Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE EFFECTS OF EDGE RADIUS ON CRASH PERFORMANCE IN CRASH BOXES

Yıl 2025, Cilt: 28 Sayı: 3, 1440 - 1447, 03.09.2025
https://doi.org/10.17780/ksujes.1684749

Öz

Automobiles are the most basic element of the road transportation. The number of automobiles in traffic is increasing day by day thanks to advancing technology. Therefore, the number of accidents is increasing too. For this reason, automobile manufacturers are doing a lot of work on the development of automobile active and passive safety systems and equipment. Crash boxes are a passive safety element used for protecting chassis, passengers, and drivers in an accident. In this study, the effect of edge radius changing on the crash performance of the square section crash box was investigated; the study was conducted as numerical, and ANSYS Workbench software was used. The study started with determining the ideal element size. For this, three different element sizes, 5 mm, 4 mm, and 3mm, were used at existent boundary conditions. After determining the ideal element size, crash performances were investigated through force-displacement and absorbed energy-displacement graphs depending on the edge radius. As a result of the study, the highest crush force was obtained with the crash box with no edge radius. In contrast, among the crash boxes with edge radius, the highest energy absorption performance was obtained with the crash box with a 4 mm edge radius.

Kaynakça

  • Abdullah, N. A. Z., Sani, M. S. M., Salwani, M. S., & Husain, N. A. (2020). A review on crashworthiness studies of crash box structure. Thin-Walled Structures, 153, 106795. https://doi.org/10.1016/j.tws.2020.106795
  • Altın, M. (2018). Çarpışma Kutularının Üzerine Açılan Oyukların Çarpışma Performansı Üzerine Etkisinin İncelenmesi. Politeknik Dergisi, 22(1), 135–139. https://doi.org/10.2339/politeknik.403989
  • Ateş, F., Bakirci, A., Günaydin, A. C., Ensarioğlu, C., & Çakır, M. C. (2022). Otomobil çarpışma kutularında performans artırıcı yaklaşımların incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 830–856. https://doi.org/10.25092/baunfbed.1025311
  • Baykasoğlu, C., Baykasoğlu, A., Erdin, M. E., & Cetin, E. (2024). Effect of triggering on the axial crushing behavior of GFRP tubes: Experimental investigation and optimization. Polymer Composites, 45(6), 5504-5521. https://doi.org/10.1002/pc.28143
  • Cetin, E., Baykasoğlu, A., Erdin, M. E., & Baykasoğlu, C. (2023). Experimental investigation of the axial crushing behavior of aluminum/CFRP hybrid tubes with circular-hole triggering mechanism. Thin-Walled Structures, 182, 110321. https://doi.org/10.1016/j.tws.2022.110321
  • Choi, S. Y., Hong, S. C., Park, S. K., & Jeong, S. W.(2022). Effects of Diameter-to-thickness Ratio on Impact Energy Absorption Capability of CFRP Cylindrical Crash Box. International Journal of Automotive Technology, 23(6), 1663–1671. https://doi.org/10.1007/s12239-022-0144-5
  • Choiron, M. A., Purnowidodo, A., Siswanto, E., & Hidayati, N. A. (2016). Crash energy absorption of multi-segments crash box under frontal load. Jurnal Teknologi (Sciences & Engineering), 78(5), 347–350. https://doi.org/10.11113/jt.v78.8334
  • Doğan, O., & Kamer, M. S. (2024). Farklı Kesit Geometrilerine Sahip İnce Duvarlı Sac Metal Çarpışma Kutularının Darbe Performanslarının Nümerik İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 719–728. https://doi.org/10.21605/cukurovaumfd.1560152
  • Gülçimen Çakan, B., Ensarioğlu, C., & Çakır, M. C. (2019). Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 295–305. https://doi.org/10.25092/baunfbed.547179
  • Han, M. S., Min, B. S., & Cho, J. U. (2014). Fracture properties of aluminum foam crash box. International Journal of Automotive Technology, 15(6), 945–951. https://doi.org/10.1007/s12239-014-0099-2
  • Hu, Y., Li, Z., Li, K., & Yao, Z. (2014). Predictive modeling and uncertainty quantification of laser shock processing by bayesian gaussian processes with multiple outputs. Journal of Manufacturing Science and Engineering, 136(4), 041014. https://doi.org/10.1115/1.4027539
  • Hussain, N. N., Regalla, S. P., Rao, Y. V. D., Dirgantara, T., Gunawan, L., & Jusuf, A. (2021). Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(1), 114–130. https://doi.org/10.1177/1464420720952813
  • Hussain, N. N., Regalla, S. P., & Rao Y. V. D. (2017). Numerical investigation into the effect of various trigger configurations on crashworthiness of GFRP crash boxes made of different types of cross sections. International Journal of Crashworthiness, 22(5), 565–581. https://doi.org/10.1080/13588265.2017.1286964
  • Li, X., Wang, Y., Xu, X., Cao, X., & Li, R. (2021). Energy Absorption Characteristics of Crash Box of New Honeycomb Core Structure with Foam-Filled. International Journal of Automotive Technology, 22(1), 221–230. https://doi.org/10.1007/s12239-021-0022-6
  • Ma, Q., Zha, Y., Dong, B., & Gan, X. (2020). Structure design and multiobjective optimization of CFRP/aluminum hybrid crash box. Polymer Composites, 41(10), 4202–4220. https://doi.org/10.1002/pc.25705
  • Ming, S., Zhou, C., Li, T., Song, Z., & Wang, B. (2019). Energy absorption of thin-walled square tubes designed by kirigami approach. International Journal of Mechanical Sciences, 157–158, 150–164. https://doi.org/10.1016/j.ijmecsci.2019.04.032
  • Özen, İ., Gedikli, H., & Aslan, M. (2023). Experimental and numerical investigation on energy absorbing characteristics of empty and cellular filled composite crash boxes. Engineering Structures, 289, 116315. https://doi.org/10.1016/j.engstruct.2023.116315
  • Öztürk, İ., & Kaya, B. S. (2022). Effect of heat-treatment on crash performance in bumper beam and crash box design and optimization of the system. Materials Testing, 64(6), 768–779. https://doi.org/10.1515/mt-2021-2134
  • Öztürk, İ., Kaya, N., & Öztürk, F. (2014). OTOMOBİL ÖN TAMPON ÇARPIŞMA SİMÜLASYONU ve OPTİMİZASYONU. 7. Otomotiv Teknolojileri Kongresi, OTEKON, (Mayıs), 1–7. Bursa, Türkiye: OTEKON.
  • Qureshi, O. M., & Bertocchi, E. (2013). Crash performance of notch triggers and variable frequency progressive-triggers on patterned box beams during axial impacts. Thin-Walled Structures, 63, 98–105. https://doi.org/10.1016/j.tws.2012.07.021
  • Silva, D. F. M., Silva, C. M. A., Bragança, I. M. F., Nielsen, C. V., Alves, L. M., & Martins, P. A. F. (2018). On the performance of thin-walled crash boxes joined by forming. Materials, 11(7), 1118. https://doi.org/10.3390/ma11071118
  • TÜİK. (2022). Karayolu Trafik Kaza İstatistikleri, 2021. Retrieved February 21, 2024, from Türkiye İstatistik Kurumu website: https://data.tuik.gov.tr/Bulten/Index?p=Karayolu-Trafik-Kaza-Istatistikleri-2021-45658
  • Turan, M. K., Ensarioglu, C., Bakirci, A., & Karpat, F. (2024). Impact performance of unconventional trigger holes. Materials Testing, 66(3), 389-396. https://doi.org/10.1515/mt-2023-0253
  • Wang, B., & Zhou, C. (2017). The imperfection-sensitivity of origami crash boxes. International Journal of Mechanical Sciences, 121, 58–66. https://doi.org/10.1016/j.ijmecsci.2016.11.027
  • Wang, G., Zhang, Y., Zheng, Z., Chen, H., & Yu, J. (2022). Crashworthiness design and impact tests of aluminum foam-filled crash boxes. Thin-Walled Structures, 180, 109937. https://doi.org/10.1016/j.tws.2022.109937
  • Yao, S., Zhu, H., Liu, M., Li, Z., & Xu, P. (2020). Energy absorption of origami tubes with polygonal cross-sections. Thin-Walled Structures, 157, 107013. https://doi.org/10.1016/j.tws.2020.107013
  • Zarei, H., Kröger, M., & Albertsen, H. (2008). An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Composite Structures, 85(3), 245–257. https://doi.org/10.1016/j.compstruct.2007.10.028
  • Zhou, C. H., Wang, B., Luo, H. Z., Chen, Y. W., Zeng, Q. H., & Zhu, S. Y. (2017). Quasi-Static Axial Compression of Origami Crash Boxes. International Journal of Applied Mechanics, 09(05), 1750066. https://doi.org/10.1142/S1758825117500661
  • Zhou, C., Zhou, Y., & Wang, B. (2017). Crashworthiness design for trapezoid origami crash boxes. Thin-Walled Structures, 117, 257–267. https://doi.org/10.1016/j.tws.2017.03.022

ÇARPIŞMA KUTULARINDA KENAR YARIÇAPININ ÇARPIŞMA PERFORMANSI ÜZERİNE ETKİLERİNİN İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 3, 1440 - 1447, 03.09.2025
https://doi.org/10.17780/ksujes.1684749

Öz

Otomobiller karayollarıyla ulaşımın en temel bileşenidir. Gelişen teknolojiyle sayesinde trafikte olan otomobil sayısı her geçen gün artmakta ve buna bağlı olarak kaza sayısı da artış göstermektedir. Bu nedenle otomobil üreticileri otomobil aktif ve pasif güvenlik sistemleri ve ekipmanlarının geliştirilmesi üzerine birçok çalışma yapmaktadır. Çarpışma kutuları kaza durumunda otomobil şasisi ile otomobilde bulunan yolcu ve sürücülerin zarar görmesini engellemek için kullanılan bir pasif güvenlik elemanıdır. Bu çalışmada kare kesite sahip bir çarpışma kutusunda kenar yarıçapı değişiminin çarpışma performansı üzerine etkisi ele alınmıştır; çalışma nümerik olarak gerçekleştirilmiş olup ANSYS Workbench yazılımı kullanılmıştır. Çalışmaya ideal eleman boyutunun tespitiyle başlanmıştır. Bunun için mevcut sınır şartlarında 5 mm, 4 mm, ve 3 mm olmak üzere üç farklı eleman boyutu kullanılmıştır. İdeal eleman boyutunun tespitinin ardından kenar yarıçapına bağlı olarak kuvvet-deplasman ve sönümlenen enerji-deplasman grafikleri üzerinden çarpışma performansları ele alınmıştır. Çalışma neticesinde en yüksek ezilme kuvveti kenar yarıçapı olmayan çarpışma kutusu ile elde edilmişken, kenar yarıçaplı çarpışma kutuları içinde en yüksek enerji sönümleme performansı 4 mm kenar yarıçapına sahip çarpışma kutusuyla elde edilmiştir.

Kaynakça

  • Abdullah, N. A. Z., Sani, M. S. M., Salwani, M. S., & Husain, N. A. (2020). A review on crashworthiness studies of crash box structure. Thin-Walled Structures, 153, 106795. https://doi.org/10.1016/j.tws.2020.106795
  • Altın, M. (2018). Çarpışma Kutularının Üzerine Açılan Oyukların Çarpışma Performansı Üzerine Etkisinin İncelenmesi. Politeknik Dergisi, 22(1), 135–139. https://doi.org/10.2339/politeknik.403989
  • Ateş, F., Bakirci, A., Günaydin, A. C., Ensarioğlu, C., & Çakır, M. C. (2022). Otomobil çarpışma kutularında performans artırıcı yaklaşımların incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 830–856. https://doi.org/10.25092/baunfbed.1025311
  • Baykasoğlu, C., Baykasoğlu, A., Erdin, M. E., & Cetin, E. (2024). Effect of triggering on the axial crushing behavior of GFRP tubes: Experimental investigation and optimization. Polymer Composites, 45(6), 5504-5521. https://doi.org/10.1002/pc.28143
  • Cetin, E., Baykasoğlu, A., Erdin, M. E., & Baykasoğlu, C. (2023). Experimental investigation of the axial crushing behavior of aluminum/CFRP hybrid tubes with circular-hole triggering mechanism. Thin-Walled Structures, 182, 110321. https://doi.org/10.1016/j.tws.2022.110321
  • Choi, S. Y., Hong, S. C., Park, S. K., & Jeong, S. W.(2022). Effects of Diameter-to-thickness Ratio on Impact Energy Absorption Capability of CFRP Cylindrical Crash Box. International Journal of Automotive Technology, 23(6), 1663–1671. https://doi.org/10.1007/s12239-022-0144-5
  • Choiron, M. A., Purnowidodo, A., Siswanto, E., & Hidayati, N. A. (2016). Crash energy absorption of multi-segments crash box under frontal load. Jurnal Teknologi (Sciences & Engineering), 78(5), 347–350. https://doi.org/10.11113/jt.v78.8334
  • Doğan, O., & Kamer, M. S. (2024). Farklı Kesit Geometrilerine Sahip İnce Duvarlı Sac Metal Çarpışma Kutularının Darbe Performanslarının Nümerik İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 719–728. https://doi.org/10.21605/cukurovaumfd.1560152
  • Gülçimen Çakan, B., Ensarioğlu, C., & Çakır, M. C. (2019). Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 295–305. https://doi.org/10.25092/baunfbed.547179
  • Han, M. S., Min, B. S., & Cho, J. U. (2014). Fracture properties of aluminum foam crash box. International Journal of Automotive Technology, 15(6), 945–951. https://doi.org/10.1007/s12239-014-0099-2
  • Hu, Y., Li, Z., Li, K., & Yao, Z. (2014). Predictive modeling and uncertainty quantification of laser shock processing by bayesian gaussian processes with multiple outputs. Journal of Manufacturing Science and Engineering, 136(4), 041014. https://doi.org/10.1115/1.4027539
  • Hussain, N. N., Regalla, S. P., Rao, Y. V. D., Dirgantara, T., Gunawan, L., & Jusuf, A. (2021). Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(1), 114–130. https://doi.org/10.1177/1464420720952813
  • Hussain, N. N., Regalla, S. P., & Rao Y. V. D. (2017). Numerical investigation into the effect of various trigger configurations on crashworthiness of GFRP crash boxes made of different types of cross sections. International Journal of Crashworthiness, 22(5), 565–581. https://doi.org/10.1080/13588265.2017.1286964
  • Li, X., Wang, Y., Xu, X., Cao, X., & Li, R. (2021). Energy Absorption Characteristics of Crash Box of New Honeycomb Core Structure with Foam-Filled. International Journal of Automotive Technology, 22(1), 221–230. https://doi.org/10.1007/s12239-021-0022-6
  • Ma, Q., Zha, Y., Dong, B., & Gan, X. (2020). Structure design and multiobjective optimization of CFRP/aluminum hybrid crash box. Polymer Composites, 41(10), 4202–4220. https://doi.org/10.1002/pc.25705
  • Ming, S., Zhou, C., Li, T., Song, Z., & Wang, B. (2019). Energy absorption of thin-walled square tubes designed by kirigami approach. International Journal of Mechanical Sciences, 157–158, 150–164. https://doi.org/10.1016/j.ijmecsci.2019.04.032
  • Özen, İ., Gedikli, H., & Aslan, M. (2023). Experimental and numerical investigation on energy absorbing characteristics of empty and cellular filled composite crash boxes. Engineering Structures, 289, 116315. https://doi.org/10.1016/j.engstruct.2023.116315
  • Öztürk, İ., & Kaya, B. S. (2022). Effect of heat-treatment on crash performance in bumper beam and crash box design and optimization of the system. Materials Testing, 64(6), 768–779. https://doi.org/10.1515/mt-2021-2134
  • Öztürk, İ., Kaya, N., & Öztürk, F. (2014). OTOMOBİL ÖN TAMPON ÇARPIŞMA SİMÜLASYONU ve OPTİMİZASYONU. 7. Otomotiv Teknolojileri Kongresi, OTEKON, (Mayıs), 1–7. Bursa, Türkiye: OTEKON.
  • Qureshi, O. M., & Bertocchi, E. (2013). Crash performance of notch triggers and variable frequency progressive-triggers on patterned box beams during axial impacts. Thin-Walled Structures, 63, 98–105. https://doi.org/10.1016/j.tws.2012.07.021
  • Silva, D. F. M., Silva, C. M. A., Bragança, I. M. F., Nielsen, C. V., Alves, L. M., & Martins, P. A. F. (2018). On the performance of thin-walled crash boxes joined by forming. Materials, 11(7), 1118. https://doi.org/10.3390/ma11071118
  • TÜİK. (2022). Karayolu Trafik Kaza İstatistikleri, 2021. Retrieved February 21, 2024, from Türkiye İstatistik Kurumu website: https://data.tuik.gov.tr/Bulten/Index?p=Karayolu-Trafik-Kaza-Istatistikleri-2021-45658
  • Turan, M. K., Ensarioglu, C., Bakirci, A., & Karpat, F. (2024). Impact performance of unconventional trigger holes. Materials Testing, 66(3), 389-396. https://doi.org/10.1515/mt-2023-0253
  • Wang, B., & Zhou, C. (2017). The imperfection-sensitivity of origami crash boxes. International Journal of Mechanical Sciences, 121, 58–66. https://doi.org/10.1016/j.ijmecsci.2016.11.027
  • Wang, G., Zhang, Y., Zheng, Z., Chen, H., & Yu, J. (2022). Crashworthiness design and impact tests of aluminum foam-filled crash boxes. Thin-Walled Structures, 180, 109937. https://doi.org/10.1016/j.tws.2022.109937
  • Yao, S., Zhu, H., Liu, M., Li, Z., & Xu, P. (2020). Energy absorption of origami tubes with polygonal cross-sections. Thin-Walled Structures, 157, 107013. https://doi.org/10.1016/j.tws.2020.107013
  • Zarei, H., Kröger, M., & Albertsen, H. (2008). An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Composite Structures, 85(3), 245–257. https://doi.org/10.1016/j.compstruct.2007.10.028
  • Zhou, C. H., Wang, B., Luo, H. Z., Chen, Y. W., Zeng, Q. H., & Zhu, S. Y. (2017). Quasi-Static Axial Compression of Origami Crash Boxes. International Journal of Applied Mechanics, 09(05), 1750066. https://doi.org/10.1142/S1758825117500661
  • Zhou, C., Zhou, Y., & Wang, B. (2017). Crashworthiness design for trapezoid origami crash boxes. Thin-Walled Structures, 117, 257–267. https://doi.org/10.1016/j.tws.2017.03.022
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makine Mühendisliği
Yazarlar

Mehmet Kıvanç Turan 0000-0002-1605-9678

Fatih Karpat 0000-0001-8474-7328

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 26 Nisan 2025
Kabul Tarihi 25 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Turan, M. K., & Karpat, F. (2025). ÇARPIŞMA KUTULARINDA KENAR YARIÇAPININ ÇARPIŞMA PERFORMANSI ÜZERİNE ETKİLERİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1440-1447. https://doi.org/10.17780/ksujes.1684749