Araştırma Makalesi
BibTex RIS Kaynak Göster

DENİM GİYSİ YIKAMA KATI ATIKLARININ SÜRDÜRÜLEBİLİR KOMPOZİTLER İÇİN YENİLİKÇİ İLERİ DÖNÜŞÜMÜ

Yıl 2025, Cilt: 28 Sayı: 4, 2149 - 2160, 03.12.2025

Öz

Bu çalışma, denim giysi yıkama prosesinden kaynaklanan katı atıkların döngüsel kullanımına katkı sağlamayı amaçlamakta olup, söz konusu atıkların ısı ve ses yalıtımı amacıyla kullanılabilecek yüksek katma değerli kompozit malzemelere dönüştürülmesini hedeflemektedir. Selüloz lifleri ve bozunmuş ponza taşından oluşan bu katı atıklar, PU köpük matrisine %5, %10 ve %20 ağırlık oranlarında takviye malzemesi olarak dahil edilmiştir. Elde edilen kompozitler, ses ve ısı yalıtım performansı, eğilme dayanımı ve güç tutuşurluk özellikleri bakımından kapsamlı şekilde değerlendirilmiştir. Katı atık takviyesi, köpük hücre boyutunu küçültüp hücre yoğunluğunu arttırarak ses ve ısı yalıtımı performansında iyileşme sağlamıştır. Ayrıca, silika bakımından zengin olan ponza taşı içeriği, kompozitlere güç tutuşurluk özellik kazandırmış, tutuşma ve yanma süresini geciktirmiştir. Deneysel sonuçlar, %20 takviyeli PU köpüklerin ısı iletkenliğinde %19 oranında azalma ve alev süresinde %75 oranında kısalma sağladığını; %5 takviye oranında ise 1000 Hz-1600 Hz frekans aralığında %99’a varan ses yutumu elde edildiğini göstermiştir. Bu bulgular, denim atıklarının işlevsel biçimde yeniden değerlendirilerek ısı, ses ve güç tutuşurluk özellikleri iyileştirilmiş yalıtım kompozitlerine dönüştürülebileceğini ortaya koymakta ve sürdürülebilirlik ile döngüselliğe anlamlı katkılar sunmaktadır.

Kaynakça

  • Antunes, M. (2014). Hybrid Polyurethane Nanocomposite Foams, In: Polymer Nanocomposite Foams, Ed. Mittal, V., 113-148, CRC Press Taylor & Francis Group, Florida.
  • Arenas, J.P., Parra, C.C., Rebolledo, J., Venegas, R. (2025). Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material. Buildings 15, 557. https://doi.org/10.3390/buildings15040557
  • Arıkan, Y., Celikci, N., Ziba, C.A., Dolaz, M. (2021). Recovering of Indigo Dye from Denim Wastewater with H2O2 in the Presence of KI Catalyst. Environmental Engineering and Management Journal, 20(9), 1477-1485. https://doi.org/10.30638/eemj.2021.137
  • ASTM C393-16, (2016). Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure.
  • ASTM C518-21, (2021). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.
  • ASTM D790-17, (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
  • ASTM D792-20, (2020). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
  • Barczewski, M., Kurańska, M., Sałasińska, K., Michałowski, S., Prociak, A., Uram, K., Lewandowski, K. (2020). Rigid Polyurethane Foams Modified with Thermoset Polyester-Glass Fiber Composite Waste. Polymer Testing 81, 106190. https://doi.org/10.1016/j.polymertesting.2019.106190
  • Castillo-Suárez, L.A., Sierra-Sánchez. A.G., Linares-Hernández, I. et al. (2023). A Critical Review of Textile Industry Wastewater: Green Technologies for the Removal of Indigo Dyes. International Journal of Environmental Science and Technology, 20, 10553–10590. https://doi.org/10.1007/s13762-023-04810-2
  • Członka, S., Bertino, M.F., Strzelec, K., Strąkowska, A., Masłowski, M. (2018). Rigid Polyurethane Foams Reinforced with Solid Waste Generated in Leather Industry. Polymer Testing 69, 225-237. https://doi.org/10.1016/j.polymertesting.2018.05.013
  • Czlonka, S., Strakowska, A., Strzelec, K., Kairyte A., Vaitkus, S. (2019). Composites of Rigid Polyurethane Foams and Silica Powder Filler Enhanced with Ionic Liquid. Polymer Testing, 75, 12-25 https://doi.org/10.1016/j.polymertesting.2019.01.021
  • Han, X., Zeng, C., Lee, L.J., Koelling, K.W., Tomasko, D.L. (2003). Extrusion of Polystyrene Nanocomposite Foams with Supercritical CO2. Polymer Engineering and Science, 43(6), 1261-1275 https://doi.org/10.1002/pen.10107
  • ISO 10534-2, (2023). Acoustics - Determination of Acoustic Properties in Impedance Tubes - Part 2: Two- Microphone Technique for Normal Sound Absorption Coefficient and Normal Surface Impedance.
  • ISO 15025-02, (2002). Protective Clothing- Protection Against Heat and Flame- Method of Test for Limited Flame Spread.
  • Kabir, Md. E., Saha, M.C., Jeelani, S. (2007). Effect of Ultrasound Sonication in Carbon Nanofibers/Polyurethane Foam Composite. Materials Science and Engineering: A, 459(1–2), 111-116 https://doi.org/10.1016/j.msea.2007.01.031
  • Kodaloğlu, M., Akarslan Kodaloğlu, F. (2024). Environmentally-Friendly Recycled Leather Reinforced Composite: Thermal and Acoustic Properties. Teknik Bilimler Dergisi, 14, 29–34.
  • Kodaloğlu, M., Akarslan Kodaloğlu, F. (2024). Investigation of Thermal Insulation and Water Absorption Properties of Cortaderia Selloana Short Fibers Reinforced Sustainability Composite Material. Türk Bilim ve Mühendislik Dergisi, 6, 92–98.
  • Körlü, A.E., Perincek, S., Bahtiyari, M.İ. (2013). Usage of Laccase In Denim Washing. Tekstil ve Konfeksiyon, 23(4), 364-368.
  • Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G. (2005). Polymer Nanocomposite Foams. Composites Science and Technology, 65, (15–16): 2344-2363 doi:10.1016/j.compscitech.2005.06.016.
  • Lorusso, C., Vergaro, V., Conciauro, F., Ciccarella, G., Congedo, P.M. (2017). Thermal and Mechanical Performance of Rigid Polyurethane Foam Added with Commercial Nanoparticles. Nanomaterials and Nanotechnology, 7, 1847980416684117 https://doi.org/10.1177/1847980416684117
  • Özkan Buzğan, E.B., Kaya, G., Kertmen, M., Türksoy, H.G. (2022). Properties of Textile Air Conditioner Waste Dust-Filled Polyurethane Rigid Foam Composites. Plastics, Rubber and Composites, 51(7), 352-362 doi:10.1080/14658011.2021.1993677
  • Rajkishore, N., Majo, G., Lalit, J., Asimananda, K., Tarun, P. (2022). Laser and Ozone Applications for Circularity Journey in Denim Manufacturing - A Developing Country Perspective. Current Opinion in Green and Sustainable Chemistry, 38, 100680. https://doi.org/10.1016/j.cogsc.2022.100680
  • Rashad, A.M. (2019). A Short Manual on Natural Pumice as a Lightweight Aggregate. Journal of Building Engineering 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802
  • Shen, H., Jiang, S., Gao, S., Xu, Z., Chen, Q., Hou, Y., Zhang, S., Liu, J., Liu, X., Tang, G. (2024). Flame-Retardant Rigid Polyurethane Foam Composites with the Incorporation of Steel Slag and DMMP: A Novel Strategy for Utilizing Metallurgical Solid Waste. Journal of Applied Polymer Science 141(33), e55753. https://doi.org/10.1002/app.55753
  • Silmi, N., Dalimunthe, P.A., Mahendra, I.P., Purwajanti, S., Saputra, R.P., Suendo, V., Septevani, A.A. (2025). Agricultural Silica-Reinforced Rigid Polyurethane Foam for High-Performance and Sustainable Insulation Materials. Sustainable Materials and Technologies 45, e01545. https://doi.org/10.1016/j.susmat.2025.e01545
  • Silva, M.C., Takahashi, J.A., Chaussy, D., Belgacem, M.N. and Silva, G.G. (2010). Composites of Rigid Polyurethane Foam and Cellulose Fibre Residue. Journal of Applied Polymer Science 117, 3665-3672.
  • Sun, L., Gibson, R.F., Gordaninejad, F., Suhr, J. (2009). Energy Absorption Capability of Nanocomposites: A Review. Composites Science and Technology, 69, 2392-2409 https://doi.org/10.1016/j.compscitech.2009.06.020
  • Vasile, O., Bugaru, M. (2023). Experimental vs. Numerical Computation of Acoustic Analyses on the Thickness Influence of the Multilayer Panel. Computation, 11(1), 1. https://doi.org/10.3390/computation11010001
  • Verdolotti, L., Di Caprio, M.R., Lavorgna, M., Buonocore, G.G. (2017). Polyurethane Nanocomposite Foams: Correlation Between Nanofillers, Porous Morphology, and Structural and Functional Properties, in Polyurethane Polymers, Eds. Thomas, S., Datta, J., Haponiuk, J.T., Reghunadhan, A. 277-310, Elsevier.
  • Wambuguh, D., Chianelli, R.R. (2008). Indigo Dye Waste Recovery from Blue Denim Textile Effluent: A By-Product Synergy Approach. New Journal of Chemistry, 32, 2189-2194. https://doi.org/10.1039/B806213G
  • Zayedul, H., Tareque, R., Tarekul, I., Arnob, D.P. (2021). An Empirical Analysis of Sustainable Denim Washing Technology in the Apparel Industries. International Journal of Industrial and Manufacturing Systems Engineering 6(2), 20-34. https://doi.org/10.11648/j.ijimse.20210602.11
  • Zieleniewska, M., Leszczyński, M.K., Szczepkowski, L., Bryśkiewicz, A., Krzyżowska, M., Bień, K., Ryszkowska, J. (2016). Development and Applicational Evaluation of the Rigid Polyurethane Foam Composites with Egg Shell Waste. Polymer Degradation and Stability 132, 78-86. http://dx.doi.org/10.1016/j.polymdegradstab.2016.02.030

INNOVATIVE UPCYCLE OF DENIM GARMENT WASHING SOLID WASTE FOR SUSTAINABLE COMPOSITES

Yıl 2025, Cilt: 28 Sayı: 4, 2149 - 2160, 03.12.2025

Öz

This study aims to contribute to circularity of denim garment washing solid waste by transforming the waste into high-value composite materials to use for thermal and sound insulation purposes. The solid waste comprising cellulose fibres and degraded pumice stone was incorporated at reinforcement ratios of 5%, 10%, and 20% by weight into PU foam matrix. The resulting composites underwent rigorous evaluation for sound and thermal insulation efficiency, flexural strength, and flame retardancy. The incorporation of the solid waste reduced the foam cell size while increasing the cell density, creating an enhanced acoustic and thermal insulation performance. The silica-rich pumice stone content further imparted flame-retardant properties, effectively delaying ignition and combustion. Experimental evaluations demonstrated that 20% wt. reinforced PU foams achieved a 19% reduction in thermal conductivity and a 75% decrease in flame duration, while 5% wt. reinforcement provided up to 99% sound absorption in the 1000 Hz-1600 Hz frequency range. These findings emphasize the functional upcycling of denim waste into insulation composites with improved thermal, acoustic, and flame-retardant properties, contributing significantly to sustainability and circularity.

Kaynakça

  • Antunes, M. (2014). Hybrid Polyurethane Nanocomposite Foams, In: Polymer Nanocomposite Foams, Ed. Mittal, V., 113-148, CRC Press Taylor & Francis Group, Florida.
  • Arenas, J.P., Parra, C.C., Rebolledo, J., Venegas, R. (2025). Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material. Buildings 15, 557. https://doi.org/10.3390/buildings15040557
  • Arıkan, Y., Celikci, N., Ziba, C.A., Dolaz, M. (2021). Recovering of Indigo Dye from Denim Wastewater with H2O2 in the Presence of KI Catalyst. Environmental Engineering and Management Journal, 20(9), 1477-1485. https://doi.org/10.30638/eemj.2021.137
  • ASTM C393-16, (2016). Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure.
  • ASTM C518-21, (2021). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.
  • ASTM D790-17, (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
  • ASTM D792-20, (2020). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
  • Barczewski, M., Kurańska, M., Sałasińska, K., Michałowski, S., Prociak, A., Uram, K., Lewandowski, K. (2020). Rigid Polyurethane Foams Modified with Thermoset Polyester-Glass Fiber Composite Waste. Polymer Testing 81, 106190. https://doi.org/10.1016/j.polymertesting.2019.106190
  • Castillo-Suárez, L.A., Sierra-Sánchez. A.G., Linares-Hernández, I. et al. (2023). A Critical Review of Textile Industry Wastewater: Green Technologies for the Removal of Indigo Dyes. International Journal of Environmental Science and Technology, 20, 10553–10590. https://doi.org/10.1007/s13762-023-04810-2
  • Członka, S., Bertino, M.F., Strzelec, K., Strąkowska, A., Masłowski, M. (2018). Rigid Polyurethane Foams Reinforced with Solid Waste Generated in Leather Industry. Polymer Testing 69, 225-237. https://doi.org/10.1016/j.polymertesting.2018.05.013
  • Czlonka, S., Strakowska, A., Strzelec, K., Kairyte A., Vaitkus, S. (2019). Composites of Rigid Polyurethane Foams and Silica Powder Filler Enhanced with Ionic Liquid. Polymer Testing, 75, 12-25 https://doi.org/10.1016/j.polymertesting.2019.01.021
  • Han, X., Zeng, C., Lee, L.J., Koelling, K.W., Tomasko, D.L. (2003). Extrusion of Polystyrene Nanocomposite Foams with Supercritical CO2. Polymer Engineering and Science, 43(6), 1261-1275 https://doi.org/10.1002/pen.10107
  • ISO 10534-2, (2023). Acoustics - Determination of Acoustic Properties in Impedance Tubes - Part 2: Two- Microphone Technique for Normal Sound Absorption Coefficient and Normal Surface Impedance.
  • ISO 15025-02, (2002). Protective Clothing- Protection Against Heat and Flame- Method of Test for Limited Flame Spread.
  • Kabir, Md. E., Saha, M.C., Jeelani, S. (2007). Effect of Ultrasound Sonication in Carbon Nanofibers/Polyurethane Foam Composite. Materials Science and Engineering: A, 459(1–2), 111-116 https://doi.org/10.1016/j.msea.2007.01.031
  • Kodaloğlu, M., Akarslan Kodaloğlu, F. (2024). Environmentally-Friendly Recycled Leather Reinforced Composite: Thermal and Acoustic Properties. Teknik Bilimler Dergisi, 14, 29–34.
  • Kodaloğlu, M., Akarslan Kodaloğlu, F. (2024). Investigation of Thermal Insulation and Water Absorption Properties of Cortaderia Selloana Short Fibers Reinforced Sustainability Composite Material. Türk Bilim ve Mühendislik Dergisi, 6, 92–98.
  • Körlü, A.E., Perincek, S., Bahtiyari, M.İ. (2013). Usage of Laccase In Denim Washing. Tekstil ve Konfeksiyon, 23(4), 364-368.
  • Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G. (2005). Polymer Nanocomposite Foams. Composites Science and Technology, 65, (15–16): 2344-2363 doi:10.1016/j.compscitech.2005.06.016.
  • Lorusso, C., Vergaro, V., Conciauro, F., Ciccarella, G., Congedo, P.M. (2017). Thermal and Mechanical Performance of Rigid Polyurethane Foam Added with Commercial Nanoparticles. Nanomaterials and Nanotechnology, 7, 1847980416684117 https://doi.org/10.1177/1847980416684117
  • Özkan Buzğan, E.B., Kaya, G., Kertmen, M., Türksoy, H.G. (2022). Properties of Textile Air Conditioner Waste Dust-Filled Polyurethane Rigid Foam Composites. Plastics, Rubber and Composites, 51(7), 352-362 doi:10.1080/14658011.2021.1993677
  • Rajkishore, N., Majo, G., Lalit, J., Asimananda, K., Tarun, P. (2022). Laser and Ozone Applications for Circularity Journey in Denim Manufacturing - A Developing Country Perspective. Current Opinion in Green and Sustainable Chemistry, 38, 100680. https://doi.org/10.1016/j.cogsc.2022.100680
  • Rashad, A.M. (2019). A Short Manual on Natural Pumice as a Lightweight Aggregate. Journal of Building Engineering 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802
  • Shen, H., Jiang, S., Gao, S., Xu, Z., Chen, Q., Hou, Y., Zhang, S., Liu, J., Liu, X., Tang, G. (2024). Flame-Retardant Rigid Polyurethane Foam Composites with the Incorporation of Steel Slag and DMMP: A Novel Strategy for Utilizing Metallurgical Solid Waste. Journal of Applied Polymer Science 141(33), e55753. https://doi.org/10.1002/app.55753
  • Silmi, N., Dalimunthe, P.A., Mahendra, I.P., Purwajanti, S., Saputra, R.P., Suendo, V., Septevani, A.A. (2025). Agricultural Silica-Reinforced Rigid Polyurethane Foam for High-Performance and Sustainable Insulation Materials. Sustainable Materials and Technologies 45, e01545. https://doi.org/10.1016/j.susmat.2025.e01545
  • Silva, M.C., Takahashi, J.A., Chaussy, D., Belgacem, M.N. and Silva, G.G. (2010). Composites of Rigid Polyurethane Foam and Cellulose Fibre Residue. Journal of Applied Polymer Science 117, 3665-3672.
  • Sun, L., Gibson, R.F., Gordaninejad, F., Suhr, J. (2009). Energy Absorption Capability of Nanocomposites: A Review. Composites Science and Technology, 69, 2392-2409 https://doi.org/10.1016/j.compscitech.2009.06.020
  • Vasile, O., Bugaru, M. (2023). Experimental vs. Numerical Computation of Acoustic Analyses on the Thickness Influence of the Multilayer Panel. Computation, 11(1), 1. https://doi.org/10.3390/computation11010001
  • Verdolotti, L., Di Caprio, M.R., Lavorgna, M., Buonocore, G.G. (2017). Polyurethane Nanocomposite Foams: Correlation Between Nanofillers, Porous Morphology, and Structural and Functional Properties, in Polyurethane Polymers, Eds. Thomas, S., Datta, J., Haponiuk, J.T., Reghunadhan, A. 277-310, Elsevier.
  • Wambuguh, D., Chianelli, R.R. (2008). Indigo Dye Waste Recovery from Blue Denim Textile Effluent: A By-Product Synergy Approach. New Journal of Chemistry, 32, 2189-2194. https://doi.org/10.1039/B806213G
  • Zayedul, H., Tareque, R., Tarekul, I., Arnob, D.P. (2021). An Empirical Analysis of Sustainable Denim Washing Technology in the Apparel Industries. International Journal of Industrial and Manufacturing Systems Engineering 6(2), 20-34. https://doi.org/10.11648/j.ijimse.20210602.11
  • Zieleniewska, M., Leszczyński, M.K., Szczepkowski, L., Bryśkiewicz, A., Krzyżowska, M., Bień, K., Ryszkowska, J. (2016). Development and Applicational Evaluation of the Rigid Polyurethane Foam Composites with Egg Shell Waste. Polymer Degradation and Stability 132, 78-86. http://dx.doi.org/10.1016/j.polymdegradstab.2016.02.030
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimi, Tekstil Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Gaye Kaya 0000-0003-1866-4799

Elif Gözde Saraç 0000-0002-1669-6917

Erhan Öner 0000-0001-6388-6388

Yayımlanma Tarihi 3 Aralık 2025
Gönderilme Tarihi 11 Mayıs 2025
Kabul Tarihi 22 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 4

Kaynak Göster

APA Kaya, G., Saraç, E. G., & Öner, E. (2025). INNOVATIVE UPCYCLE OF DENIM GARMENT WASHING SOLID WASTE FOR SUSTAINABLE COMPOSITES. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 2149-2160.