NUMERICAL INVESTIGATION OF THE EFFECTS OF SCANNING DIRECTION AND LASER POWER DENSITY ON THERMOMECHANICAL BEHAVIOR IN ADDITIVE MANUFACTURING USING THE DED METHOD
Yıl 2025,
Cilt: 28 Sayı: 3, 1375 - 1385, 03.09.2025
Muhammet İbrahim Aşçı
,
Mehmet Ermurat
Öz
In this study, the effects of different scanning direction and laser power density conditions on the thermomechanical behavior of metal additive manufacturing via the Directed Energy Deposition (DED) method were investigated through numerical simulations. A three-dimensional thermomechanical analysis model was developed using Simufact Welding software to evaluate the temperature distribution, thermal stresses, and plastic deformation behavior under two scanning directions and laser power densities. The results revealed that both scanning directions and laser parameters significantly influence temperature gradients and the accumulation of residual stress fields. In particular, more homogeneous temperature distributions were achieved at lower laser power levels, which in turn resulted in reduced residual stresses. The findings emphasize that the optimization of scanning direction and energy input parameters is essential to ensure manufacturability and enhance the structural integrity of parts fabricated through the DED process.
Kaynakça
-
A.V. Gusarov, M. Pavlov, I. Smurov. (2011). Residual stresses at laser surface remelting and additive manufacturing, lasers in manufacturing 2011, in: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1) 248–254. https://doi.org/10.1016/j.phpro.2011.03.032.
-
Akbulut, E. (2019). Investigating The Effects of The Scanning Strategy and Layer Thickness for Electron Beam Melting By Using Finite Element Method. M.Sc. Thesis. Istanbul Technical Unıversity.
-
Alimardani, (2009). Multi-physics analysis of laser solid freeform fabrication, PhD Thesis, University of Waterloo.
-
Arce, (2012). Thermal modeling and simulation of electron beam melting for rapid prototyping on Ti6Al4V alloys, PhD Thesis, University of Raleigh, North Carolina.
-
Aşçı, M., İ. (2019). Lazerli Metal Yığma Prosesinin Sonlu Elemanlar Metoduyla Termo-Mekanik Analizi. Kahramanmaraş Sütçü İmam Üniversitesi.
-
Aşçı, M., İ., Ermurat, M. (2019). Investigation Of Laser Metal Deposition Method by Finite Element Analysis: Laser Speed Effect on Thin Walled Geometry Building. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences.
-
Bielik M, “Thermo-mechanical analysis of plasma-based additive manufacturing of Ti-6Al-4V components using Simufact Welding 8.0”. Master Thesis. Vienna: Vienna University of Technology, June 2020.
-
Cao, J. Gharghouri, A., M. Nash, P. (2016). Finite-Element Analysis and Experimental Validation of Thermalresidual Stress and Distortion İn Electron Beam Additive Manufacturedti-6Al-4V Build Plates. Journal of Materials Processing Technology 237 (2016) 409–419.
-
Çeliker, H., İ. (2018). Kaynaklı Malzemelerde Distorsiyon Analizi. Trakya Üniversitesi.
-
Chae, (2013). A numerical and experimental study for residual stress evolution in low alloy steel during laser aided additive manufacturing process, PhD Thesis, University of Michigan.
-
Duran, B. (2016). Seçmeli Lazer Ergitme Ile Metal Parça Imalatında Tarama Yolu Belirleme ve Eniyileme. Süleyman Demirel Üniversitesi.
-
Ermurat, M., Ali Arslan, M., Erzincanli, F. and Uzman, I. (2013), "Process parameters investigation of a laser-generated single clad for minimum size using design of experiments", Rapid Prototyping Journal, Vol. 19 No. 6, pp. 452-462. https://doi.org/10.1108/RPJ-06-2011-0062
-
Foroozmehr, E., Kovacevic, R. (2010). Effect Of Path Planning nn The Laser Powder Depositionprocess: Thermal and Structural Evaluation. Int J Adv Manuf Technol (2010) 51:659–669.
-
Hofman, (2009), Development of an observation and control system for industrial laser cladding, PhD Thesis, University of Twente.
-
Jeong-Rim L., Min-Su L., Hobyung C., Soo Yeol L., Taewook N., Woo-Sung K., Tea-Sung J. (2020). Effects of building direction and heat treatment on the local mechanical properties of direct metal laser sintered 15-5 PH stainless steel. Materials Characterization.
-
Kim, H., F., Moylan, S., P. (2018). Literature Review of Metal Additive Manufacturing Defects. NIST Advanced Manufacturing Series 100-16. https://doi.org/10.6028/NIST.AMS.100-16
-
Koric, S. Thomas, B.G. (2020). Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws, Journal of Materials Processing Technology, Volume 197, Issues 1–3, 2008, Pages 408-418, ISSN 0924-0136, https://doi.org/10.1016/j.jmatprotec.2007.06.060.
-
Liu. M., Kumar., A., Bukkapatnam., S., Kuttolamadom., M. (2021). A Review of the Anomalies in Directed Energy Deposition (DED) Processes & Potential Solutions - Part Quality & Defects.
-
Mercelis. P, Kruth, J.P. (2006). Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12 (5) 254–265, https://doi.org/10.1108/ 13552540610707013.
-
Poyraz. Ö. (2018). Metallerin Lazer Katmanlı İmalatında Kullanılan Proses Parametrelerinin Etkisinin, Modelleme ve Simülasyon Yöntemleri Kullanılarak İncelenmesi. Eskişehir Osmangazi Üniversitesi. Fenbilimleri Enstitüsü.
-
Ramos, D. Belblidia, F. Sienz, J. (2019). New Scanning Strategy to Reduce Warpage İn Additive Manufacturing. Additive Manufacturing Volume 28, August 2019, Pages 554-564.
-
Sagar S., Satish K. S., Dinesh W. R. (2021). A review on process planning strategies and challenges of WAAM. Materials Today: Proceedings Volume 47, Part 19, 2021, Pages 6564-6575.
Simufact (2024), Simufact Welding Tutorial, Simufact
-
Sirin, T., B., Kaynak, Y. (2021). Prediction of residual stress and distortion in laser powder bed fusion additive manufacturing process of Inconel 718 alloy. 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ˈ20.
-
Song Y, Wang Y, Zhang M, Experimental and Numerical Simulation on Laser welding of High Manganese TWIP980 Steel, Procedia Manufacturing, Volume 37, 2019, Pages 385-393, ISSN 2351-9789, https://doi.org/10.1016/j.promfg.2019.12.064.
-
Van Belle, L., Vansteenkiste, G., Boyer, J.S., (2012). Comparisons of numerical modelling of the Selective Laser Melting. In Key Engineering Materials Vol. 504 (2012): 1067-1072.
-
Zhan, X., Qi, Chaoqi., Gao, Z., Tian, Deyong., Wang, Z. (2019). The influence of heat input on microstructure and porosity during laser cladding of Invar alloy. Optics and Laser Technology 113 (2019) 453–461.
-
Zhou, J., BBarrett,R., Leen, S.(2022). Three-dimensional finite element modelling for additive manufacturing of Ti-6Al-4V components: effect of scanning strategies on temperature history and residual stress. Journal of Advanced Joining Processes
DED YÖNTEMİYLE EKLEMELİ İMALATTA TARAMA YÖNÜ VE LAZER GÜÇ YOĞUNLUĞUNUN TERMOMEKANİK DAVRANIŞ ÜZERİNE ETKİLERİNİN SAYISAL İNCELENMESİ
Yıl 2025,
Cilt: 28 Sayı: 3, 1375 - 1385, 03.09.2025
Muhammet İbrahim Aşçı
,
Mehmet Ermurat
Öz
Bu çalışmada, Lazer ile Yönlendirilmiş Enerji Biriktirme (DED) yöntemiyle gerçekleştirilen metal eklemeli imalat sürecinde farklı tarama yönü ve lazer güç yoğunluğu koşullarının termomekanik davranış üzerindeki etkileri sayısal olarak incelenmiştir. Çalışma kapsamında Simufact Welding yazılımı kullanılarak geliştirilen 3B termomekanik analiz modeliyle, iki farklı tarama yönü ve lazer güç yoğunlukları altında sıcaklık dağılımı, ısıl gerilmeler ve plastik deformasyon davranışları analiz edilmiştir. Elde edilen sonuçlar, tarama yönlerinin ve lazer parametrelerinin sıcaklık gradyanlarını ve birikimli gerilme alanlarını önemli ölçüde etkilediğini göstermiştir. Özellikle düşük lazer gücünün kullanıldığı durumlarda daha homojen sıcaklık dağılımı elde edildiği, bu durumun da daha düşük artık gerilmelerle sonuçlandığı görülmüştür. Çalışma, DED sürecinde parçanın üretilebilirliğini sağlamak ve yapısal bütünlüğünü artırmak için tarama yönü ve enerji yoğunluğu parametrelerinin optimize edilmesi gerektiğini ortaya koymaktadır.
Kaynakça
-
A.V. Gusarov, M. Pavlov, I. Smurov. (2011). Residual stresses at laser surface remelting and additive manufacturing, lasers in manufacturing 2011, in: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1) 248–254. https://doi.org/10.1016/j.phpro.2011.03.032.
-
Akbulut, E. (2019). Investigating The Effects of The Scanning Strategy and Layer Thickness for Electron Beam Melting By Using Finite Element Method. M.Sc. Thesis. Istanbul Technical Unıversity.
-
Alimardani, (2009). Multi-physics analysis of laser solid freeform fabrication, PhD Thesis, University of Waterloo.
-
Arce, (2012). Thermal modeling and simulation of electron beam melting for rapid prototyping on Ti6Al4V alloys, PhD Thesis, University of Raleigh, North Carolina.
-
Aşçı, M., İ. (2019). Lazerli Metal Yığma Prosesinin Sonlu Elemanlar Metoduyla Termo-Mekanik Analizi. Kahramanmaraş Sütçü İmam Üniversitesi.
-
Aşçı, M., İ., Ermurat, M. (2019). Investigation Of Laser Metal Deposition Method by Finite Element Analysis: Laser Speed Effect on Thin Walled Geometry Building. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences.
-
Bielik M, “Thermo-mechanical analysis of plasma-based additive manufacturing of Ti-6Al-4V components using Simufact Welding 8.0”. Master Thesis. Vienna: Vienna University of Technology, June 2020.
-
Cao, J. Gharghouri, A., M. Nash, P. (2016). Finite-Element Analysis and Experimental Validation of Thermalresidual Stress and Distortion İn Electron Beam Additive Manufacturedti-6Al-4V Build Plates. Journal of Materials Processing Technology 237 (2016) 409–419.
-
Çeliker, H., İ. (2018). Kaynaklı Malzemelerde Distorsiyon Analizi. Trakya Üniversitesi.
-
Chae, (2013). A numerical and experimental study for residual stress evolution in low alloy steel during laser aided additive manufacturing process, PhD Thesis, University of Michigan.
-
Duran, B. (2016). Seçmeli Lazer Ergitme Ile Metal Parça Imalatında Tarama Yolu Belirleme ve Eniyileme. Süleyman Demirel Üniversitesi.
-
Ermurat, M., Ali Arslan, M., Erzincanli, F. and Uzman, I. (2013), "Process parameters investigation of a laser-generated single clad for minimum size using design of experiments", Rapid Prototyping Journal, Vol. 19 No. 6, pp. 452-462. https://doi.org/10.1108/RPJ-06-2011-0062
-
Foroozmehr, E., Kovacevic, R. (2010). Effect Of Path Planning nn The Laser Powder Depositionprocess: Thermal and Structural Evaluation. Int J Adv Manuf Technol (2010) 51:659–669.
-
Hofman, (2009), Development of an observation and control system for industrial laser cladding, PhD Thesis, University of Twente.
-
Jeong-Rim L., Min-Su L., Hobyung C., Soo Yeol L., Taewook N., Woo-Sung K., Tea-Sung J. (2020). Effects of building direction and heat treatment on the local mechanical properties of direct metal laser sintered 15-5 PH stainless steel. Materials Characterization.
-
Kim, H., F., Moylan, S., P. (2018). Literature Review of Metal Additive Manufacturing Defects. NIST Advanced Manufacturing Series 100-16. https://doi.org/10.6028/NIST.AMS.100-16
-
Koric, S. Thomas, B.G. (2020). Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws, Journal of Materials Processing Technology, Volume 197, Issues 1–3, 2008, Pages 408-418, ISSN 0924-0136, https://doi.org/10.1016/j.jmatprotec.2007.06.060.
-
Liu. M., Kumar., A., Bukkapatnam., S., Kuttolamadom., M. (2021). A Review of the Anomalies in Directed Energy Deposition (DED) Processes & Potential Solutions - Part Quality & Defects.
-
Mercelis. P, Kruth, J.P. (2006). Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12 (5) 254–265, https://doi.org/10.1108/ 13552540610707013.
-
Poyraz. Ö. (2018). Metallerin Lazer Katmanlı İmalatında Kullanılan Proses Parametrelerinin Etkisinin, Modelleme ve Simülasyon Yöntemleri Kullanılarak İncelenmesi. Eskişehir Osmangazi Üniversitesi. Fenbilimleri Enstitüsü.
-
Ramos, D. Belblidia, F. Sienz, J. (2019). New Scanning Strategy to Reduce Warpage İn Additive Manufacturing. Additive Manufacturing Volume 28, August 2019, Pages 554-564.
-
Sagar S., Satish K. S., Dinesh W. R. (2021). A review on process planning strategies and challenges of WAAM. Materials Today: Proceedings Volume 47, Part 19, 2021, Pages 6564-6575.
Simufact (2024), Simufact Welding Tutorial, Simufact
-
Sirin, T., B., Kaynak, Y. (2021). Prediction of residual stress and distortion in laser powder bed fusion additive manufacturing process of Inconel 718 alloy. 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ˈ20.
-
Song Y, Wang Y, Zhang M, Experimental and Numerical Simulation on Laser welding of High Manganese TWIP980 Steel, Procedia Manufacturing, Volume 37, 2019, Pages 385-393, ISSN 2351-9789, https://doi.org/10.1016/j.promfg.2019.12.064.
-
Van Belle, L., Vansteenkiste, G., Boyer, J.S., (2012). Comparisons of numerical modelling of the Selective Laser Melting. In Key Engineering Materials Vol. 504 (2012): 1067-1072.
-
Zhan, X., Qi, Chaoqi., Gao, Z., Tian, Deyong., Wang, Z. (2019). The influence of heat input on microstructure and porosity during laser cladding of Invar alloy. Optics and Laser Technology 113 (2019) 453–461.
-
Zhou, J., BBarrett,R., Leen, S.(2022). Three-dimensional finite element modelling for additive manufacturing of Ti-6Al-4V components: effect of scanning strategies on temperature history and residual stress. Journal of Advanced Joining Processes