DEPREM ETKİSİ ALTINDA YUMUŞAK KAT DÜZENSİZLİĞİNE SAHİP BETONARME BİNALARIN HASAR GÖREBİLİRLİK ANALİZİ
Yıl 2025,
Cilt: 28 Sayı: 3, 1574 - 1590, 03.09.2025
Abdullilah Yilmaz
,
Mehmet Emin Öncü
Öz
Yapıların deprem performansı değerlendirmede kırılganlık eğrileri önemli bir rol oynamaktadır. Kırılganlık eğrilerinin geliştirilmesinde artımsal dinamik analiz (IDA) yaygın olarak kullanılmaktadır. Bu çalışma, Türkiye'de yaygın olarak bulunan orta yükseklikte ve yumuşak kat düzensizliğine sahip betonarme binaların deprem etkisi altındaki hasar görebilirliklerini incelemeyi amaçlamaktadır. Çalışmada çeşitli betonarme çerçeve sistemler, Türk Bina Deprem Yönetmeliği (TBDY-2018) esas alınarak modellenmiş ve Artımsal Dinamik Analiz yöntemi kullanılarak değerlendirilmiştir. Dolgu duvarlar, eşdeğer basınç çubuğu modeliyle temsil edilmiştir. Analizler, seçilen üç farklı güçlü yer hareketi kaydı kullanılarak gerçekleştirilmiştir. Yapısal performans, Kullanıma Devam (OP), Hemen Kullanım (IO), Kontrollü Hasar (DC), Can Güvenliği (LS) ve Göçme Önleme (CP) limit durumları baz alınarak değerlendirilmiştir. Elde edilen sonuçlar, zemin katta dolgu duvar bulunmamasının ve kat yüksekliğinin artırılmasının, katlar arası ötelemeleri ve dolayısıyla yapıların kırılganlığını önemli ölçüde artırdığını göstermiştir. Bu bulgular, yapı tasarım ve güçlendirme süreçlerinde yumuşak kat etkisinin dikkate alınmasının gerekliliğini ortaya koymaktadır.
Kaynakça
-
Adalier, K., & Aydingun, O. (2001). Structural engineering aspects of the June 27, 1998 Adana-Ceyhan (Turkey) earthquake. Engineering Structures, 23(4), 343–355. https://doi.org/10.1016/S0141-0296(00)00046-8
-
Akansel, V. H. (2011). Fragility of a shear wall building with torsional irregularity. Doktora Tezi. Middle East Technical University, Graduate School of Natural and Applied Sciences, Civil Engineering Department, Ankara, 116s.
-
Akbaş, A., & Çalışkan, Ö. (2023). Deprem etkisinde hasar alan betonarme yapıların düzensizlik türleri yönü ile incelenmesi. In International Conference on Scientific and Academic Research (Vol. 1, pp. 428–435).
-
ASCE. (2000). FEMA 356: Prestandard and commentary for the seismic rehabilitation of buildings. American Society of Civil Engineers.
-
Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, M. H., Aksoylu, C., Eyisüren, O., & Harirchian, E. (2024). Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120(3), 2953–2991. https://doi.org/10.1007/s11069-023-06314-1
-
Awchat, G., Patil, A., More, A., & Dhanjode, G. (2023). Incremental dynamic analysis and seismic fragility analysis of reinforced concrete frame. Civil and Environmental Engineering, 19(1), 444–451. https://doi.org/10.2478/cee-2023-0039
-
Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. https://doi.org/10.1193/021113EQS025M
-
Balyemez, S., & Berköz, L. (2005). Hasar görebilirlik ve kentsel deprem davranışı (Vulnerability and urban earthquake behaviour). İTÜ Dergisi/A, Mimarlık, Planlama, Tasarım, 4(1), 3–14.
-
Bazzurro, P., & Cornell, C. A. (1994). Seismic hazard analysis of nonlinear structures. I: Methodology. Journal of Structural Engineering, 120(11), 3320–3344. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3320)
-
Bazzurro, P., Cornell, C. A., Shome, N., & Carbello, J. E. (1998). Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering, 124(11), 1281–1289. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1281)
-
Bertero, V. V. (1977). Strength and deformation capacities of buildings under extreme environments. Structural Engineering and Structural Mechanics, 53(1), 29–79.
-
Budak, E. (2022). Collapse fragility analysis of reinforced concrete tall buildings. Doktora Tezi. Middle East Technical University, Graduate School of Natural and Applied Sciences, Civil Engineering Department, Ankara, 154s.
-
Colombi, M., Borzi, B., Crowley, H., Onida, M., Meroni, F., & Pinho, R. (2008). Deriving vulnerability curves using Italian earthquake damage data. Bulletin of Earthquake Engineering, 6(3), 485–504. https://doi.org/10.1007/s10518-008-9073-6
-
Del Gaudio, C., Di Ludovico, M., Polese, M., Manfredi, G., Prota, A., Ricci, P., & Verderame, G. M. (2020). Seismic fragility for Italian RC buildings based on damage data of the last 50 years. Bulletin of Earthquake Engineering, 18(5), 2023–2059. https://doi.org/10.1007/s10518-019-00762-6
-
Doğangün, A. (2004). Performance of reinforced concrete buildings during the May 1, 2003 Bingöl earthquake in Turkey. Engineering Structures, 26(6), 841–856. https://doi.org/10.1016/j.engstruct.2004.02.005
-
Dohare, D., & Maru, S. (2014). Seismic behavior of soft storey building: A critical review. International Journal of Engineering Research and General Science, 2(6), 1-5.
-
Esteva, L. (1992). Nonlinear seismic response of soft-first-story buildings subjected to narrow-band accelerograms. Earthquake Spectra, 8(3), 373–389. https://doi.org/10.1193/1.1585686
-
FEMA P-440. (2005). Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency.
-
FEMA. (1989). A handbook for seismic evaluation of existing buildings (FEMA 178). Federal Emergency Management Agency.
-
Garip, Z. Ş., & Dibekoğlu, Ş. (2023). Investigation of the effects of infill walls on behavior in reinforced concrete buildings under the influence of earthquake. International Journal of Engineering Research and Development, 15(2). https://doi.org/10.29137/umagd.1178219
-
Güvensoy, G. (2023). Mevcut prefabrik sanayi yapılarının hasar görebilirlik eğrilerinin TBDY-2018, EC8-3 ve ASCE 41-17 yönetmeliklerine göre karşılaştırılması. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Denizli, 85s.
-
Izadpanah, M., Zibasokhan, H., Roussis, P. C., & Asteris, P. G. (2023). Pure-bending yielding dissipater for the seismic retrofitting of reinforced concrete buildings with soft-story irregularity. Structures, 55, 933–950. https://doi.org/10.1016/j.istruc.2023.06.078
-
Jaiswal, K. S., Aspinall, W. P., Perkins, D., Wald, D. J., & Porter, K. A. (2012). Use of expert judgment elicitation to estimate seismic vulnerability of selected building types. In 15th World Conference on Earthquake Engineering (15WCEE), 10 pp. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_4542.pdf
-
Jalayer, F., De Risi, R., & Manfredi, G. (2015). Bayesian cloud analysis: Efficient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering, 13(4), 1183–1203. https://doi.org/10.1007/s10518-014-9692-z
-
Karasin, I. B., & Oncu, M. E. (2023). Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu. Earthquakes and Structures, 25(4), 235–247. https://doi.org/10.12989/eas.2023.25.4.235
-
Kassem, M. M., Nazri, F. M., & Noroozinejad Farsangi, E. (2020). On the quantification of collapse margin of a retrofitted university building in Beirut using a probabilistic approach. Engineering Science and Technology, an International Journal, 23(2), 373–381. https://doi.org/10.1016/j.jestch.2019.05.003
-
Kassem, M. M., Nazri, F. M., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. https://doi.org/10.1016/j.asej.2020.04.001
-
Kim, T., Park, J. H., & Yu, E. (2023). Seismic fragility of low-rise piloti buildings based on 2017 Pohang earthquake damage. Journal of Building Engineering, 76, 107032. https://doi.org/10.1016/j.jobe.2023.107032
-
Konor, S. (2017). Fragility evaluation of steel truss railway bridges in Turkey. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, 59s.
-
Lallemant, D., Kiremidjian, A., & Burton, H. (2015). Statistical procedures for developing earthquake damage fragility curves. Earthquake Engineering & Structural Dynamics, 44(9), 1373–1389. https://doi.org/10.1002/eqe.2522
-
Lantada, N., Irizarry, J., Barbat, A. H., Goula, X., Roca, A., Susagna, T., & Pujades, L. G. (2010). Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin of Earthquake Engineering, 8(2), 201–229. https://doi.org/10.1007/s10518-009-9148-z
-
Lin, T., & Baker, J. W. (2013). Introducing adaptive incremental dynamic analysis: A new tool for linking ground motion selection and structural response assessment. In Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR 2013) (pp. 805–811).
-
M S., Aradhya, B., & Swamy, B. S. (2019). Study on soft storey effect of plan regular and irregular RC framed structures under different seismic zones using response spectrum method of analysis. International Research Journal of Engineering and Technology.
-
Mahin, S. A., Bertero, V. V., Chopra, A. K., & Collins, R. G. (1976). Response of the Olive View Hospital main building during the San Fernando earthquake (Report No. EERC 76-22). Earthquake Engineering Research Center.
-
Matiyas, S., Workeluel, N., Mohanty, T., & Saha, P. (2023). Review of different analysis and strengthening techniques of soft story buildings. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.231
-
Miano, A., Jalayer, F., Ebrahimian, H., & Prota, A. (2018). Cloud to IDA: Efficient fragility assessment with limited scaling. Earthquake Engineering and Structural Dynamics, 47(5), 1124–1147. https://doi.org/10.1002/eqe.3009
-
Nemutlu, Ö. F. (2023). Bingöl ili şehir merkezindeki binalarda deprem performansı, yapısal riskler ve kayıpların incelenmesi. Doktora Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, 196s.
-
Noorifard, A., Tabeshpour, M. R., & Mehdizadeh Saradj, F. (2020). New approximate method to identify soft story caused by infill walls. Structures, 24, 922–939. https://doi.org/10.1016/j.istruc.2020.01.050
-
Ozturk, M., Arslan, M. H., & Korkmaz, H. H. (2023). Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design. Engineering Failure Analysis, 153, 107521. https://doi.org/10.1016/j.engfailanal.2023.107521
-
Rossetto, T., & Elnashai, A. (2005). A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures. Engineering Structures, 27(3), 397–409. https://doi.org/10.1016/j.engstruct.2004.11.002
-
Rutenberg, A., Jennings, P. C., & Housner, G. W. (1982). The response of Veterans Hospital Building 41 in the San Fernando earthquake. Earthquake Engineering & Structural Dynamics, 10(3), 359–379. https://doi.org/10.1002/eqe.4290100303
-
Saruddin, S. N. A., & Nazri, F. M. (2015). Fragility curves for low- and mid-rise buildings in Malaysia. Procedia Engineering, 125, 873–878. https://doi.org/10.1016/j.proeng.2015.11.056
-
Seaoc, V. (1995). Performance based seismic engineering of buildings. Sacramento (CA): Structural Engineers Association of California, USA.
-
Selvaduray, G., Vukazich, S., Arnold, S., & Tran, J. (2003). Inventory of soft-first story multi-family dwellings in Santa Clara County. San Jose State University.
-
Sezen, H., Whittaker, A. S., Elwood, K. J., & Mosalam, K. M. (2003). Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey. Engineering Structures, 25(1), 103–114. https://doi.org/10.1016/S0141-0296(02)00121-9
-
Singhal, A., & Kiremidjian, A. S. (1996). Method for probabilistic evaluation of seismic structural damage. Journal of Structural Engineering, 122(12), 1459–1467. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
-
TBDY. (2018). Deprem etkisi altında binaların tasarımı için esaslar. Ministry of Public Works and Settlement, Ankara.
-
Thapa, R., & Shrestha, K. C. (2025). Gapped inclined bracing (GIB) retrofit for soft-story vulnerable reinforced concrete residential buildings in Nepal. Structures, 74, 108548. https://doi.org/10.1016/j.istruc.2025.108548
-
Ulutaş, H. (2024). Investigation of the causes of soft-storey and weak-storey formations in low- and mid-rise RC buildings in Türkiye. Buildings, 14(5), Article 1308. https://doi.org/10.3390/buildings14051308
-
Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. https://doi.org/10.1002/eqe.141
-
Xue, Q., Wu, C. W., Chen, C. C., & Chen, K. C. (2008). The draft code for performance-based seismic design of buildings in Taiwan. Engineering Structures, 30(6), 1535–1547. https://doi.org/10.1016/j.engstruct.2007.10.002
-
Yeşilyurt, A. (2021). Prefabrik betonarme endüstriyel yapıların farklı zemin şartlarında hasar görebilirliği ve deprem risk değerlendirmesi (Doctoral dissertation, Gebze Teknik Üniversitesi).
-
Yılmaz, A. (2023). Investigation of soft storey irregularity in reinforced concrete structures. Yüksek Lisans Tezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Erzurum, 75s.
-
Yılmaz, A., & Oncu, M. E. (2025). Sismik yükler altında yumuşak kat etkisinin yapıların hasar etkisi. In 7th International Symposium on Natural Hazards and Disaster Management (ISHAD2025, Diyarbakır, Türkiye), 16–18 May 2025. Diyarbakır.
-
Yön, B. (2020). Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes. Earthquakes and Structures, 18(6), 709–718. https://doi.org/10.12989/eas.2020.18.6.709
-
Zuccaro, G., Perelli, F. L., De Gregorio, D., & Cacace, F. (2021). Empirical vulnerability curves for Italian masonry buildings: Evolution of vulnerability model from the DPM to curves as a function of acceleration. Bulletin of Earthquake Engineering, 19(8), 3077–3097. https://doi.org/10.1007/s10518-020-00954-5
SEISMIC VULNERABILITY ANALYSIS OF REINFORCED CONCRETE BUILDINGS WITH SOFT-STORY IRREGULARITIES
Yıl 2025,
Cilt: 28 Sayı: 3, 1574 - 1590, 03.09.2025
Abdullilah Yilmaz
,
Mehmet Emin Öncü
Öz
Fragility curves play a crucial role in evaluating the seismic performance of structures. Incremental Dynamic Analysis (IDA) is widely used in the development of these curves. This study aims to investigate the seismic vulnerability of medium-rise reinforced concrete buildings with soft-story irregularities, which are commonly found in Turkey. In the study, various reinforced concrete frame systems were modeled based on the Turkish Seismic Code (TSC-2018) and evaluated using the Incremental Dynamic Analysis method. Infill walls were represented using an equivalent strut model. The analyses were carried out using three selected strong ground motion records. Structural performance was assessed based on the limit states of Operational (OP), Immediate Occupancy (IO), Damage Control (DC), Life Safety (LS), and Collapse Prevention (CP). The results indicated that the absence of infill walls on the ground floor and increased story height significantly amplified inter-story drifts and, consequently, the fragility of the structures. These findings highlight the necessity of considering the soft-story effect in both structural design and seismic retrofitting processes.
Kaynakça
-
Adalier, K., & Aydingun, O. (2001). Structural engineering aspects of the June 27, 1998 Adana-Ceyhan (Turkey) earthquake. Engineering Structures, 23(4), 343–355. https://doi.org/10.1016/S0141-0296(00)00046-8
-
Akansel, V. H. (2011). Fragility of a shear wall building with torsional irregularity. Doktora Tezi. Middle East Technical University, Graduate School of Natural and Applied Sciences, Civil Engineering Department, Ankara, 116s.
-
Akbaş, A., & Çalışkan, Ö. (2023). Deprem etkisinde hasar alan betonarme yapıların düzensizlik türleri yönü ile incelenmesi. In International Conference on Scientific and Academic Research (Vol. 1, pp. 428–435).
-
ASCE. (2000). FEMA 356: Prestandard and commentary for the seismic rehabilitation of buildings. American Society of Civil Engineers.
-
Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, M. H., Aksoylu, C., Eyisüren, O., & Harirchian, E. (2024). Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120(3), 2953–2991. https://doi.org/10.1007/s11069-023-06314-1
-
Awchat, G., Patil, A., More, A., & Dhanjode, G. (2023). Incremental dynamic analysis and seismic fragility analysis of reinforced concrete frame. Civil and Environmental Engineering, 19(1), 444–451. https://doi.org/10.2478/cee-2023-0039
-
Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. https://doi.org/10.1193/021113EQS025M
-
Balyemez, S., & Berköz, L. (2005). Hasar görebilirlik ve kentsel deprem davranışı (Vulnerability and urban earthquake behaviour). İTÜ Dergisi/A, Mimarlık, Planlama, Tasarım, 4(1), 3–14.
-
Bazzurro, P., & Cornell, C. A. (1994). Seismic hazard analysis of nonlinear structures. I: Methodology. Journal of Structural Engineering, 120(11), 3320–3344. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3320)
-
Bazzurro, P., Cornell, C. A., Shome, N., & Carbello, J. E. (1998). Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering, 124(11), 1281–1289. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1281)
-
Bertero, V. V. (1977). Strength and deformation capacities of buildings under extreme environments. Structural Engineering and Structural Mechanics, 53(1), 29–79.
-
Budak, E. (2022). Collapse fragility analysis of reinforced concrete tall buildings. Doktora Tezi. Middle East Technical University, Graduate School of Natural and Applied Sciences, Civil Engineering Department, Ankara, 154s.
-
Colombi, M., Borzi, B., Crowley, H., Onida, M., Meroni, F., & Pinho, R. (2008). Deriving vulnerability curves using Italian earthquake damage data. Bulletin of Earthquake Engineering, 6(3), 485–504. https://doi.org/10.1007/s10518-008-9073-6
-
Del Gaudio, C., Di Ludovico, M., Polese, M., Manfredi, G., Prota, A., Ricci, P., & Verderame, G. M. (2020). Seismic fragility for Italian RC buildings based on damage data of the last 50 years. Bulletin of Earthquake Engineering, 18(5), 2023–2059. https://doi.org/10.1007/s10518-019-00762-6
-
Doğangün, A. (2004). Performance of reinforced concrete buildings during the May 1, 2003 Bingöl earthquake in Turkey. Engineering Structures, 26(6), 841–856. https://doi.org/10.1016/j.engstruct.2004.02.005
-
Dohare, D., & Maru, S. (2014). Seismic behavior of soft storey building: A critical review. International Journal of Engineering Research and General Science, 2(6), 1-5.
-
Esteva, L. (1992). Nonlinear seismic response of soft-first-story buildings subjected to narrow-band accelerograms. Earthquake Spectra, 8(3), 373–389. https://doi.org/10.1193/1.1585686
-
FEMA P-440. (2005). Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency.
-
FEMA. (1989). A handbook for seismic evaluation of existing buildings (FEMA 178). Federal Emergency Management Agency.
-
Garip, Z. Ş., & Dibekoğlu, Ş. (2023). Investigation of the effects of infill walls on behavior in reinforced concrete buildings under the influence of earthquake. International Journal of Engineering Research and Development, 15(2). https://doi.org/10.29137/umagd.1178219
-
Güvensoy, G. (2023). Mevcut prefabrik sanayi yapılarının hasar görebilirlik eğrilerinin TBDY-2018, EC8-3 ve ASCE 41-17 yönetmeliklerine göre karşılaştırılması. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Denizli, 85s.
-
Izadpanah, M., Zibasokhan, H., Roussis, P. C., & Asteris, P. G. (2023). Pure-bending yielding dissipater for the seismic retrofitting of reinforced concrete buildings with soft-story irregularity. Structures, 55, 933–950. https://doi.org/10.1016/j.istruc.2023.06.078
-
Jaiswal, K. S., Aspinall, W. P., Perkins, D., Wald, D. J., & Porter, K. A. (2012). Use of expert judgment elicitation to estimate seismic vulnerability of selected building types. In 15th World Conference on Earthquake Engineering (15WCEE), 10 pp. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_4542.pdf
-
Jalayer, F., De Risi, R., & Manfredi, G. (2015). Bayesian cloud analysis: Efficient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering, 13(4), 1183–1203. https://doi.org/10.1007/s10518-014-9692-z
-
Karasin, I. B., & Oncu, M. E. (2023). Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu. Earthquakes and Structures, 25(4), 235–247. https://doi.org/10.12989/eas.2023.25.4.235
-
Kassem, M. M., Nazri, F. M., & Noroozinejad Farsangi, E. (2020). On the quantification of collapse margin of a retrofitted university building in Beirut using a probabilistic approach. Engineering Science and Technology, an International Journal, 23(2), 373–381. https://doi.org/10.1016/j.jestch.2019.05.003
-
Kassem, M. M., Nazri, F. M., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. https://doi.org/10.1016/j.asej.2020.04.001
-
Kim, T., Park, J. H., & Yu, E. (2023). Seismic fragility of low-rise piloti buildings based on 2017 Pohang earthquake damage. Journal of Building Engineering, 76, 107032. https://doi.org/10.1016/j.jobe.2023.107032
-
Konor, S. (2017). Fragility evaluation of steel truss railway bridges in Turkey. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, 59s.
-
Lallemant, D., Kiremidjian, A., & Burton, H. (2015). Statistical procedures for developing earthquake damage fragility curves. Earthquake Engineering & Structural Dynamics, 44(9), 1373–1389. https://doi.org/10.1002/eqe.2522
-
Lantada, N., Irizarry, J., Barbat, A. H., Goula, X., Roca, A., Susagna, T., & Pujades, L. G. (2010). Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin of Earthquake Engineering, 8(2), 201–229. https://doi.org/10.1007/s10518-009-9148-z
-
Lin, T., & Baker, J. W. (2013). Introducing adaptive incremental dynamic analysis: A new tool for linking ground motion selection and structural response assessment. In Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR 2013) (pp. 805–811).
-
M S., Aradhya, B., & Swamy, B. S. (2019). Study on soft storey effect of plan regular and irregular RC framed structures under different seismic zones using response spectrum method of analysis. International Research Journal of Engineering and Technology.
-
Mahin, S. A., Bertero, V. V., Chopra, A. K., & Collins, R. G. (1976). Response of the Olive View Hospital main building during the San Fernando earthquake (Report No. EERC 76-22). Earthquake Engineering Research Center.
-
Matiyas, S., Workeluel, N., Mohanty, T., & Saha, P. (2023). Review of different analysis and strengthening techniques of soft story buildings. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.231
-
Miano, A., Jalayer, F., Ebrahimian, H., & Prota, A. (2018). Cloud to IDA: Efficient fragility assessment with limited scaling. Earthquake Engineering and Structural Dynamics, 47(5), 1124–1147. https://doi.org/10.1002/eqe.3009
-
Nemutlu, Ö. F. (2023). Bingöl ili şehir merkezindeki binalarda deprem performansı, yapısal riskler ve kayıpların incelenmesi. Doktora Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, 196s.
-
Noorifard, A., Tabeshpour, M. R., & Mehdizadeh Saradj, F. (2020). New approximate method to identify soft story caused by infill walls. Structures, 24, 922–939. https://doi.org/10.1016/j.istruc.2020.01.050
-
Ozturk, M., Arslan, M. H., & Korkmaz, H. H. (2023). Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design. Engineering Failure Analysis, 153, 107521. https://doi.org/10.1016/j.engfailanal.2023.107521
-
Rossetto, T., & Elnashai, A. (2005). A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures. Engineering Structures, 27(3), 397–409. https://doi.org/10.1016/j.engstruct.2004.11.002
-
Rutenberg, A., Jennings, P. C., & Housner, G. W. (1982). The response of Veterans Hospital Building 41 in the San Fernando earthquake. Earthquake Engineering & Structural Dynamics, 10(3), 359–379. https://doi.org/10.1002/eqe.4290100303
-
Saruddin, S. N. A., & Nazri, F. M. (2015). Fragility curves for low- and mid-rise buildings in Malaysia. Procedia Engineering, 125, 873–878. https://doi.org/10.1016/j.proeng.2015.11.056
-
Seaoc, V. (1995). Performance based seismic engineering of buildings. Sacramento (CA): Structural Engineers Association of California, USA.
-
Selvaduray, G., Vukazich, S., Arnold, S., & Tran, J. (2003). Inventory of soft-first story multi-family dwellings in Santa Clara County. San Jose State University.
-
Sezen, H., Whittaker, A. S., Elwood, K. J., & Mosalam, K. M. (2003). Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey. Engineering Structures, 25(1), 103–114. https://doi.org/10.1016/S0141-0296(02)00121-9
-
Singhal, A., & Kiremidjian, A. S. (1996). Method for probabilistic evaluation of seismic structural damage. Journal of Structural Engineering, 122(12), 1459–1467. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
-
TBDY. (2018). Deprem etkisi altında binaların tasarımı için esaslar. Ministry of Public Works and Settlement, Ankara.
-
Thapa, R., & Shrestha, K. C. (2025). Gapped inclined bracing (GIB) retrofit for soft-story vulnerable reinforced concrete residential buildings in Nepal. Structures, 74, 108548. https://doi.org/10.1016/j.istruc.2025.108548
-
Ulutaş, H. (2024). Investigation of the causes of soft-storey and weak-storey formations in low- and mid-rise RC buildings in Türkiye. Buildings, 14(5), Article 1308. https://doi.org/10.3390/buildings14051308
-
Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. https://doi.org/10.1002/eqe.141
-
Xue, Q., Wu, C. W., Chen, C. C., & Chen, K. C. (2008). The draft code for performance-based seismic design of buildings in Taiwan. Engineering Structures, 30(6), 1535–1547. https://doi.org/10.1016/j.engstruct.2007.10.002
-
Yeşilyurt, A. (2021). Prefabrik betonarme endüstriyel yapıların farklı zemin şartlarında hasar görebilirliği ve deprem risk değerlendirmesi (Doctoral dissertation, Gebze Teknik Üniversitesi).
-
Yılmaz, A. (2023). Investigation of soft storey irregularity in reinforced concrete structures. Yüksek Lisans Tezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Erzurum, 75s.
-
Yılmaz, A., & Oncu, M. E. (2025). Sismik yükler altında yumuşak kat etkisinin yapıların hasar etkisi. In 7th International Symposium on Natural Hazards and Disaster Management (ISHAD2025, Diyarbakır, Türkiye), 16–18 May 2025. Diyarbakır.
-
Yön, B. (2020). Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes. Earthquakes and Structures, 18(6), 709–718. https://doi.org/10.12989/eas.2020.18.6.709
-
Zuccaro, G., Perelli, F. L., De Gregorio, D., & Cacace, F. (2021). Empirical vulnerability curves for Italian masonry buildings: Evolution of vulnerability model from the DPM to curves as a function of acceleration. Bulletin of Earthquake Engineering, 19(8), 3077–3097. https://doi.org/10.1007/s10518-020-00954-5