Derleme
BibTex RIS Kaynak Göster

PEYNİR ÜRETİM SÜREÇLERİNDE KARBON AYAK İZİ VE AZALTIM STRATEJİLERİ ÜZERİNE BİR ÇALIŞMA

Yıl 2025, Cilt: 28 Sayı: 3, 1639 - 1649, 03.09.2025
https://doi.org/10.17780/ksujes.1764010

Öz

Artan dünya nüfusunu beslerken doğal kaynakların korunması ve sera gazı (GHG) emisyonlarının azaltılması, sürdürülebilir gıda üretiminin temel hedeflerindendir. Bu çerçevede peynir üretiminde en büyük çevresel etki, çiğ süt üretim aşamasında oluşur. Bununla birlikte, işleme, olgunlaştırma, ambalajlama, depolama ve dağıtım süreçleri de karbon ayak izine katkıda bulunur. Emisyon miktarları; peynir türü, olgunlaşma süresi, süt türü, üretim ölçeği, teknoloji seviyesi ve yaşam döngüsü analizi (LCA) sınırlarına bağlı olarak değişiklik gösterir. Dolayısyla peynir üretiminin her aşamasındaki karbon salımlarının belirlenmesi önem taşımaktadır. Karbon ayak izinin azaltılmasında düşük metan salan ırkların seçimi, yem optimizasyonu, gübre yönetiminin iyileştirilmesi, yenilenebilir enerji kullanımı, proses optimizasyonları, peynir altı suyunun yeniden değerlendirilmesi, geri dönüştürülebilir ambalaj tercihleri ve lojistikte verimlilik artırıcı önlemler etkili stratejilerdir. Bu çalışma, peynir üretiminde kullanılan hammaddelerden başlayarak işleme, ambalajlama ve lojistik süreçlerine kadar olan tüm aşamalarda oluşan karbon ayak izini değerlendirmeyi; karbon ayak izine katkıda bulunan etkileri azaltmaya yönelik uygulanabilir stratejileri literatür ışığında derleyerek peynir üretiminde sürdürülebilir üretim modellerinin geliştirilmesine katkı sağlamayı amaçlamaktadır.

Kaynakça

  • Aguirre-Villegas, H. A., Milani, F. X., Kraatz, S., & Reinemann, D. J. (2012). Life cycle impact assessment and allocation methods development for cheese and whey processing. Transactions of the ASABE, 55(2), 613-627. https://doi.org/10.13031/2013.41363
  • Aprile, M.C. & Fiorillo, D. (2023). Other-regarding preferences in pro-environmental behaviours: Empirical analysis and policy implications of organic and local food products purchasing in Italy. J. Environ. Manag. 343, 118174. https://doi.org/10.1016/j.jenvman.2023.118174
  • Batalla, I., Knudsen, M.T., Mogensen, L., del Hierro, O., Pinto, M., & Hermansen, J.E. (2015). Carbon footprint of milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands. J. Clean. Prod., 104, 121–129. https://doi.org/10.1016/j.jclepro.2015.05.043
  • Becker, F., Spengler, K., Reinicke, F., & Heider-van Diepen, C. (2023). Impact of essential oils on methane emissions, milk yield, and feed efficiency and resulting influence on the carbon footprint of dairy production systems. Environmental Science and Pollution Research, 30(17): 48824-48836. https://doi.org/10.1007/s11356-023-26129-8
  • Bist, R.B., Bist, K., Poudel, S., Subedi, D., Yang, X., Paneru, B., Mani, S., Wang, D., & Chai, L. (2024). Sustainable poultry farming practices: a critical review of current strategies and future prospects. Poultry Science, 104295. https://doi.org/10.1016/j.psj.2024.104295
  • Bostubayeva, M., Baimbetova, E., Makenova, M., Shumenova, N., Sarmanova, R., & Nauanova, A. (2023). Screening and evaluation of potential microbial bio-activators used in sewage sludge composting. Caspian Journal of Environmental Sciences, 21(3), 575-583. https://cjes.guilan.ac.ir/article_6936.html
  • Buele, J., Villafuerte, M., Paucar, S., & Lara-Calle, A. (2024). Impact of different types of rennet on sustainability and safety in cheese production. In IOP Conference Series: Earth and Environmental Science (Vol. 1434, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1755-1315/1434/1/012008
  • Cabral, C. F. S., Veiga, L. B. E., Araujo, M. G., & Souza, S. L. Q. (2020). Environmental Life Cycle Assessment of goat cheese production in Brazil: a path towards sustainability. Food Science and Technology, 129:109550. https://doi.org/10.1016/j.lwt.2020.109550
  • Canellada, F., Laca, A., Laca, A., & Diaz, M. (2018). Environmental impact of cheese production: A case study of a small-scale factory in southern Europe and global overview of carbon footprint. Science of the Total Environment, 635:167–177. https://doi.org/10.1016/j.scitotenv.2018.04.045
  • Carvalho, L.S., Willers, C.D., Maranduba, H.L., Robra, S., Almeida Neto, J.A., & Rodrigues, L.B., (2018). Contributions of life cycle assessment to the sustainability of milk production. In: Anke Hertz. (Org.). Dairy Farming: Operations Management, Animal Welfare and Milk Production, 1ed, vol. 1. Nova Publishers, New York, pp. 63-96. https://doi.org/10.2139/ssrn.5156290
  • Casallas-Ojeda, M., Cabeza, I., Sanchez, N., Caicedo-Concha, D. M., & Astals, S. (2024). Cheese whey and dairy manure anaerobic co-digestion at psychrophilic conditions: Technical and environmental evaluation. Environmental Research, 251, 118525. https://doi.org/10.1016/j.envres.2024.118525
  • Chowdhury, M.A.H., Chowdhury, S.A.R., Rahman, S.M., & Sarkar, F. (2024). Comprehensive Approaches for Ensuring Microbial Safety in the Dairy Industry: Monitoring Systems, Inhibitory Strategies, and Future Prospects. Food Control: 110894. https://doi.org/10.1016/j.foodcont.2024.110894
  • Connor, E.E. (2015). Invited Review: Improving Feed Efficiency in Dairy Production: Challenges and Possibilities*. Animal, 9, 395–408. https://doi.org/10.1017/s1751731114002997
  • Debnath, P. P., Roy, K., Debnath, A., & Sanyal, M. K. (2022). Life cycle assessment and application of green technologies in dairy industry to reduce carbon footprint. Indian J Anim Health, 61(2), 19-32. https://doi.org/10.36062/ijah.2022.spl.02122
  • Dijkstra, J., Bannink, A., Bosma, P.M., Lantinga, E.A., & Reijs, J.W. (2018). Modeling the Effect of Nutritional Strategies for Dairy Cows on the Composition of Excreta Nitrogen. Front. Sustain. Food Syst., 2, 364746. https://doi.org/10.3389/fsufs.2018.00063
  • EEA. (2023). Annual European Union Greenhouse Gas Inventory 1990–2021 and Inventory Report 2023. Submission to the UNFCCC Secretariat. https://doi.org/10.1163/9789004322714_cclc_2023-0190-0922
  • Eramo, V., di Cristofaro, M., & Botondi, R. (2025). Environmental sustainability in dairy production: a comparative Life Cycle Assessment of Conventional and Ozone-based ripening for ‘Toma Piemontese’raw milk cheese. Journal of Environmental Chemical Engineering, 117667. https://doi.org/10.2139/ssrn.5156290
  • FAO. (2022). GLEAM 2.0: Global livestock environmental assesment model. https://www.fao.org/gleam/results/en/
  • Farkye, N. Y. (2017). Quark, quark-like products, and concentrated yogurts. In Cheese (pp. 11031110). Academic Press. https://doi.org/10.1016/b978-0-12-417012-4.00043-0
  • Ferronato, G., Tobanelli, N., Bani, P., & Cattaneo, L. (2025). Carbon Footprint Assessment of Dairy Milk and Grana Padano PDO Cheese and Improvement Scenarios: A Case Study in the Po Valley (Italy). Animals, 15(6), 811. https://doi.org/10.3390/ani15060811
  • Finnegan, W., Yan, M., Holden, N. M., & Goggins, J. (2018). A review of environmental life cycle assessment studies examining cheese production. The International Journal of Life Cycle Assessment, 23, 1773‒1787. https://doi.org/10.1007/s11367-017-1407-7
  • Gaber, S. M., Johansen, A. G., Devold, T. G., Rukke, E. O., & Skeie, S. B. (2021). Manufacture and characterization of acid-coagulated fresh cheese made from casein concentrates obtained by acid diafiltration. Journal of Dairy Science, 104(6), 6598-6608. https://doi.org/10.3168/jds.2020-19917
  • Gaillac, R., & Marbach, S. (2021). The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. Journal of Cleaner Production, 321: 128766. https://doi.org/10.1016/j.jclepro.2021.128766
  • Geiger, B., Nguyen, H. M., Wenig, S., Nguyen, H. A., Lorenz, C., Kittl,& Nguyen, T. H. (2016). From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochemical Engineering Journal, 116, 45-53. https://doi.org/10.1016/j.bej.2016.04.003
  • Gerber, P., Steinfeld, H., Henderson, B., Mottet, A., & Opio, C. (2013). Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy. https://doi.org/10.4324/9780203144510-38
  • Gillespie, S., van den Bold Gillespie, M.S., & van den Bold, M. (2017). Agriculture, Food Systems, and Nutrition: Meeting the Challenge. Glob. Chall., 1, 1600002. https://doi.org/10.1002/gch2.201600002
  • González-García, S., Hospido, A., Moreira, M. T., Feijoo, G., & Arroja, L. (2013). Environmental life cycle assessment of a Galician cheese: San Simon da Costa. Journal of cleaner production, 52, 253-262. https://doi.org/10.1016/j.jclepro.2013.03.006
  • Gosalvitr, P., Cuellar-Franca, R., Smith, R., & Azapagic, A. (2019). Energy demand and carbon footprint of cheddar cheese with energy recovery from cheese whey. Energy Procedia, 161, 10–16. https://doi.org/10.1016/j.egypro.2019.02.052
  • Green, A., Nemecek, T., & Mathys, A. (2023). A proposed framework to develop nutrient profiling algorithms for assessments of sustainable food: The metrics and their assumptions matter. The International Journal of Life Cycle Assessment, 28 (10), 1326‒1347. https://doi.org/10.1007/s11367-023-02210-9
  • Gölcük, E., Balta, Y., Yerlikaya, O., & Uysal, H. R. (2025). Peyniraltı Suyunun Değerlendirilmesindeki Yenilikçi Yaklaşımlar. Turkish Journal of Agriculture-Food Science and Technology, 13(6), 1694-1706. https://doi.org/10.24925/turjaf.v13i6.1694-1706.7485
  • Guzman-Luna, P., Mauricio-Iglesias, M., Flysjö, A., & Hospido, A. (2022). Analysing the interaction between the dairy sector and climate change from a life cycle perspective: A review. Trends Food Sci Technol., 126, 168–179. https://doi.org/10.1016/j.tifs.2021.09.001
  • Hayaloğlu, A. A., & Özer, B. (2011). Peynir biliminin temelleri. Sidas Medya Ltd, 643. https://www.nobelyayin.com/e_tanitim/peynir_biliminin_temelleri_jen_162352.pdf
  • Imtiaz-Ul-Islam, M., Hong, L., & Langrish, T. (2011). CO2 capture using whey protein isolate. Chemical Engineering Journal, 171, 1069–1081. https://doi.org/10.1016/j.cej.2011.05.003
  • IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, pp. 35–115. https://doi.org/10.59327/ipcc/ar6-9789291691647.003
  • ISO 14040 (2006). Environmental Management. Life Cycle Assessment. Principles and Framework. International Organization for Standardization: Geneve, Switzerland. https://doi.org/10.3403/01139131u
  • ISO 14067 (2018). Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. Geneva, Switzerland: International Organization for Standardization. https://doi.org/10.3403/30341962u
  • ISO 14067 (2013). Greenhouse Gases. Carbon Footprint of Products. Requirements and Guidelines for Quantification and Communication (Technical Specifications). International Organization for Standardization: Geneve, Switzerland. https://doi.org/10.3403/30244913u
  • Kahyaoğlu, M., & Konar, V. (2008). Karbon Kaynaği Olarak Peyniralti Suyu Atiği Kullanilarak Ramnolipit Biyosürfektani Üretimi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 8(1), 53-62. https://dergipark.org.tr/en/download/article-file/18616
  • Kebreab, E., Strathe, A., Fadel, J., Moraes, L., & France, J. (2010). Impact of Dietary Manipulation on Nutrient Flows and Greenhouse Gas Emissions in Cattle. Revista Brasileira de Zootecnia, 39, 458–464. https://doi.org/10.1590/s1516-35982010001300050
  • Kim, D., Thoma, G., Nutter, D., Milani, F., Ulrich, R. & Norris, G. (2013). Life cycle assessment of cheese and whey production in the USA. International Journal of Life Cycle Assessment, 18:1019–1035. https://doi.org/10.1007/s11367-013-0553-9
  • Kristensen, T., Søegaard, K., Eriksen, J., & Mogensen, L. (2015). Carbon footprint of cheese produced on milk from Holstein and Jersey cows fed hay differing in herb content. Journal of Cleaner Production, 101, 229-237. https://doi.org/10.1016/j.jclepro.2015.03.087
  • Mezzetti, M., Passamonti, M. M., Dall’Asta, M., Bertoni, G., Trevisi, E., & Ajmone Marsan, P. (2024). Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods, 13, 1650. https://doi.org/10.3390/foods13111650
  • Mota, L. F. M., Giannuzzi, D., Bisutti, V., Pegolo, S., Trevisi, E., Schiavon, S., Gallo, L., Fineboym, D,, Katz, G., & Cecchinato, A. (2022). Real-time milk analysis integrated with stacking ensemble learning as a tool for the daily prediction of cheese-making traits in Holstein cattle. Journal of Dairy Science 105 4237–55. https://doi.org/10.3168/jds.2021-21426
  • Nigri, E. M., Barros, A. C., de Rocha, S. D. F., & Filho, E. R. (2014). Assessing environmental impacts using a comparative LCA of industrial and artisanal production processes: “Minas Cheese” case. Food Science and Technology, 34(3):522–531. https://doi.org/10.1590/1678-457x.6356
  • OECD/FAO. (2023). OECD-FAO Agricultural Outlook 2023–2032. Chapter 7. Dairy and Dairy Products; OECD Publishing: Paris, France. https://doi.org/10.1787/08801ab7-en
  • Özışık, D., & Akın, N. (2025). Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences, 11(1), 317-348. https://doi.org/10.29132/ijpas.1594075
  • Rencricca, G., Froldi, F., Moschini, M., Trevisan, M., Ghnimi, S., & Lamastra, L. (2023). The environmental impact of permanent meadowsbased farms: A comparison among different dairy farm management systems of an Italian cheese. Sustain. Prod. Consum., 37, 53–64. https://doi.org/10.1016/j.spc.2023.02.012
  • Ritota, M., & Manzi, P. (2020). Natural preservatives from plant in cheese making. Animals, 10(4), 749. https://doi.org/10.3390/ani10040749
  • Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate risk management, 16, 145-163. https://doi.org/10.1016/j.crm.2017.02.001
  • Rossi, C., Grossi, G., Lacetera, N., & Vitali, A. (2024). Carbon footprint and carbon sink of a local Italian dairy supply chain. Dairy, 5(1), 201-216. https://doi.org/10.3390/dairy5010017
  • Saxena, S., Khetra, Y., Ganguly, S., & Sasmal, S. (2025). Morphological and Textural Properties of Feta Cheese Made of Vegetable Protease. Food Bioengineering. https://doi.org/10.1002/fbe2.70013
  • Shabir, I., Dash, K. K., Dar, A.H., Pandey, V. K., Fayaz, U., Srivastava, S., & Nisha, R. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7:100215. https://doi.org/10.1016/j.fufo.2023.100215
  • Soares, B. B., Alves, E. C., De Almeida Neto, J.A., & Rodrigues, L.B. (2021). Environmental Impact of Cheese Production. In Environmental Impact of Agro-Food Industry and Food Consumption; Academic Press: Cambridge, MA, USA, pp. 169–187. https://doi.org/10.1016/b978-0-12-821363-6.00009-6
  • Thulasisingh, A., Kumar, K., Yamunadevi, B., Poojitha, N., & Hanif, S. S. M. (2021). Biodegradable packaging materials. Polym Bull. 79: 4467-4496, https://doi.org/10.1007/s00289-021-03767-x
  • Uribe-Velázquez, T., Díaz-Vázquez, D., Barajas-Álvarez, P., González-López, M. E., Gradilla-Hernández, M. S., Garcia-Amezquita, L. E., & García-Cayuela, T. (2025). From waste to value: Mitigating the environmental impact of whey in Jalisco, Mexico. Journal of Cleaner Production, 501, 145334. https://doi.org/10.1016/j.jclepro.2025.145334
  • Usmanovich, B. A., Shamuratovna, B. K., Abdujabbarovna, B. R., Zamirovna, J. V., Akmalovna, A. F., Abdullayevna, H. S., & Oybekugli, S. K. (2024). Impacts of environmental factors on milk starter culture performance in sustainable dairy production. Caspian Journal of Environmental Sciences, 22(5), 1033-1042. https://journals.guilan.ac.ir/article_8074_4898e104e772b5a6c0438f90c207e6e3.pdf
  • Uysal, İ. G., Güneş, N. Ç., & Koca, N. (2022). Farklı Peynir Çeşitlerinin Yaşam Döngüsü Analizi. Gıda, 47(6), 941-961. https://doi.org/10.15237/gida.gd22062
  • Üçtuğ, F. G. (2019). The environmental life cycle assessment of dairy products. Food Engineering Reviews, 11:104–121. https://doi.org/10.1007/s12393-019-9187-4
  • van Loon, M.P., Hijbeek, R., Vonk, W. J., & Oenema, J. (2024). Nutrient Cycling on Dairy Farms in the Netherlands: The Role of Farm Structure, Management and Trade-Offs. Resour. Conserv. Recycl. 211, 107875. https://doi.org/10.1016/j.resconrec.2024.107875
  • van Loon, M. P., Vonk, W. J., Hijbeek, R., van Ittersum, M. K., & ten Berge, H. F. M. (2023). Circularity Indicators and Their Relation with Nutrient Use Efficiency in Agriculture and Food Systems. Agric. Syst. 207, 103610. https://doi.org/10.1016/j.agsy.2023.103610
  • Xu, T., Flapper, J., & Kramer, K. J. (2009). Characterization of energy use and performance of global cheese processing. Energy, 34, 1993–2000, https://doi.org/10.1016/j.energy.2009.08.014
  • Yüksel, N., İstek, M. M., & Bulca, S. (2020). Peyniraltı Suyu Proteinlerinin Gıda Ambalajlamada Film Ve Kaplama Materyali Olarak Kullanımı. Journal of the Institute of Science and Technology, 10(2), 1042-1052, https://doi.org/10.21597/jist.652842

A STUDY ON CARBON FOOTPRINT AND REDUCTION STRATEGIES IN CHEESE PRODUCTION PROCESSES

Yıl 2025, Cilt: 28 Sayı: 3, 1639 - 1649, 03.09.2025
https://doi.org/10.17780/ksujes.1764010

Öz

Protecting natural resources and reducing greenhouse gas (GHG) emissions while feeding the growing global population are key goals of sustainable food production. In this context, the greatest environmental impact in cheese production occurs during the raw milk production stage. However, the processes of processing, ripening, packaging, storage, and distribution also contribute to the carbon footprint. Emission amounts vary depending on the type of cheese, ripening time, type of milk, production scale, level of technology, and life cycle analysis (LCA) boundaries. Therefore, determining carbon emissions at every stage of cheese production is important.
Choosing low-methane-emitting breeds, optimising feed, improving fertiliser management, using renewable energy, optimising processes, re-evaluating whey, preferring recyclable packaging, and implementing efficiency-enhancing measures in logistics are effective strategies for reducing the carbon footprint.
This study aims to evaluate the carbon footprint at all stages of cheese production, starting from the raw materials used in cheese production and including processing, packaging, and logistics processes; to compile feasible strategies for reducing the effects contributing to the carbon footprint in light of the literature; and to contribute to the development of sustainable production models in cheese production.

Kaynakça

  • Aguirre-Villegas, H. A., Milani, F. X., Kraatz, S., & Reinemann, D. J. (2012). Life cycle impact assessment and allocation methods development for cheese and whey processing. Transactions of the ASABE, 55(2), 613-627. https://doi.org/10.13031/2013.41363
  • Aprile, M.C. & Fiorillo, D. (2023). Other-regarding preferences in pro-environmental behaviours: Empirical analysis and policy implications of organic and local food products purchasing in Italy. J. Environ. Manag. 343, 118174. https://doi.org/10.1016/j.jenvman.2023.118174
  • Batalla, I., Knudsen, M.T., Mogensen, L., del Hierro, O., Pinto, M., & Hermansen, J.E. (2015). Carbon footprint of milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands. J. Clean. Prod., 104, 121–129. https://doi.org/10.1016/j.jclepro.2015.05.043
  • Becker, F., Spengler, K., Reinicke, F., & Heider-van Diepen, C. (2023). Impact of essential oils on methane emissions, milk yield, and feed efficiency and resulting influence on the carbon footprint of dairy production systems. Environmental Science and Pollution Research, 30(17): 48824-48836. https://doi.org/10.1007/s11356-023-26129-8
  • Bist, R.B., Bist, K., Poudel, S., Subedi, D., Yang, X., Paneru, B., Mani, S., Wang, D., & Chai, L. (2024). Sustainable poultry farming practices: a critical review of current strategies and future prospects. Poultry Science, 104295. https://doi.org/10.1016/j.psj.2024.104295
  • Bostubayeva, M., Baimbetova, E., Makenova, M., Shumenova, N., Sarmanova, R., & Nauanova, A. (2023). Screening and evaluation of potential microbial bio-activators used in sewage sludge composting. Caspian Journal of Environmental Sciences, 21(3), 575-583. https://cjes.guilan.ac.ir/article_6936.html
  • Buele, J., Villafuerte, M., Paucar, S., & Lara-Calle, A. (2024). Impact of different types of rennet on sustainability and safety in cheese production. In IOP Conference Series: Earth and Environmental Science (Vol. 1434, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1755-1315/1434/1/012008
  • Cabral, C. F. S., Veiga, L. B. E., Araujo, M. G., & Souza, S. L. Q. (2020). Environmental Life Cycle Assessment of goat cheese production in Brazil: a path towards sustainability. Food Science and Technology, 129:109550. https://doi.org/10.1016/j.lwt.2020.109550
  • Canellada, F., Laca, A., Laca, A., & Diaz, M. (2018). Environmental impact of cheese production: A case study of a small-scale factory in southern Europe and global overview of carbon footprint. Science of the Total Environment, 635:167–177. https://doi.org/10.1016/j.scitotenv.2018.04.045
  • Carvalho, L.S., Willers, C.D., Maranduba, H.L., Robra, S., Almeida Neto, J.A., & Rodrigues, L.B., (2018). Contributions of life cycle assessment to the sustainability of milk production. In: Anke Hertz. (Org.). Dairy Farming: Operations Management, Animal Welfare and Milk Production, 1ed, vol. 1. Nova Publishers, New York, pp. 63-96. https://doi.org/10.2139/ssrn.5156290
  • Casallas-Ojeda, M., Cabeza, I., Sanchez, N., Caicedo-Concha, D. M., & Astals, S. (2024). Cheese whey and dairy manure anaerobic co-digestion at psychrophilic conditions: Technical and environmental evaluation. Environmental Research, 251, 118525. https://doi.org/10.1016/j.envres.2024.118525
  • Chowdhury, M.A.H., Chowdhury, S.A.R., Rahman, S.M., & Sarkar, F. (2024). Comprehensive Approaches for Ensuring Microbial Safety in the Dairy Industry: Monitoring Systems, Inhibitory Strategies, and Future Prospects. Food Control: 110894. https://doi.org/10.1016/j.foodcont.2024.110894
  • Connor, E.E. (2015). Invited Review: Improving Feed Efficiency in Dairy Production: Challenges and Possibilities*. Animal, 9, 395–408. https://doi.org/10.1017/s1751731114002997
  • Debnath, P. P., Roy, K., Debnath, A., & Sanyal, M. K. (2022). Life cycle assessment and application of green technologies in dairy industry to reduce carbon footprint. Indian J Anim Health, 61(2), 19-32. https://doi.org/10.36062/ijah.2022.spl.02122
  • Dijkstra, J., Bannink, A., Bosma, P.M., Lantinga, E.A., & Reijs, J.W. (2018). Modeling the Effect of Nutritional Strategies for Dairy Cows on the Composition of Excreta Nitrogen. Front. Sustain. Food Syst., 2, 364746. https://doi.org/10.3389/fsufs.2018.00063
  • EEA. (2023). Annual European Union Greenhouse Gas Inventory 1990–2021 and Inventory Report 2023. Submission to the UNFCCC Secretariat. https://doi.org/10.1163/9789004322714_cclc_2023-0190-0922
  • Eramo, V., di Cristofaro, M., & Botondi, R. (2025). Environmental sustainability in dairy production: a comparative Life Cycle Assessment of Conventional and Ozone-based ripening for ‘Toma Piemontese’raw milk cheese. Journal of Environmental Chemical Engineering, 117667. https://doi.org/10.2139/ssrn.5156290
  • FAO. (2022). GLEAM 2.0: Global livestock environmental assesment model. https://www.fao.org/gleam/results/en/
  • Farkye, N. Y. (2017). Quark, quark-like products, and concentrated yogurts. In Cheese (pp. 11031110). Academic Press. https://doi.org/10.1016/b978-0-12-417012-4.00043-0
  • Ferronato, G., Tobanelli, N., Bani, P., & Cattaneo, L. (2025). Carbon Footprint Assessment of Dairy Milk and Grana Padano PDO Cheese and Improvement Scenarios: A Case Study in the Po Valley (Italy). Animals, 15(6), 811. https://doi.org/10.3390/ani15060811
  • Finnegan, W., Yan, M., Holden, N. M., & Goggins, J. (2018). A review of environmental life cycle assessment studies examining cheese production. The International Journal of Life Cycle Assessment, 23, 1773‒1787. https://doi.org/10.1007/s11367-017-1407-7
  • Gaber, S. M., Johansen, A. G., Devold, T. G., Rukke, E. O., & Skeie, S. B. (2021). Manufacture and characterization of acid-coagulated fresh cheese made from casein concentrates obtained by acid diafiltration. Journal of Dairy Science, 104(6), 6598-6608. https://doi.org/10.3168/jds.2020-19917
  • Gaillac, R., & Marbach, S. (2021). The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. Journal of Cleaner Production, 321: 128766. https://doi.org/10.1016/j.jclepro.2021.128766
  • Geiger, B., Nguyen, H. M., Wenig, S., Nguyen, H. A., Lorenz, C., Kittl,& Nguyen, T. H. (2016). From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochemical Engineering Journal, 116, 45-53. https://doi.org/10.1016/j.bej.2016.04.003
  • Gerber, P., Steinfeld, H., Henderson, B., Mottet, A., & Opio, C. (2013). Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy. https://doi.org/10.4324/9780203144510-38
  • Gillespie, S., van den Bold Gillespie, M.S., & van den Bold, M. (2017). Agriculture, Food Systems, and Nutrition: Meeting the Challenge. Glob. Chall., 1, 1600002. https://doi.org/10.1002/gch2.201600002
  • González-García, S., Hospido, A., Moreira, M. T., Feijoo, G., & Arroja, L. (2013). Environmental life cycle assessment of a Galician cheese: San Simon da Costa. Journal of cleaner production, 52, 253-262. https://doi.org/10.1016/j.jclepro.2013.03.006
  • Gosalvitr, P., Cuellar-Franca, R., Smith, R., & Azapagic, A. (2019). Energy demand and carbon footprint of cheddar cheese with energy recovery from cheese whey. Energy Procedia, 161, 10–16. https://doi.org/10.1016/j.egypro.2019.02.052
  • Green, A., Nemecek, T., & Mathys, A. (2023). A proposed framework to develop nutrient profiling algorithms for assessments of sustainable food: The metrics and their assumptions matter. The International Journal of Life Cycle Assessment, 28 (10), 1326‒1347. https://doi.org/10.1007/s11367-023-02210-9
  • Gölcük, E., Balta, Y., Yerlikaya, O., & Uysal, H. R. (2025). Peyniraltı Suyunun Değerlendirilmesindeki Yenilikçi Yaklaşımlar. Turkish Journal of Agriculture-Food Science and Technology, 13(6), 1694-1706. https://doi.org/10.24925/turjaf.v13i6.1694-1706.7485
  • Guzman-Luna, P., Mauricio-Iglesias, M., Flysjö, A., & Hospido, A. (2022). Analysing the interaction between the dairy sector and climate change from a life cycle perspective: A review. Trends Food Sci Technol., 126, 168–179. https://doi.org/10.1016/j.tifs.2021.09.001
  • Hayaloğlu, A. A., & Özer, B. (2011). Peynir biliminin temelleri. Sidas Medya Ltd, 643. https://www.nobelyayin.com/e_tanitim/peynir_biliminin_temelleri_jen_162352.pdf
  • Imtiaz-Ul-Islam, M., Hong, L., & Langrish, T. (2011). CO2 capture using whey protein isolate. Chemical Engineering Journal, 171, 1069–1081. https://doi.org/10.1016/j.cej.2011.05.003
  • IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, pp. 35–115. https://doi.org/10.59327/ipcc/ar6-9789291691647.003
  • ISO 14040 (2006). Environmental Management. Life Cycle Assessment. Principles and Framework. International Organization for Standardization: Geneve, Switzerland. https://doi.org/10.3403/01139131u
  • ISO 14067 (2018). Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. Geneva, Switzerland: International Organization for Standardization. https://doi.org/10.3403/30341962u
  • ISO 14067 (2013). Greenhouse Gases. Carbon Footprint of Products. Requirements and Guidelines for Quantification and Communication (Technical Specifications). International Organization for Standardization: Geneve, Switzerland. https://doi.org/10.3403/30244913u
  • Kahyaoğlu, M., & Konar, V. (2008). Karbon Kaynaği Olarak Peyniralti Suyu Atiği Kullanilarak Ramnolipit Biyosürfektani Üretimi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 8(1), 53-62. https://dergipark.org.tr/en/download/article-file/18616
  • Kebreab, E., Strathe, A., Fadel, J., Moraes, L., & France, J. (2010). Impact of Dietary Manipulation on Nutrient Flows and Greenhouse Gas Emissions in Cattle. Revista Brasileira de Zootecnia, 39, 458–464. https://doi.org/10.1590/s1516-35982010001300050
  • Kim, D., Thoma, G., Nutter, D., Milani, F., Ulrich, R. & Norris, G. (2013). Life cycle assessment of cheese and whey production in the USA. International Journal of Life Cycle Assessment, 18:1019–1035. https://doi.org/10.1007/s11367-013-0553-9
  • Kristensen, T., Søegaard, K., Eriksen, J., & Mogensen, L. (2015). Carbon footprint of cheese produced on milk from Holstein and Jersey cows fed hay differing in herb content. Journal of Cleaner Production, 101, 229-237. https://doi.org/10.1016/j.jclepro.2015.03.087
  • Mezzetti, M., Passamonti, M. M., Dall’Asta, M., Bertoni, G., Trevisi, E., & Ajmone Marsan, P. (2024). Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods, 13, 1650. https://doi.org/10.3390/foods13111650
  • Mota, L. F. M., Giannuzzi, D., Bisutti, V., Pegolo, S., Trevisi, E., Schiavon, S., Gallo, L., Fineboym, D,, Katz, G., & Cecchinato, A. (2022). Real-time milk analysis integrated with stacking ensemble learning as a tool for the daily prediction of cheese-making traits in Holstein cattle. Journal of Dairy Science 105 4237–55. https://doi.org/10.3168/jds.2021-21426
  • Nigri, E. M., Barros, A. C., de Rocha, S. D. F., & Filho, E. R. (2014). Assessing environmental impacts using a comparative LCA of industrial and artisanal production processes: “Minas Cheese” case. Food Science and Technology, 34(3):522–531. https://doi.org/10.1590/1678-457x.6356
  • OECD/FAO. (2023). OECD-FAO Agricultural Outlook 2023–2032. Chapter 7. Dairy and Dairy Products; OECD Publishing: Paris, France. https://doi.org/10.1787/08801ab7-en
  • Özışık, D., & Akın, N. (2025). Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences, 11(1), 317-348. https://doi.org/10.29132/ijpas.1594075
  • Rencricca, G., Froldi, F., Moschini, M., Trevisan, M., Ghnimi, S., & Lamastra, L. (2023). The environmental impact of permanent meadowsbased farms: A comparison among different dairy farm management systems of an Italian cheese. Sustain. Prod. Consum., 37, 53–64. https://doi.org/10.1016/j.spc.2023.02.012
  • Ritota, M., & Manzi, P. (2020). Natural preservatives from plant in cheese making. Animals, 10(4), 749. https://doi.org/10.3390/ani10040749
  • Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate risk management, 16, 145-163. https://doi.org/10.1016/j.crm.2017.02.001
  • Rossi, C., Grossi, G., Lacetera, N., & Vitali, A. (2024). Carbon footprint and carbon sink of a local Italian dairy supply chain. Dairy, 5(1), 201-216. https://doi.org/10.3390/dairy5010017
  • Saxena, S., Khetra, Y., Ganguly, S., & Sasmal, S. (2025). Morphological and Textural Properties of Feta Cheese Made of Vegetable Protease. Food Bioengineering. https://doi.org/10.1002/fbe2.70013
  • Shabir, I., Dash, K. K., Dar, A.H., Pandey, V. K., Fayaz, U., Srivastava, S., & Nisha, R. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7:100215. https://doi.org/10.1016/j.fufo.2023.100215
  • Soares, B. B., Alves, E. C., De Almeida Neto, J.A., & Rodrigues, L.B. (2021). Environmental Impact of Cheese Production. In Environmental Impact of Agro-Food Industry and Food Consumption; Academic Press: Cambridge, MA, USA, pp. 169–187. https://doi.org/10.1016/b978-0-12-821363-6.00009-6
  • Thulasisingh, A., Kumar, K., Yamunadevi, B., Poojitha, N., & Hanif, S. S. M. (2021). Biodegradable packaging materials. Polym Bull. 79: 4467-4496, https://doi.org/10.1007/s00289-021-03767-x
  • Uribe-Velázquez, T., Díaz-Vázquez, D., Barajas-Álvarez, P., González-López, M. E., Gradilla-Hernández, M. S., Garcia-Amezquita, L. E., & García-Cayuela, T. (2025). From waste to value: Mitigating the environmental impact of whey in Jalisco, Mexico. Journal of Cleaner Production, 501, 145334. https://doi.org/10.1016/j.jclepro.2025.145334
  • Usmanovich, B. A., Shamuratovna, B. K., Abdujabbarovna, B. R., Zamirovna, J. V., Akmalovna, A. F., Abdullayevna, H. S., & Oybekugli, S. K. (2024). Impacts of environmental factors on milk starter culture performance in sustainable dairy production. Caspian Journal of Environmental Sciences, 22(5), 1033-1042. https://journals.guilan.ac.ir/article_8074_4898e104e772b5a6c0438f90c207e6e3.pdf
  • Uysal, İ. G., Güneş, N. Ç., & Koca, N. (2022). Farklı Peynir Çeşitlerinin Yaşam Döngüsü Analizi. Gıda, 47(6), 941-961. https://doi.org/10.15237/gida.gd22062
  • Üçtuğ, F. G. (2019). The environmental life cycle assessment of dairy products. Food Engineering Reviews, 11:104–121. https://doi.org/10.1007/s12393-019-9187-4
  • van Loon, M.P., Hijbeek, R., Vonk, W. J., & Oenema, J. (2024). Nutrient Cycling on Dairy Farms in the Netherlands: The Role of Farm Structure, Management and Trade-Offs. Resour. Conserv. Recycl. 211, 107875. https://doi.org/10.1016/j.resconrec.2024.107875
  • van Loon, M. P., Vonk, W. J., Hijbeek, R., van Ittersum, M. K., & ten Berge, H. F. M. (2023). Circularity Indicators and Their Relation with Nutrient Use Efficiency in Agriculture and Food Systems. Agric. Syst. 207, 103610. https://doi.org/10.1016/j.agsy.2023.103610
  • Xu, T., Flapper, J., & Kramer, K. J. (2009). Characterization of energy use and performance of global cheese processing. Energy, 34, 1993–2000, https://doi.org/10.1016/j.energy.2009.08.014
  • Yüksel, N., İstek, M. M., & Bulca, S. (2020). Peyniraltı Suyu Proteinlerinin Gıda Ambalajlamada Film Ve Kaplama Materyali Olarak Kullanımı. Journal of the Institute of Science and Technology, 10(2), 1042-1052, https://doi.org/10.21597/jist.652842
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme
Yazarlar

Şerife Nur Akyar Yavaş 0000-0001-7869-491X

Tuğba Karabekmez-erdem 0000-0001-6361-4796

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 14 Ağustos 2025
Kabul Tarihi 29 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Akyar Yavaş, Ş. N., & Karabekmez-erdem, T. (2025). PEYNİR ÜRETİM SÜREÇLERİNDE KARBON AYAK İZİ VE AZALTIM STRATEJİLERİ ÜZERİNE BİR ÇALIŞMA. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1639-1649. https://doi.org/10.17780/ksujes.1764010