Araştırma Makalesi
BibTex RIS Kaynak Göster

MALATYA KUZEYDOĞUSUNDAKİ PLÜTONİK KAYAÇLARIN PETROGRAFİK, JEOKİMYASAL VE PETROJENEZ AÇISINDAN İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 3, 1526 - 1545, 03.09.2025
https://doi.org/10.17780/ksujes.1702899

Öz

Bu çalışmada, Malatya kuzeydoğusunda yüzeyleyen geç Kretase yaşlı plütonik kayaçların petrografik, jeokimyasal ve petrojenez özellikleri değerlendirilmiştir. İncelenen kayaçlar gabro, diyorit, granodiyorit, kuvars monzonit ve granit litolojilerinden oluşmaktadır. Mineral bileşimleri ve dokusal özelliklerine göre bu birimler, çok evreli magmatik süreçlerin ürünleri olarak tanımlanmıştır. Ana ve iz element verileri, kayaçların kalk-alkalin karakterli olduğunu ve SiO₂ içeriğiyle birlikte belirgin fraksiyonel kristallenme eğilimi gösterdiğini ortaya koymaktadır. İz element diyagramlarında görülen LILE ve LREE zenginleşmesi ile Nb, Ti ve Eu’daki negatif anomaliler, magmatik etkinliğin aktif kıta kenarı yay ortamında geliştiğine işaret etmektedir. Tektonik sınıflama diyagramlarına göre örneklerin çoğu volkanik yay granitleri alanında konumlanmaktadır. AFC modellemeleri, özellikle kuvars monzonit örneğinde kabuksal malzeme katkının arttığını göstermektedir. Elde edilen tüm veriler, bu plütonik kayaçların manto kökenli mafik magmaların kıtasal kabukla etkileşimi sonucu evrimleştiğini ve aktif kıta kenarına özgü çok evreli yay magmatizmasının temsilcisi olduğunu göstermektedir.

Kaynakça

  • Amani, K., Delavari, M., Amini, S., Azizi, H., Asahara, Y., Furman, T., Tabbakh Shabani, A. A., Asiabanha, A., & Mohammadi, A. (2024). Geochemistry, Sr–Nd isotopes and zircon U–Pb dating of magmatic rocks from the Talesh range, western Alborz: New insights into Late Cretaceous evolution of the southern Eurasian margin. Geochemistry, 84, 126042. https://doi.org/10.1016/j.chemer.2023.126042
  • Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1
  • Beyarslan, M., & Bingöl, A. F. (2018). Zircon U-Pb age and geochemical constraints on the origin and tectonic implications of Late Cretaceous intra-oceanic arc magmatics in the Southeast Anatolian Orogenic Belt (SE-Turkey). Journal of African Earth Sciences, 147, 477–497. https://doi.org/10.1016/j.jafrearsci.2018.07.001
  • Beyarslan, M., Okta, E., & Ertürk, M. A. (2018). Kale (Malatya) ilçesi çevresindeki Geç Kretase yaşlı yay magmatitlerinin jeokimyasal özellikleri. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 191–206. https://doi.org/10.18185/erzifbed.405603
  • Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173–174. https://doi.org/10.1046/j.1440-0952.2001.00882.x
  • De Paolo, D.J. (1981). Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291, 193–196. https://doi.org/10.1038/291193a0
  • Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7), 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  • Ertürk, M.A. (2025). Geochronology and Petrology of Late Cretaceous Subduction-Related Volcanics from Elazığ, SE Türkiye: Insights into Deciphering Petrogenesis and Magma Generation Processes. Geochemistry, 85, 126234. https://doi.org/10.1016/j.chemer.2024.126234
  • Ertürk, M. A., Beyarslan, M., Chung, S.-L. & Lin, Te-Hsien. (2018). Eocene magmatism (Maden Complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications. Geoscience Frontiers, 9(6), 1829–1847. https://doi.org/10.1016/j.gsf.2017.09.008
  • Ertürk, M. A., Sar, A., & Rizeli, M. E. (2022). Petrology, zircon U–Pb geochronology and tectonic implications of the A1-type intrusions: Keban region, eastern Turkey. Geochemistry, 82(3), 125882. https://doi.org/10.1016/j.chemer.2022.125882
  • Frost, C. D., Frost, B. R. (2011). On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology, 52, 39–53. https://doi.org/10.1093/petrology/egq070
  • Jiang, X.-Y., Dilek, Y., & Li, X.-H. (2024). Cretaceous magmatic arc in Hainan and the peri-South China Sea as evidenced by geochemical fingerprinting of granitoids in the region. Geoscience Frontiers, 15, 101866. https://doi.org/10.1016/j.gsf.2024.101866
  • Karaoğlan, F., Parlak, O., Klötzli, U., Thöni, M., & Koller, F. (2013a). U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: Implications for the Neotethyan evolution. Geodinamica Acta, 25(3–4), 146–161. https://doi.org/10.1080/09853111.2013.858948
  • Karaoğlan, F., Parlak, O., Klötzli, U., Koller, F., & Rızaoğlu, T. (2013b). Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geoscience Frontiers, 4(4), 399–408. https://doi.org/10.1016/j.gsf.2012.11.011
  • Karaoğlan, F., Parlak, O., Hejl, E., Neubauer, F., & Klötzli, U. (2016). The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar–Ar and fission track chronology. Gondwana Research, 33, 190–208. https://doi.org/10.1016/j.gr.2015.12.011
  • Keskin, M. (2013). AFC-Modeler: a Microsoft® Excel© workbook program for modelling assimilation combined with fractional crystallization (AFC) process in magmatic systems by using equations of DePaolo (1981). Turkish Journal of Earth Science 22, 304–319. https://doi.org/10.3906/yer-1110-3
  • Mazhari, S. A., Klötzli, U., & Safari, M. (2019). Petrological investigation of Late Cretaceous magmatism in Kaboodan area, NE Iran: Evidence for an active continental arc at Sabzevar zone. Lithos, 348–349, 105183. https://doi.org/10.1016/j.lithos.2019.105183
  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
  • Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
  • Nurlu, N., Köksal, S., & Kohút, M. (2022). Late Cretaceous volcanic arc magmatism in southeast Anatolian Orogenic Belt: Constraints from whole-rock, mineral chemistry, Sr–Nd isotopes and U–Pb zircon ages of the Baskil Intrusive Complex (Malatya, Turkey). Geological Journal, 57, 3048–3073. https://doi.org/10.1002/gj.4460
  • Parlak, O., Karaoğlan, F., Rızaoğlu, T., Nurlu, N., Bağcı, U., Höck, V., Öztüfekçi Önal, A., Kürüm, S., & Topak, Y. (2012). Petrology of the Ispendere (Malatya) ophiolite from Southeast Anatolia: Implications for the Late Mesozoic evolution of the southern Neotethyan Ocean. Geological Society, London, Special Publications, 372, 203–234. https://doi.org/10.1144/SP372.11
  • Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.), Andesites (pp. 525–548). Wiley.
  • Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Shiva Publishing.
  • Pearce, J. A. (1996). A User’s Guide to Basalt Discrimination Diagrams. In D. A. Wyman (Ed.), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (Short Course Notes No. 12) (pp. 79–113). Geological Association of Canada.
  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983.
  • Rızaoğlu, T., Parlak, O., Höck, V., & İşler, F. (2006). Nature and significance of Late Cretaceous ophiolitic rocks and their relation to the Baskil granitic intrusions of the Elazığ region, SE Turkey. Geological Society, London, Special Publications, 260, 327–350. https://doi.org/10.1144/gsl.sp.2006.260.01.14
  • Rızaoğlu, T., Parlak, O., Höck, V., Koller, F., Hames, W. E., & Billor, Z. (2009). Andean-type active margin formation in the eastern Taurides: Geochemical and geochronological evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics, 473, 188–207. https://doi.org/10.1016/j.tecto.2008.08.011
  • Robertson, A. H. F., & Dixon, J. E. D. (1984). Introduction: Aspects of the geological evolution of the Eastern Mediterranean. In J. E. D. Dixon & A. H. F. Robertson (Eds.), The geological evolution of the Eastern Mediterranean (Vol. 17, pp. 1–74). London: Geological Society, Special Publications.
  • Robertson, A. H. F., Parlak, O., Rızaoğlu, T., Ünlügenç, U. C., Çınar, N., Taşlı, K., & Ustaömer, T. (2007). Late Cretaceous–Mid-Tertiary tectonic evolution of the eastern Taurus Mountains and the southern Tethyan ocean: evidence from the Elazığ region, SE Turkey. Geological Society, London, Special Publications, 272, 231–270. https://doi.org/10.1144/GSL.SP.2007.272.01.14
  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Harlow, Essex; New York: Longman Scientific & Technical; J. Wiley & Sons.
  • Sar, A., Ertürk, M. A., & Rizeli, M. E. (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U–Pb geochronology and geochemical and Sr–Nd isotopic analyses. Lithos, 350–351, 105263. https://doi.org/10.1016/j.lithos.2019.105263
  • Sar, A., Rizeli, M. E., & Ertürk, M. A. (2022). Geçityaka Köyü (Tunceli) Çevresindeki Elazığ Magmatik Kompleksi’ne Ait Kayaçların Petrografik ve Jeokimyasal Özellikleri. El-Cezerî Fen ve Mühendislik Dergisi, 9(2), 680–694. https://doi.org/10.31202/ecjse.993333
  • Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore deposits with a chapter on meteorites. New York: John Wiley and Sons.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the Ocean Basins (Vol. 42, pp. 313–345). Geological Society Special Publication.
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3–4), 181–241.
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications.
  • Ullah, M., Klötzli, U., Rentenberger, C., Sláma, J., Goudarzi, M., Younas, M., Khubab, M., & Ahmad, T. (2025). Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan. Geoscience Frontiers, 16, 102003. https://doi.org/10.1016/j.gsf.2025.102003
  • Ural, M., Arslan, M., Göncüoğlu, M. C., & Kürüm, S. (2015). Late Cretaceous arc and back-arc formation within the Southern Neotethys: Whole-rock, trace element and Sr–Nd–Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya–Elazığ, SE Turkey). Ofioliti, 40(1), 57–72. https://doi.org/10.4454/ofioliti.v40i1.435
  • Whalen, J. B., Currie, K. L., Chappell, B. W., & Richard, L. R. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. https://doi.org/10.1007/BF00402202
  • Wilson, M. (1989). Igneous petrogenesis: A global tectonic approach. Springer.
  • Winter, J. D. (2010). Principles of igneous and metamorphic petrology (2nd ed.). Pearson.
  • Yazgan, E., & Chessex, R. (1991). Geology and tectonic evolution of the Southeastern Taurides in the region of Malatya. Turkish Association of Petroleum Geologists Bulletin, 3(1), 1–42.

PETROGRAPHIC, GEOCHEMICAL, AND PETROGENETIC INVESTIGATION OF PLUTONIC ROCKS IN SOUTHEASTERN MALATYA

Yıl 2025, Cilt: 28 Sayı: 3, 1526 - 1545, 03.09.2025
https://doi.org/10.17780/ksujes.1702899

Öz

This study evaluates the petrographic, geochemical, and petrogenetic characteristics of Late Cretaceous plutonic rocks exposed in the northeastern Malatya region. The investigated rocks comprise gabbro, diorite, granodiorite, quartz monzonite, and granite lithologies. Based on their mineral compositions and textural features, these units are interpreted as products of multi-stage magmatic processes. Major and trace element data indicate that the rocks are calc-alkaline in character and exhibit a pronounced fractional crystallization trend with increasing SiO₂ content. Trace element diagrams reveal enrichment in LILE and LREE, along with negative Nb, Ti, and Eu anomalies, suggesting that magmatic activity developed in an active continental margin arc setting. Tectonic discrimination diagrams place most of the samples in the volcanic arc granite field. AFC modeling indicates that crustal material contribution is more significant in the quartz monzonite samples. All data collectively suggest that these plutonic rocks evolved from mantle-derived mafic magmas through interaction with the continental crust and represent multi-stage arc magmatism characteristic of an active continental margin.

Kaynakça

  • Amani, K., Delavari, M., Amini, S., Azizi, H., Asahara, Y., Furman, T., Tabbakh Shabani, A. A., Asiabanha, A., & Mohammadi, A. (2024). Geochemistry, Sr–Nd isotopes and zircon U–Pb dating of magmatic rocks from the Talesh range, western Alborz: New insights into Late Cretaceous evolution of the southern Eurasian margin. Geochemistry, 84, 126042. https://doi.org/10.1016/j.chemer.2023.126042
  • Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1
  • Beyarslan, M., & Bingöl, A. F. (2018). Zircon U-Pb age and geochemical constraints on the origin and tectonic implications of Late Cretaceous intra-oceanic arc magmatics in the Southeast Anatolian Orogenic Belt (SE-Turkey). Journal of African Earth Sciences, 147, 477–497. https://doi.org/10.1016/j.jafrearsci.2018.07.001
  • Beyarslan, M., Okta, E., & Ertürk, M. A. (2018). Kale (Malatya) ilçesi çevresindeki Geç Kretase yaşlı yay magmatitlerinin jeokimyasal özellikleri. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 191–206. https://doi.org/10.18185/erzifbed.405603
  • Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173–174. https://doi.org/10.1046/j.1440-0952.2001.00882.x
  • De Paolo, D.J. (1981). Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291, 193–196. https://doi.org/10.1038/291193a0
  • Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7), 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  • Ertürk, M.A. (2025). Geochronology and Petrology of Late Cretaceous Subduction-Related Volcanics from Elazığ, SE Türkiye: Insights into Deciphering Petrogenesis and Magma Generation Processes. Geochemistry, 85, 126234. https://doi.org/10.1016/j.chemer.2024.126234
  • Ertürk, M. A., Beyarslan, M., Chung, S.-L. & Lin, Te-Hsien. (2018). Eocene magmatism (Maden Complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications. Geoscience Frontiers, 9(6), 1829–1847. https://doi.org/10.1016/j.gsf.2017.09.008
  • Ertürk, M. A., Sar, A., & Rizeli, M. E. (2022). Petrology, zircon U–Pb geochronology and tectonic implications of the A1-type intrusions: Keban region, eastern Turkey. Geochemistry, 82(3), 125882. https://doi.org/10.1016/j.chemer.2022.125882
  • Frost, C. D., Frost, B. R. (2011). On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology, 52, 39–53. https://doi.org/10.1093/petrology/egq070
  • Jiang, X.-Y., Dilek, Y., & Li, X.-H. (2024). Cretaceous magmatic arc in Hainan and the peri-South China Sea as evidenced by geochemical fingerprinting of granitoids in the region. Geoscience Frontiers, 15, 101866. https://doi.org/10.1016/j.gsf.2024.101866
  • Karaoğlan, F., Parlak, O., Klötzli, U., Thöni, M., & Koller, F. (2013a). U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: Implications for the Neotethyan evolution. Geodinamica Acta, 25(3–4), 146–161. https://doi.org/10.1080/09853111.2013.858948
  • Karaoğlan, F., Parlak, O., Klötzli, U., Koller, F., & Rızaoğlu, T. (2013b). Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geoscience Frontiers, 4(4), 399–408. https://doi.org/10.1016/j.gsf.2012.11.011
  • Karaoğlan, F., Parlak, O., Hejl, E., Neubauer, F., & Klötzli, U. (2016). The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar–Ar and fission track chronology. Gondwana Research, 33, 190–208. https://doi.org/10.1016/j.gr.2015.12.011
  • Keskin, M. (2013). AFC-Modeler: a Microsoft® Excel© workbook program for modelling assimilation combined with fractional crystallization (AFC) process in magmatic systems by using equations of DePaolo (1981). Turkish Journal of Earth Science 22, 304–319. https://doi.org/10.3906/yer-1110-3
  • Mazhari, S. A., Klötzli, U., & Safari, M. (2019). Petrological investigation of Late Cretaceous magmatism in Kaboodan area, NE Iran: Evidence for an active continental arc at Sabzevar zone. Lithos, 348–349, 105183. https://doi.org/10.1016/j.lithos.2019.105183
  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
  • Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
  • Nurlu, N., Köksal, S., & Kohút, M. (2022). Late Cretaceous volcanic arc magmatism in southeast Anatolian Orogenic Belt: Constraints from whole-rock, mineral chemistry, Sr–Nd isotopes and U–Pb zircon ages of the Baskil Intrusive Complex (Malatya, Turkey). Geological Journal, 57, 3048–3073. https://doi.org/10.1002/gj.4460
  • Parlak, O., Karaoğlan, F., Rızaoğlu, T., Nurlu, N., Bağcı, U., Höck, V., Öztüfekçi Önal, A., Kürüm, S., & Topak, Y. (2012). Petrology of the Ispendere (Malatya) ophiolite from Southeast Anatolia: Implications for the Late Mesozoic evolution of the southern Neotethyan Ocean. Geological Society, London, Special Publications, 372, 203–234. https://doi.org/10.1144/SP372.11
  • Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.), Andesites (pp. 525–548). Wiley.
  • Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Shiva Publishing.
  • Pearce, J. A. (1996). A User’s Guide to Basalt Discrimination Diagrams. In D. A. Wyman (Ed.), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (Short Course Notes No. 12) (pp. 79–113). Geological Association of Canada.
  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983.
  • Rızaoğlu, T., Parlak, O., Höck, V., & İşler, F. (2006). Nature and significance of Late Cretaceous ophiolitic rocks and their relation to the Baskil granitic intrusions of the Elazığ region, SE Turkey. Geological Society, London, Special Publications, 260, 327–350. https://doi.org/10.1144/gsl.sp.2006.260.01.14
  • Rızaoğlu, T., Parlak, O., Höck, V., Koller, F., Hames, W. E., & Billor, Z. (2009). Andean-type active margin formation in the eastern Taurides: Geochemical and geochronological evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics, 473, 188–207. https://doi.org/10.1016/j.tecto.2008.08.011
  • Robertson, A. H. F., & Dixon, J. E. D. (1984). Introduction: Aspects of the geological evolution of the Eastern Mediterranean. In J. E. D. Dixon & A. H. F. Robertson (Eds.), The geological evolution of the Eastern Mediterranean (Vol. 17, pp. 1–74). London: Geological Society, Special Publications.
  • Robertson, A. H. F., Parlak, O., Rızaoğlu, T., Ünlügenç, U. C., Çınar, N., Taşlı, K., & Ustaömer, T. (2007). Late Cretaceous–Mid-Tertiary tectonic evolution of the eastern Taurus Mountains and the southern Tethyan ocean: evidence from the Elazığ region, SE Turkey. Geological Society, London, Special Publications, 272, 231–270. https://doi.org/10.1144/GSL.SP.2007.272.01.14
  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Harlow, Essex; New York: Longman Scientific & Technical; J. Wiley & Sons.
  • Sar, A., Ertürk, M. A., & Rizeli, M. E. (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U–Pb geochronology and geochemical and Sr–Nd isotopic analyses. Lithos, 350–351, 105263. https://doi.org/10.1016/j.lithos.2019.105263
  • Sar, A., Rizeli, M. E., & Ertürk, M. A. (2022). Geçityaka Köyü (Tunceli) Çevresindeki Elazığ Magmatik Kompleksi’ne Ait Kayaçların Petrografik ve Jeokimyasal Özellikleri. El-Cezerî Fen ve Mühendislik Dergisi, 9(2), 680–694. https://doi.org/10.31202/ecjse.993333
  • Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore deposits with a chapter on meteorites. New York: John Wiley and Sons.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the Ocean Basins (Vol. 42, pp. 313–345). Geological Society Special Publication.
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3–4), 181–241.
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications.
  • Ullah, M., Klötzli, U., Rentenberger, C., Sláma, J., Goudarzi, M., Younas, M., Khubab, M., & Ahmad, T. (2025). Unravelling the geochemical and geochronological diversities of the pre-collisional magmatism: Implications for the subduction dynamics in the Kohistan island arc and Karakorum block, Pakistan. Geoscience Frontiers, 16, 102003. https://doi.org/10.1016/j.gsf.2025.102003
  • Ural, M., Arslan, M., Göncüoğlu, M. C., & Kürüm, S. (2015). Late Cretaceous arc and back-arc formation within the Southern Neotethys: Whole-rock, trace element and Sr–Nd–Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya–Elazığ, SE Turkey). Ofioliti, 40(1), 57–72. https://doi.org/10.4454/ofioliti.v40i1.435
  • Whalen, J. B., Currie, K. L., Chappell, B. W., & Richard, L. R. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. https://doi.org/10.1007/BF00402202
  • Wilson, M. (1989). Igneous petrogenesis: A global tectonic approach. Springer.
  • Winter, J. D. (2010). Principles of igneous and metamorphic petrology (2nd ed.). Pearson.
  • Yazgan, E., & Chessex, R. (1991). Geology and tectonic evolution of the Southeastern Taurides in the region of Malatya. Turkish Association of Petroleum Geologists Bulletin, 3(1), 1–42.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mineraloji-Petrografi
Bölüm Jeoloji Mühendisliği
Yazarlar

Mehmet Ali Ertürk 0000-0003-1197-9202

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 4 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Ertürk, M. A. (2025). MALATYA KUZEYDOĞUSUNDAKİ PLÜTONİK KAYAÇLARIN PETROGRAFİK, JEOKİMYASAL VE PETROJENEZ AÇISINDAN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1526-1545. https://doi.org/10.17780/ksujes.1702899