zarar gören örneklerin mikroskobik analizi, farklı hasar modlarını ortaya koymuştur: Cam fiberler, deformasyon ve mod I ayrılma gösterirken, karbon fiberler kırılgan kırılmalar ve geniş delaminasyon sergilemiştir. Hibrit örnekler, her iki hasar modunun bir kombinasyonunu sergileyerek genel darbe direncini artırmıştır. Bu bulgular, hibrit kompozitlerin, özellikle darbe direnci gerektiren uygulamalarda dengeli mekanik özellikler için potansiyelini göstermektedir. Hibridleştirme yöntemi, karbon fiberlerin yüksek mukavemetini cam fiberlerin üstün darbe direnci ile birleştirerek ani darbe koşullarında malzeme performansını artırır. Gelecekteki araştırmalar, hibritleşme sürecinin optimize edilmesine ve malzeme özelliklerini daha da geliştirebilmek için farklı fiber kombinasyonlarının keşfedilmesine odaklanmalıdır.

Kaynakça

  • Ahmad, H., Markina, A. A., Porotnikov, M. V., & Ahmad, F. (2020). A review of carbon fiber materials in the automotive industry. IOP Conference Series: Materials Science and Engineering, 971(3), 032011. doi:10.1088/1757-899X/971/3/032011
  • Bhong, M., Khan, T. K. H., Devade, K., Vijay Krishna, B., Sura, S., Eftikhaar, H. K., . . . Gupta, N. (2023). Review of composite materials and applications. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2023.10.026
  • Cao, J., Gu, J., Dang, Z., & Zhang, C. (2023). On temperature-dependent fiber bridging in mode I delamination of unidirectional composite laminates. Composites Part A: Applied Science and Manufacturing, 171, 107581. doi:https://doi.org/10.1016/j.compositesa.2023.107581
  • Das, T. K., Ghosh, P., & Das, N. C. (2019). Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Advanced Composites and Hybrid Materials, 2(2), 214-233. doi:10.1007/s42114-018-0072-z
  • Dost Kimya. (2009). Laminating Resin MGSTM L160 and Hardener H160, Hexion. In Technical Data Sheet. The Netherlands.
  • Dost Kimya. (2014). Technical Data Sheet, Carbon Fabric – 200gr/sqm 3K Plain. Rev.2.2, Turkey, 1.
  • Enfedaque A, Molina-Aldareguía JM, Gálvez F, González C, LLorca J. (2010) Effect of Glass Fiber Hybridization on the Behavior Under Impact of Woven Carbon Fiber/Epoxy Laminates. Journal of Composite Materials, 44 (25), 3051-3068. doi:https://doi.org/10.1177/0021998310369602
  • Farhood NH, Karuppanan S, Ya HH, Sultan M. (2020). Experimental investigation on the effects of glass fiber hybridization on the low-velocity impact response of filament-wound carbon-based composite pipes. Polymers and Polymer Composites, 29 (7), 829-841. doi:https://doi.org/10.1177/0967391120938181
  • Fischer, G., & Li, V. C. (2007). Effect of fiber reinforcement on the response of structural members. Engineering Fracture Mechanics, 74(1), 258-272. doi:https://doi.org/10.1016/j.engfracmech.2006.01.027
  • George, M., Chae, M., & Bressler, D. C. (2016). Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 83, 1-23. doi:https://doi.org/10.1016/j.pmatsci.2016.04.002
  • Geren, N., Acer, D. C., Uzay, C., & Bayramoglu, M. (2021). The effect of boron carbide additive on the low-velocity impact properties of low-density foam core composite sandwich structures. Polymer Composites, 42(4), 2037-2049. doi:https://doi.org/10.1002/pc.25957
  • Giancaspro, J. W., Papakonstantinou, C. G., & Balaguru, P. N. (2010). Flexural Response of Inorganic Hybrid Composites With E-Glass and Carbon Fibers. Journal of Engineering Materials and Technology, 132(2). doi:10.1115/1.4000670
  • Guo, R., Guijun, X., Chenggao, L., Xiangyu, H., & and Xin, M. (2022). Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod. Mechanics of Advanced Materials and Structures, 29(27), 6288-6300. doi:10.1080/15376494.2021.1974620
  • Gupta, M. K., Ramesh, M., & Thomas, S. (2021). Effect of hybridization on properties of natural and synthetic fiber-reinforced polymer composites (2001–2020): A review. Polymer Composites, 42(10), 4981-5010. doi:https://doi.org/10.1002/pc.26244
  • Heimbs, S., Wagner, T., Viana Lozoya, J. T., Hoenisch, B., & Franke, F. (2018). Comparison of impact behaviour of glass, carbon and Dyneema composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(3), 951-966. doi:10.1177/0954406218764509
  • Hine, P. J., Bonner, M. J., Ward, I. M., Swolfs, Y., & Verpoest, I. (2017). The influence of the hybridisation configuration on the mechanical properties of hybrid self reinforced polyamide 12/carbon fibre composites. Composites Part A: Applied Science and Manufacturing, 95, 141-151. doi:https://doi.org/10.1016/j.compositesa.2016.12.029
  • Jones, R., Stelzer, S., & Brunner, A. J. (2014). Mode I, II and Mixed Mode I/II delamination growth in composites. Composite Structures, 110, 317-324. doi:https://doi.org/10.1016/j.compstruct.2013.12.009
  • Ishtiaq, S., Saleem, M. Q., Naveed, R., Harris, M., & Khan, S. A. (2024). Glass–Carbon–Kevlar fiber reinforced hybrid polymer composite (HPC): Part (A) mechanical and thermal characterization for high GSM laminates. Composites Part C: Open Access, 14, 100468. doi:https://doi.org/10.1016/j.jcomc.2024.100468
  • Maier, R., & Mandoc, A.-C. (2023). Investigation on Layer Hybridization of Glass/Carbon Fibre Woven Reinforced Composites Subjected to Low-Speed Impact. Journal of Composites Science, 7(2), 83. doi:https://doi.org/10.3390/jcs7020083
  • Oladele, I. O., Omotosho, T. F., & Adediran, A. A. (2020). Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science, 2020 (1), 8834518. doi:https://doi.org/10.1155/2020/8834518
  • Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers, 14 (22), 5007. doi:https://doi.org/10.3390/polym14225007
  • Perumal, A. B., Nambiar, R. B., Sellamuthu, P. S., & Sadiku, E. R. (2020). Carbon Fiber Composites. In O. V. Kharissova, L. M. T. Martínez, & B. I. Kharisov (Eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (pp. 1-32). Cham: Springer International Publishing.
  • Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 11 (10), 1667. doi:https://doi.org/10.3390/polym11101667
  • Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers, 13 (21), 3721. doi:https://doi.org/10.3390/polym13213721
  • Siengchin, S. (2023). A review on lightweight materials for defence applications: Present and future developments. Defence Technology, 24, 1-17. doi:https://doi.org/10.1016/j.dt.2023.02.025
  • Swolfs, Y., Crauwels, L., Breda, E. V., Gorbatikh, L., Hine, P., Ward, I., & Verpoest, I. (2014). Tensile behaviour of intralayer hybrid composites of carbon fibre and self-reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 59, 78-84. doi:https://doi.org/10.1016/j.compositesa.2014.01.001
  • Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181-200. doi:https://doi.org/10.1016/j.compositesa.2014.08.027
  • Swolfs, Y., Shi, J., Meerten, Y., Hine, P., Ward, I., Verpoest, I., & Gorbatikh, L. (2015). The importance of bonding in intralayer carbon fibre/self-reinforced polypropylene hybrid composites. Composites Part A: Applied Science and Manufacturing, 76, 299-308. doi:https://doi.org/10.1016/j.compositesa.2015.06.017
  • Uzay, Ç. (2022a). Mechanical and thermal characterization of laminar carbon/epoxy composites modified with magnesium oxide microparticles. Polymer Composites, 43 (1), 299-310. doi:https://doi.org/10.1002/pc.26374
  • Uzay, Ç. (2022b). Studies on mechanical and thermal properties of cubic boron nitride (c-BN) nanoparticle filled carbon fiber reinforced polymer composites. Polymer-Plastics Technology and Materials, 61(13), 1439-1455. doi:10.1080/25740881.2022.2069037
  • Uzay, Ç., Acer, D., & Geren, N. (2019). [Impact Strength of Interply and Intraply Hybrid Laminates Based on Carbon-Aramid/Epoxy Composites]. European Mechanical Science, 3(1), 1-5. doi:10.26701/ems.384440
  • Thakare, P. A., Kumar, N., Ugale, V. B., Giri, J., Sunheriya, N., & Al-Lohedan, H. A. (2024). Effect of impact and flexural loading on hybrid composite made of kevlar and natural fibers. AIP Advances, 14(4). doi:10.1063/5.0195907
  • Wonderly, C., Grenestedt, J., Fernlund, G., & Cěpus, E. (2005). Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Composites Part B: Engineering, 36(5), 417-426. doi:https://doi.org/10.1016/j.compositesb.2005.01.004
  • Wu, W., Wang, Q., Ichenihi, A., Shen, Y., & Li, W. (2018). The Effects of Hybridization on the Flexural Performances of Carbon/Glass Interlayer and Intralayer Composites. Polymers, 10(5), 549. doi:https://doi.org/10.3390/polym10050549
  • Wu, W., Wang, Q., & Li, W. (2018). Comparison of Tensile and Compressive Properties of Carbon/Glass Interlayer and Intralayer Hybrid Composites. Materials, 11 (7), 1105. doi:https://doi.org/10.3390/ma11071105
  • Wu, H., Zhao, Z., Bai, Y., Fang, S., Ma, D., & Zhang, C. (2025). Intralaminar hybrid configurations on the impact resistance of Carbon/Kevlar plain-woven composite plates. Thin-Walled Structures, 209, 112895. doi:https://doi.org/10.1016/j.tws.2024.112895
  • Yeter, E., Deniz, M., Doğru, M. H., & Göv, İ. (2024). Ballistic and Charpy impact performance of basalt fiber reinforced polymer composites. Polymer Composites, 45 (6), 5125-5135. doi:https://doi.org/10.1002/pc.28115
  • Zhang, C., Rao, Y., Li, Z., & Li, W. (2018). Low-Velocity Impact Behavior of Interlayer/Intralayer Hybrid Composites Based on Carbon and Glass Non-Crimp Fabric. Materials, 11 (12), 2472. doi:https://doi.org/10.3390/ma11122472

ENHANCED IMPACT RESISTANCE OF HYBRID COMPOSITES: A COMPARATIVE STUDY OF UD CARBON AND GLASS FIBER REINFORCED LAMINATES

Yıl 2025, Cilt: 28 Sayı: 3, 1320 - 1330, 03.09.2025
https://doi.org/10.17780/ksujes.1666801

Öz

This study investigates the Charpy impact strength of unidirectional (UD) carbon fiber, unidirectional (UD) glass fiber, and hybrid composite materials. The results revealed distinct differences in their energy absorption capacities and fracture behaviors. Carbon fiber composites exhibited brittle fractures and low energy absorption, while glass fiber composites displayed significant deformation without a complete fracture, absorbing more energy. The hybrid laminate showed enhanced impact strength, absorbing nearly one-third more energy than the carbon fiber counterpart, and offering a balanced performance improvement through fiber hybridization. Statistical analysis confirmed that the improvement in impact performance among the tested groups was significant. Microscopic analysis of the damaged specimens revealed different damage modes: glass fibers exhibited deformation and mode I delamination, while carbon fibers showed brittle fractures and extensive delamination. Hybrid specimens displayed a combination of damage modes, enhancing their overall impact resistance. These findings demonstrate the potential of hybrid composites for applications requiring balanced mechanical properties, particularly impact resistance. The hybridization method allows for the integration of carbon fibers' high strength with glass fibers' superior impact resistance, enhancing material performance under sudden impact conditions. Future research should focus on optimizing the hybridization process and exploring additional fiber combinations for enhanced material properties.

Kaynakça

  • Ahmad, H., Markina, A. A., Porotnikov, M. V., & Ahmad, F. (2020). A review of carbon fiber materials in the automotive industry. IOP Conference Series: Materials Science and Engineering, 971(3), 032011. doi:10.1088/1757-899X/971/3/032011
  • Bhong, M., Khan, T. K. H., Devade, K., Vijay Krishna, B., Sura, S., Eftikhaar, H. K., . . . Gupta, N. (2023). Review of composite materials and applications. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2023.10.026
  • Cao, J., Gu, J., Dang, Z., & Zhang, C. (2023). On temperature-dependent fiber bridging in mode I delamination of unidirectional composite laminates. Composites Part A: Applied Science and Manufacturing, 171, 107581. doi:https://doi.org/10.1016/j.compositesa.2023.107581
  • Das, T. K., Ghosh, P., & Das, N. C. (2019). Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Advanced Composites and Hybrid Materials, 2(2), 214-233. doi:10.1007/s42114-018-0072-z
  • Dost Kimya. (2009). Laminating Resin MGSTM L160 and Hardener H160, Hexion. In Technical Data Sheet. The Netherlands.
  • Dost Kimya. (2014). Technical Data Sheet, Carbon Fabric – 200gr/sqm 3K Plain. Rev.2.2, Turkey, 1.
  • Enfedaque A, Molina-Aldareguía JM, Gálvez F, González C, LLorca J. (2010) Effect of Glass Fiber Hybridization on the Behavior Under Impact of Woven Carbon Fiber/Epoxy Laminates. Journal of Composite Materials, 44 (25), 3051-3068. doi:https://doi.org/10.1177/0021998310369602
  • Farhood NH, Karuppanan S, Ya HH, Sultan M. (2020). Experimental investigation on the effects of glass fiber hybridization on the low-velocity impact response of filament-wound carbon-based composite pipes. Polymers and Polymer Composites, 29 (7), 829-841. doi:https://doi.org/10.1177/0967391120938181
  • Fischer, G., & Li, V. C. (2007). Effect of fiber reinforcement on the response of structural members. Engineering Fracture Mechanics, 74(1), 258-272. doi:https://doi.org/10.1016/j.engfracmech.2006.01.027
  • George, M., Chae, M., & Bressler, D. C. (2016). Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 83, 1-23. doi:https://doi.org/10.1016/j.pmatsci.2016.04.002
  • Geren, N., Acer, D. C., Uzay, C., & Bayramoglu, M. (2021). The effect of boron carbide additive on the low-velocity impact properties of low-density foam core composite sandwich structures. Polymer Composites, 42(4), 2037-2049. doi:https://doi.org/10.1002/pc.25957
  • Giancaspro, J. W., Papakonstantinou, C. G., & Balaguru, P. N. (2010). Flexural Response of Inorganic Hybrid Composites With E-Glass and Carbon Fibers. Journal of Engineering Materials and Technology, 132(2). doi:10.1115/1.4000670
  • Guo, R., Guijun, X., Chenggao, L., Xiangyu, H., & and Xin, M. (2022). Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod. Mechanics of Advanced Materials and Structures, 29(27), 6288-6300. doi:10.1080/15376494.2021.1974620
  • Gupta, M. K., Ramesh, M., & Thomas, S. (2021). Effect of hybridization on properties of natural and synthetic fiber-reinforced polymer composites (2001–2020): A review. Polymer Composites, 42(10), 4981-5010. doi:https://doi.org/10.1002/pc.26244
  • Heimbs, S., Wagner, T., Viana Lozoya, J. T., Hoenisch, B., & Franke, F. (2018). Comparison of impact behaviour of glass, carbon and Dyneema composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(3), 951-966. doi:10.1177/0954406218764509
  • Hine, P. J., Bonner, M. J., Ward, I. M., Swolfs, Y., & Verpoest, I. (2017). The influence of the hybridisation configuration on the mechanical properties of hybrid self reinforced polyamide 12/carbon fibre composites. Composites Part A: Applied Science and Manufacturing, 95, 141-151. doi:https://doi.org/10.1016/j.compositesa.2016.12.029
  • Jones, R., Stelzer, S., & Brunner, A. J. (2014). Mode I, II and Mixed Mode I/II delamination growth in composites. Composite Structures, 110, 317-324. doi:https://doi.org/10.1016/j.compstruct.2013.12.009
  • Ishtiaq, S., Saleem, M. Q., Naveed, R., Harris, M., & Khan, S. A. (2024). Glass–Carbon–Kevlar fiber reinforced hybrid polymer composite (HPC): Part (A) mechanical and thermal characterization for high GSM laminates. Composites Part C: Open Access, 14, 100468. doi:https://doi.org/10.1016/j.jcomc.2024.100468
  • Maier, R., & Mandoc, A.-C. (2023). Investigation on Layer Hybridization of Glass/Carbon Fibre Woven Reinforced Composites Subjected to Low-Speed Impact. Journal of Composites Science, 7(2), 83. doi:https://doi.org/10.3390/jcs7020083
  • Oladele, I. O., Omotosho, T. F., & Adediran, A. A. (2020). Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science, 2020 (1), 8834518. doi:https://doi.org/10.1155/2020/8834518
  • Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers, 14 (22), 5007. doi:https://doi.org/10.3390/polym14225007
  • Perumal, A. B., Nambiar, R. B., Sellamuthu, P. S., & Sadiku, E. R. (2020). Carbon Fiber Composites. In O. V. Kharissova, L. M. T. Martínez, & B. I. Kharisov (Eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (pp. 1-32). Cham: Springer International Publishing.
  • Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 11 (10), 1667. doi:https://doi.org/10.3390/polym11101667
  • Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers, 13 (21), 3721. doi:https://doi.org/10.3390/polym13213721
  • Siengchin, S. (2023). A review on lightweight materials for defence applications: Present and future developments. Defence Technology, 24, 1-17. doi:https://doi.org/10.1016/j.dt.2023.02.025
  • Swolfs, Y., Crauwels, L., Breda, E. V., Gorbatikh, L., Hine, P., Ward, I., & Verpoest, I. (2014). Tensile behaviour of intralayer hybrid composites of carbon fibre and self-reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 59, 78-84. doi:https://doi.org/10.1016/j.compositesa.2014.01.001
  • Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181-200. doi:https://doi.org/10.1016/j.compositesa.2014.08.027
  • Swolfs, Y., Shi, J., Meerten, Y., Hine, P., Ward, I., Verpoest, I., & Gorbatikh, L. (2015). The importance of bonding in intralayer carbon fibre/self-reinforced polypropylene hybrid composites. Composites Part A: Applied Science and Manufacturing, 76, 299-308. doi:https://doi.org/10.1016/j.compositesa.2015.06.017
  • Uzay, Ç. (2022a). Mechanical and thermal characterization of laminar carbon/epoxy composites modified with magnesium oxide microparticles. Polymer Composites, 43 (1), 299-310. doi:https://doi.org/10.1002/pc.26374
  • Uzay, Ç. (2022b). Studies on mechanical and thermal properties of cubic boron nitride (c-BN) nanoparticle filled carbon fiber reinforced polymer composites. Polymer-Plastics Technology and Materials, 61(13), 1439-1455. doi:10.1080/25740881.2022.2069037
  • Uzay, Ç., Acer, D., & Geren, N. (2019). [Impact Strength of Interply and Intraply Hybrid Laminates Based on Carbon-Aramid/Epoxy Composites]. European Mechanical Science, 3(1), 1-5. doi:10.26701/ems.384440
  • Thakare, P. A., Kumar, N., Ugale, V. B., Giri, J., Sunheriya, N., & Al-Lohedan, H. A. (2024). Effect of impact and flexural loading on hybrid composite made of kevlar and natural fibers. AIP Advances, 14(4). doi:10.1063/5.0195907
  • Wonderly, C., Grenestedt, J., Fernlund, G., & Cěpus, E. (2005). Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Composites Part B: Engineering, 36(5), 417-426. doi:https://doi.org/10.1016/j.compositesb.2005.01.004
  • Wu, W., Wang, Q., Ichenihi, A., Shen, Y., & Li, W. (2018). The Effects of Hybridization on the Flexural Performances of Carbon/Glass Interlayer and Intralayer Composites. Polymers, 10(5), 549. doi:https://doi.org/10.3390/polym10050549
  • Wu, W., Wang, Q., & Li, W. (2018). Comparison of Tensile and Compressive Properties of Carbon/Glass Interlayer and Intralayer Hybrid Composites. Materials, 11 (7), 1105. doi:https://doi.org/10.3390/ma11071105
  • Wu, H., Zhao, Z., Bai, Y., Fang, S., Ma, D., & Zhang, C. (2025). Intralaminar hybrid configurations on the impact resistance of Carbon/Kevlar plain-woven composite plates. Thin-Walled Structures, 209, 112895. doi:https://doi.org/10.1016/j.tws.2024.112895
  • Yeter, E., Deniz, M., Doğru, M. H., & Göv, İ. (2024). Ballistic and Charpy impact performance of basalt fiber reinforced polymer composites. Polymer Composites, 45 (6), 5125-5135. doi:https://doi.org/10.1002/pc.28115
  • Zhang, C., Rao, Y., Li, Z., & Li, W. (2018). Low-Velocity Impact Behavior of Interlayer/Intralayer Hybrid Composites Based on Carbon and Glass Non-Crimp Fabric. Materials, 11 (12), 2472. doi:https://doi.org/10.3390/ma11122472
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Makine Mühendisliği
Yazarlar

Ahmet Çetin 0000-0003-1393-3806

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 28 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Çetin, A. (2025). ENHANCED IMPACT RESISTANCE OF HYBRID COMPOSITES: A COMPARATIVE STUDY OF UD CARBON AND GLASS FIBER REINFORCED LAMINATES. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1320-1330. https://doi.org/10.17780/ksujes.1666801