FORMALDEHİTİN B12N12, B6N6C12, B12N6C6 VE C24 NANOKAFESLERİNE ADSORPSİYONUNUN İNCELENMESİ: YOĞUNLUK FONKSİYONEL TEORİSİ HESAPLAMALARI
Yıl 2025,
Cilt: 28 Sayı: 3, 1604 - 1612, 03.09.2025
Şeyda Aydoğdu
Öz
Son yıllarda hava kirleticilerinin izlenmesi daha önemli olmuştur. Formaldehit bu kirleticilerden bir tanesidir. Pek çok amaçla kullanılmaktadır, ancak toksik doğası tespit edilmesini ve çevreden giderilmesini gerekli kılmaktadır. Bu çalışmada B12N12, B6N6C12, B12N6C6 ve C24 nanokafeslerinin formaldehit tutma ve/veya tespit etme yetenekleri incelenmiştir. Hesaplamalar Yoğunluk Fonksiyonel Teorisi M06-2X/6-311g(d,p) seviyesinde yapılmıştır. Formaldehit adsorpsiyonundan önce ve sonra nanokafeslerin elektronik ve yapısal özellikleri, adsorpsiyon enerjileri incelenmiş ve ayrıntılarıyla analiz edilmiştir. Nanokafeslerin elektronik özelliklerinin ve reaktivitelerinin değişimi tartışılmıştır. Buna ek olarak, nanokafeslerin artan formaldehit molekülü sayısına göre aktif bölgeleri belirlenmiştir. Sonuçlar B12N6C6 nanokafesinin formaldehitin çevrede tespit edilmesinde kullanılabileceğini göstermektedir.
Kaynakça
-
Abbasi, A., Sardroodi, J. J., & Ebrahimzadeh, A. R. (2016). Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: A DFT study. Surface Science, 654, 20–32. https://doi.org/10.1016/j.susc.2016.07.011
-
Al-Nadary, H. O., Eid, K. M., Badran, H. M., & Ammar, H. Y. (2024). M-Encapsulated Be12O12 Nano-Cage (M = K, Mn, or Cu) for CH2O Sensing Applications: A Theoretical Study. Nanomaterials, 14(1). https://doi.org/10.3390/nano14010007
-
Aydogdu, S., & Hatipoglu, A. (2022a). Electronic Structures and Reactivities of COVID-19 Drugs: A DFT Study. Acta Chimica Slovenica, 69(3), 647–656. https://doi.org/10.17344/acsi.2022.7522
-
Aydogdu, S., & Hatipoglu, A. (2022b). The reaction mechanism investigation of sulfonamides with OH radical by DFT. Journal of the Indian Chemical Society, 99(11). https://doi.org/10.1016/j.jics.2022.100752
-
Aydogdu, S., & Hatipoglu, A. (2023). Theoretical insights into the reaction mechanism and kinetics of ampicillin degradation with hydroxyl radical. Journal of Molecular Modeling, 29(3). https://doi.org/10.1007/s00894-023-05462-2
-
Badran, H. M., Eid, K. M., Al-Nadary, H. O., & Ammar, H. Y. (2023). Beryllium oxide nano-cage as sorbent and sensor for formaldehyde gas: DFT-D3 calculations. Journal of Molecular Liquids, 385. https://doi.org/10.1016/j.molliq.2023.122430
-
Borji, S., & Vahedpour, M. (2023). A theoretical investigation of the possible mechanisms for detection the copper ions by a retinal-base sensor. Journal of Photochemistry and Photobiology A: Chemistry, 436. https://doi.org/10.1016/j.jphotochem.2022.114363
-
Chu, X., Chen, T., Zhang, W., Zheng, B., & Shui, H. (2009). Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sensors and Actuators, B: Chemical, 142(1), 49–54. https://doi.org/10.1016/j.snb.2009.07.049
-
Da’i, M., Mirzaei, M., Toiserkani, F., Mohealdeen, S. M., Yasin, Y., Salem-Bekhit, M. M., & Akhavan-Sigari, R. (2023). Sensing the formaldehyde pollutant by an enhanced BNC18 fullerene: DFT outlook. Chemical Physics Impact, 7. https://doi.org/10.1016/j.chphi.2023.100306
-
Frisch, M..J., Trucks, G.W., Schlegel, H..B., Scuseria, G..E., Robb, M. A., Cheeseman Jr., J. R., Montgom-ery, J.A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H.P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannen-berg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A. D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., , et.al. (2009) Gaussian 09, Revision C.1. Gaussian Inc., Pittsburgh, PA. (2009).
-
Geetha Sadasivan Nair, R., Narayanan Nair, A. K., & Sun, S. (2023). Adsorption of Gases on Fullerene-like X12Y12 (X = Be, Mg, Ca, B, Al, Ga, C; Y = C, Si, N, P, O) Nanocages. Energy and Fuels, 37(18), 14053–14063. https://doi.org/10.1021/acs.energyfuels.3c01973
-
Geetha Sadasivan Nair, R., Narayanan Nair, A. K., & Sun, S. (2024). Adsorption of gases on B12N12 and Al12N12 nanocages. New Journal of Chemistry, 48(18), 8093–8105. https://doi.org/10.1039/d3nj05703h
-
Harismah, K., Nassar, M. F., Hamid, O. T., Al-Khafaji, M. O., & Zandi, H. (2023). Investigating a Boron Nitride Plate for the Formaldehyde Adsorption: Density Functional Theory Calculations. Biointerface Research in Applied Chemistry, 13(4). https://doi.org/10.33263/BRIAC134.346
-
Hu, J., Wang, T., Wang, Y., Huang, D., He, G., Han, Y., & Yang, Z. (2018). Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sensors and Actuators, B: Chemical, 263, 120–128. https://doi.org/10.1016/j.snb.2018.02.035
-
Ibrahim, M. A. A., Rady, A. shimaa S. M., Mohamed, L. A., Shawky, A. M., Hasanin, T. H. A., Sidhom, P. A., & Moussa, N. A. M. (2023). Adsorption of Molnupiravir anti-COVID-19 drug over B12N12 and Al12N12 nanocarriers: a DFT study. Journal of Biomolecular Structure and Dynamics, 41(22), 12923–12937. https://doi.org/10.1080/07391102.2023.2169763
-
Kadhim, M. M., Sadoon, N., Gheni, H. A., Hachim, S. K., Majdi, A., Abdullaha, S. A. H., & Rheima, A. M. (2023). Application of B3O3 monolayer as an electrical sensor for detection of formaldehyde gas: A DFT study. Computational and Theoretical Chemistry, 1219. https://doi.org/10.1016/j.comptc.2022.113941
-
Li, X., Zhang, N., Liu, C., Adimi, S., Zhou, J., Liu, D., & Ruan, S. (2021). Enhanced gas sensing properties for formaldehyde based on ZnO/Zn2SnO4 composites from one-step hydrothermal synthesis. Journal of Alloys and Compounds, 850. https://doi.org/10.1016/j.jallcom.2020.156606
-
Louis, H., Amodu, I. O., Unimuke, T. O., Gber, T. E., Isang, B. B., & Adeyinka, A. S. (2022). Modeling of Ca12O12, Mg12O12, and Al12N12 nanostructured materials as sensors for phosgene (Cl2CO). Materials Today Communications, 32. https://doi.org/10.1016/j.mtcomm.2022.103946
-
Noorizadeh, S., & Shakerzadeh, E. (2012). Formaldehyde adsorption on pristine, Al-doped and mono-vacancy defected boron nitride nanosheets: A first principles study. Computational Materials Science, 56, 122–130. https://doi.org/10.1016/j.commatsci.2012.01.017
-
Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
-
Roy, R. K., Pal, S., & Hirao, K. (1999). On non-negativity of Fukui function indices.
-
Roy, R. S., Banerjee, S., Ghosh, S., Ghosh, A., & Das, A. K. (2024). A comparative study of electronic structure, adsorption properties, and optical responses of furan and tetrahydrofuran adsorbed pristine, Al and Ga doped B12X12 (X=N and P) nanocages. Journal of Molecular Structure, 1296. https://doi.org/10.1016/j.molstruc.2023.136854
-
Shakerzadeh, E. (2016). A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster. Physica E: Low-Dimensional Systems and Nanostructures, 78, 1–9. https://doi.org/10.1016/j.physe.2015.11.038
-
Soltani, A., Ghasemi, A. S., Javan, M. B., Ashrafi, F., Ince, J. C., & Heidari, F. (2019). Adsorption of HCOH and H 2 S molecules on Al 12 P 12 fullerene: a DFT study. Adsorption, 25(2), 235–245. https://doi.org/10.1007/s10450-019-00029-1
-
Soltani, A., Tazikeh-Lemeski, E., & Javan, M. B. (2020). A comparative theoretical study on the interaction of pure and carbon atom substituted boron nitride fullerenes with ifosfamide drug. Journal of Molecular Liquids, 297. https://doi.org/10.1016/j.molliq.2019.111894
-
Tang, W., Wang, J., Yao, P., & Li, X. (2014). A microscale formaldehyde gas sensor based on Zn2SnO 4/SnO2 and produced by combining hydrothermal synthesis with post-synthetic heat treatment. Journal of Materials Science, 49(3), 1246–1255. https://doi.org/10.1007/s10853-013-7808-5
-
Vessally, E., Ahmadi, E., alibabaei, S., Esrafili, M. D., & Hosseinian, A. (2017). Adsorption and decomposition of formaldehyde on the B12N12 nanostructure: a density functional theory study. Monatshefte Fur Chemie, 148(10), 1727–1731. https://doi.org/10.1007/s00706-017-2003-z
-
Vishwkarma, A. K., Yadav, T., Pathak, A., & Brahmachari, G. (2023). Interaction of a synthetic bio-relevant drug-molecule with C24 and B12N12 fullerene: A first-principles quantum chemical investigation. Diamond and Related Materials, 132. https://doi.org/10.1016/j.diamond.2022.109639
-
Walker, M., Harvey, A. J. A., Sen, A., & Dessent, C. E. H. (2013). Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. Journal of Physical Chemistry A, 117(47), 12590–12600. https://doi.org/10.1021/jp408166m
-
Wang, R., Zhu, R., & Zhang, D. (2008). Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters, 467(1–3), 131–135. https://doi.org/10.1016/j.cplett.2008.11.002
-
Wang, X., Zhang, J., Wang, L., Li, S., Liu, L., Su, C., & Liu, L. (2015). High Response Gas Sensors for Formaldehyde Based on Er-doped In2O3 Nanotubes. Journal of Materials Science and Technology, 31(12), 1175–1180. https://doi.org/10.1016/j.jmst.2015.11.002
-
Yoosefian, M., Raissi, H., & Mola, A. (2015). The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: A DFT study. Sensors and Actuators, B: Chemical, 212, 55–62. https://doi.org/10.1016/j.snb.2015.02.004
-
Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157–167. https://doi.org/10.1021/ar700111a
INVESTIGATION OF FORMALDEHYDE ADSORPTION ON B12N12, B6N6C12, B12N6C6, AND C24 NANOCAGES: DENSITY FUNCTIONAL THEORY CALCULATIONS
Yıl 2025,
Cilt: 28 Sayı: 3, 1604 - 1612, 03.09.2025
Şeyda Aydoğdu
Öz
In the last years monitoring of air pollutants become more important. Formaldehyde is one of these pollutants. It has been used in lots of purposes, but its toxic nature necessitates sensing and removing it from environment. In this work capture and/or sensing capabilities of B12N12, B6N6C12, B12N6C6, and C24 nanocages for formaldehyde are investigated. The calculations are conducted at the M06-2x/6-311g(d,p) level of Density Functional Theory. The structure and electronic properties of nanocages before and after formaldehyde adsorption, the adsorption energies are investigated and analyzed in detail. The changing of electronic properties and reactivity of nanocages are discussed. Hence, active regions of the nanocage are determined for increasing numbers of formaldehyde molecules. The results indicate that possibility of using B12N6C6 nanocage to sense formaldehyde in the environment.
Kaynakça
-
Abbasi, A., Sardroodi, J. J., & Ebrahimzadeh, A. R. (2016). Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: A DFT study. Surface Science, 654, 20–32. https://doi.org/10.1016/j.susc.2016.07.011
-
Al-Nadary, H. O., Eid, K. M., Badran, H. M., & Ammar, H. Y. (2024). M-Encapsulated Be12O12 Nano-Cage (M = K, Mn, or Cu) for CH2O Sensing Applications: A Theoretical Study. Nanomaterials, 14(1). https://doi.org/10.3390/nano14010007
-
Aydogdu, S., & Hatipoglu, A. (2022a). Electronic Structures and Reactivities of COVID-19 Drugs: A DFT Study. Acta Chimica Slovenica, 69(3), 647–656. https://doi.org/10.17344/acsi.2022.7522
-
Aydogdu, S., & Hatipoglu, A. (2022b). The reaction mechanism investigation of sulfonamides with OH radical by DFT. Journal of the Indian Chemical Society, 99(11). https://doi.org/10.1016/j.jics.2022.100752
-
Aydogdu, S., & Hatipoglu, A. (2023). Theoretical insights into the reaction mechanism and kinetics of ampicillin degradation with hydroxyl radical. Journal of Molecular Modeling, 29(3). https://doi.org/10.1007/s00894-023-05462-2
-
Badran, H. M., Eid, K. M., Al-Nadary, H. O., & Ammar, H. Y. (2023). Beryllium oxide nano-cage as sorbent and sensor for formaldehyde gas: DFT-D3 calculations. Journal of Molecular Liquids, 385. https://doi.org/10.1016/j.molliq.2023.122430
-
Borji, S., & Vahedpour, M. (2023). A theoretical investigation of the possible mechanisms for detection the copper ions by a retinal-base sensor. Journal of Photochemistry and Photobiology A: Chemistry, 436. https://doi.org/10.1016/j.jphotochem.2022.114363
-
Chu, X., Chen, T., Zhang, W., Zheng, B., & Shui, H. (2009). Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sensors and Actuators, B: Chemical, 142(1), 49–54. https://doi.org/10.1016/j.snb.2009.07.049
-
Da’i, M., Mirzaei, M., Toiserkani, F., Mohealdeen, S. M., Yasin, Y., Salem-Bekhit, M. M., & Akhavan-Sigari, R. (2023). Sensing the formaldehyde pollutant by an enhanced BNC18 fullerene: DFT outlook. Chemical Physics Impact, 7. https://doi.org/10.1016/j.chphi.2023.100306
-
Frisch, M..J., Trucks, G.W., Schlegel, H..B., Scuseria, G..E., Robb, M. A., Cheeseman Jr., J. R., Montgom-ery, J.A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H.P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannen-berg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A. D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., , et.al. (2009) Gaussian 09, Revision C.1. Gaussian Inc., Pittsburgh, PA. (2009).
-
Geetha Sadasivan Nair, R., Narayanan Nair, A. K., & Sun, S. (2023). Adsorption of Gases on Fullerene-like X12Y12 (X = Be, Mg, Ca, B, Al, Ga, C; Y = C, Si, N, P, O) Nanocages. Energy and Fuels, 37(18), 14053–14063. https://doi.org/10.1021/acs.energyfuels.3c01973
-
Geetha Sadasivan Nair, R., Narayanan Nair, A. K., & Sun, S. (2024). Adsorption of gases on B12N12 and Al12N12 nanocages. New Journal of Chemistry, 48(18), 8093–8105. https://doi.org/10.1039/d3nj05703h
-
Harismah, K., Nassar, M. F., Hamid, O. T., Al-Khafaji, M. O., & Zandi, H. (2023). Investigating a Boron Nitride Plate for the Formaldehyde Adsorption: Density Functional Theory Calculations. Biointerface Research in Applied Chemistry, 13(4). https://doi.org/10.33263/BRIAC134.346
-
Hu, J., Wang, T., Wang, Y., Huang, D., He, G., Han, Y., & Yang, Z. (2018). Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sensors and Actuators, B: Chemical, 263, 120–128. https://doi.org/10.1016/j.snb.2018.02.035
-
Ibrahim, M. A. A., Rady, A. shimaa S. M., Mohamed, L. A., Shawky, A. M., Hasanin, T. H. A., Sidhom, P. A., & Moussa, N. A. M. (2023). Adsorption of Molnupiravir anti-COVID-19 drug over B12N12 and Al12N12 nanocarriers: a DFT study. Journal of Biomolecular Structure and Dynamics, 41(22), 12923–12937. https://doi.org/10.1080/07391102.2023.2169763
-
Kadhim, M. M., Sadoon, N., Gheni, H. A., Hachim, S. K., Majdi, A., Abdullaha, S. A. H., & Rheima, A. M. (2023). Application of B3O3 monolayer as an electrical sensor for detection of formaldehyde gas: A DFT study. Computational and Theoretical Chemistry, 1219. https://doi.org/10.1016/j.comptc.2022.113941
-
Li, X., Zhang, N., Liu, C., Adimi, S., Zhou, J., Liu, D., & Ruan, S. (2021). Enhanced gas sensing properties for formaldehyde based on ZnO/Zn2SnO4 composites from one-step hydrothermal synthesis. Journal of Alloys and Compounds, 850. https://doi.org/10.1016/j.jallcom.2020.156606
-
Louis, H., Amodu, I. O., Unimuke, T. O., Gber, T. E., Isang, B. B., & Adeyinka, A. S. (2022). Modeling of Ca12O12, Mg12O12, and Al12N12 nanostructured materials as sensors for phosgene (Cl2CO). Materials Today Communications, 32. https://doi.org/10.1016/j.mtcomm.2022.103946
-
Noorizadeh, S., & Shakerzadeh, E. (2012). Formaldehyde adsorption on pristine, Al-doped and mono-vacancy defected boron nitride nanosheets: A first principles study. Computational Materials Science, 56, 122–130. https://doi.org/10.1016/j.commatsci.2012.01.017
-
Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
-
Roy, R. K., Pal, S., & Hirao, K. (1999). On non-negativity of Fukui function indices.
-
Roy, R. S., Banerjee, S., Ghosh, S., Ghosh, A., & Das, A. K. (2024). A comparative study of electronic structure, adsorption properties, and optical responses of furan and tetrahydrofuran adsorbed pristine, Al and Ga doped B12X12 (X=N and P) nanocages. Journal of Molecular Structure, 1296. https://doi.org/10.1016/j.molstruc.2023.136854
-
Shakerzadeh, E. (2016). A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster. Physica E: Low-Dimensional Systems and Nanostructures, 78, 1–9. https://doi.org/10.1016/j.physe.2015.11.038
-
Soltani, A., Ghasemi, A. S., Javan, M. B., Ashrafi, F., Ince, J. C., & Heidari, F. (2019). Adsorption of HCOH and H 2 S molecules on Al 12 P 12 fullerene: a DFT study. Adsorption, 25(2), 235–245. https://doi.org/10.1007/s10450-019-00029-1
-
Soltani, A., Tazikeh-Lemeski, E., & Javan, M. B. (2020). A comparative theoretical study on the interaction of pure and carbon atom substituted boron nitride fullerenes with ifosfamide drug. Journal of Molecular Liquids, 297. https://doi.org/10.1016/j.molliq.2019.111894
-
Tang, W., Wang, J., Yao, P., & Li, X. (2014). A microscale formaldehyde gas sensor based on Zn2SnO 4/SnO2 and produced by combining hydrothermal synthesis with post-synthetic heat treatment. Journal of Materials Science, 49(3), 1246–1255. https://doi.org/10.1007/s10853-013-7808-5
-
Vessally, E., Ahmadi, E., alibabaei, S., Esrafili, M. D., & Hosseinian, A. (2017). Adsorption and decomposition of formaldehyde on the B12N12 nanostructure: a density functional theory study. Monatshefte Fur Chemie, 148(10), 1727–1731. https://doi.org/10.1007/s00706-017-2003-z
-
Vishwkarma, A. K., Yadav, T., Pathak, A., & Brahmachari, G. (2023). Interaction of a synthetic bio-relevant drug-molecule with C24 and B12N12 fullerene: A first-principles quantum chemical investigation. Diamond and Related Materials, 132. https://doi.org/10.1016/j.diamond.2022.109639
-
Walker, M., Harvey, A. J. A., Sen, A., & Dessent, C. E. H. (2013). Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. Journal of Physical Chemistry A, 117(47), 12590–12600. https://doi.org/10.1021/jp408166m
-
Wang, R., Zhu, R., & Zhang, D. (2008). Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters, 467(1–3), 131–135. https://doi.org/10.1016/j.cplett.2008.11.002
-
Wang, X., Zhang, J., Wang, L., Li, S., Liu, L., Su, C., & Liu, L. (2015). High Response Gas Sensors for Formaldehyde Based on Er-doped In2O3 Nanotubes. Journal of Materials Science and Technology, 31(12), 1175–1180. https://doi.org/10.1016/j.jmst.2015.11.002
-
Yoosefian, M., Raissi, H., & Mola, A. (2015). The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: A DFT study. Sensors and Actuators, B: Chemical, 212, 55–62. https://doi.org/10.1016/j.snb.2015.02.004
-
Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157–167. https://doi.org/10.1021/ar700111a