Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇİFT FRENSEL LENSLİ BİR YOĞUNLAŞTIRILMIŞ FOTOVOLTAİK SİSTEMİN PERFORMANS ANALİZİ VE OPTİMİZASYONU

Yıl 2022, , 71 - 94, 03.06.2022
https://doi.org/10.17780/ksujes.1084548

Öz

Bu çalışmada, yoğunlaştırıcı optik eleman olarak nokta odaklı Fresnel lens kullanılan çift optik elemanlı bir CPV sistemin performansı deneysel olarak incelenmiştir. Bu kapsamda, birincil ve ikincil optik eleman yoğunlaşma oranları (C_1, C_2), f sayıları (f_1, f_2) ve lensler arası mesafenin (L_D) CPV sistem performansı üzerindeki etkileri tek ve çift Fresnel lensli farklı konfigürasyonlar için araştırılmıştır. Genel olarak, lensler arası mesafe belirli bir kritik değere (L_(D,crit)) ulaşıncaya kadar, L_D artışı ile CPV sistem performansının iyileşmekte olduğu ancak L_D’nin kritik değerin üzerine çıktığında sistem performansının kötüleşmeye başladığı gözlenmiştir. Ayrıca, L_(D,crit)’in önemli ölçüde Fresnel lens çiftinin optik özelliklerine bağlı olduğu not edilmiştir. Bunun yanı sıra, yüksek f_1 değerine sahip çift Fresnel lensli CPV sistemlerinin, tekli Fresnel lens uygulamalarına göre daha iyi performans sergilediği görülmüştür. f_1>0.5 olduğunda CPV sisteminin performansının ikincil bir Fresnel lens kullanılarak iyileştirilebileceği tespit edilmiştir. Bunların ötesinde, Fresnel lens çiftlerinin optik özelliklerinin CPV sistem performansına etki oranını karşılaştırmak için deneysel veriler kullanılarak ANOVA analizleri yapılmıştır. ANOVA analizi sonuçları, birincil optik eleman özellikleri C_1 ve f_1’in çift Fresnel lensli CPV sistem performansı üzerinde ağırlıklı olarak etkili olduğunu işaret etmiştir. Öte yandan, diğer parametrelerle karşılaştırıldığında f_2'nin CPV sistem performansı üzerinde en az etkiye sahip olduğu da görülmüştür. Son olarak, genetik algoritma ve yapay sinir ağı temelli çalışmalar ile optimum C_1, C_2, f_1, f_2 and L_(D,crit) tahmin edilmiştir.

Kaynakça

  • Akbaba, M. & Alattawi, M.A.A. (1995). A new model for I-V characteristic of solar cell generators and its applications. Solar Energy Materials and Solar Cells, 37, 123-132. https://doi.org/10.1016/0927-0248(94)00201-0
  • Cai, H., Sun, Y., Wang, X. & Zhan, S. (2020). Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm. Opt. Express, 28, 15347-15359. https://doi.org/10.1364/OE.393423
  • Cai, H., Sun, Y., Liu, J. & Wang, X. (2021). Genetic algorithm optimization for highly efficient solar thermal absorber based on optical metamaterials. Journal of Quantitative Spectroscopy and Radiative Transfer, 271, 107712. https://doi.org/10.1016/j.jqsrt.2021.107712
  • Canbolat, A.S., Bademlioğlu, A.H., Arslanoğlu, N. & Kaynakli, O. (2019). Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and grey relational analysis methods. Journal of Cleaner Production, 229, 874-885. https://doi.org/10.1016/j.jclepro.2019.05.020
  • Chen, Y.C. & Su, C.H. (2010). Concentrator design of a Fresnel lens and a secondary optical element. 6th International Conference on Concentrating Photovoltaic Systems (CPV- 6 ) (pp. 109-112).
  • Chen, Y.C. & Chiang, H.W., 2015. Design of the secondary optical elements for concentrated photovoltaic units with Fresnel lenses. Applied Sciences, 5, 770-786. https://doi.org/10.3390/app5040770
  • El Himer, S., Ahaitouf, A., El-Yahyaoui, S., Mechaqrane, A. & Ouagazzaden, A. (2012). A comparative of four secondary optical elements for CPV systems. 14th International Conference on Concentrator Photovoltaic Systems (CPV-14 ) (pp. 1-7).
  • Grilikhes, V.A., Rumyantsev, V.D. & Shvarts, M.Z. (1996). Indoor and outdoor testing of space concentrator AlGaAs/GaAs photovoltaic modules with Fresnel lenses. Proceedings of the 25th IEEE Photovoltaic Specialists Conference (pp. 345-348). IEEE.
  • Harmon, S. (1977). Solar-optical analyses of a mass-produced plastic circular Fresnel lens. Solar Energy, 19(1), 105-108. https://doi.org/10.1016/0038-092X(77)90096-2
  • James, L.W. & Williams, J.K. (1978). Fresnel optics for solar concentration on photovoltaic cells. Proceedings of the 13th IEEE Photovoltaic Specialists Conference (pp. 673-679). IEEE.
  • Kemmoku, Y., Sakakibara, T., Hiramatsu, M., Miyazaki, Y. & Egami, T. (2003). Field test of a concentrator photovoltaic system with flat Fresnel. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (pp. 2379-2382).
  • Li, P., Gao, X. & Zhou, X. (2022). Effect of the temperature difference between land and lake on photovoltaic power generation. Renewable Energy, 185, 86-95. https://doi.org/10.1016/j.renene.2021.12.011
  • Moffat, A.L. & Scharlack, R.S. (1982). The design and development of a high concentration and high efficiency photovoltaic concentrator utilizing a curved Fresnel lens. Proceedings of the 16th IEEE Photovoltaic Specialists Conference (pp. 601-606). IEEE.
  • Nakata, Y., Shibuya, N., Kobe, T., Okamoto, K., Suzuki, A. & Tsuji, T. (1980). Performance of circular Fresnel lens photovoltaic concentrator. Japanese Journal of Applied Physics, 19(2), 75-78. DOI:10.7567/JJAPS.19S2.75
  • Pallant, J. (2016). SPSS survival manual. (6th ed.). A&U Academic, London.
  • Renzi, M., Cioccolanti, L., Barazza, G., Egidi, L. & Comodi, G. (2017). Design and experimental test of refractive secondary optics on the electrical performance of a 3-Junction cell used in CPV systems. Applied Energy, 185 (1), 233-243. https://doi.org/10.1016/j.apenergy.2016.10.064
  • Rodriguez, F., Fleetwood, A., Galarza, A. & Fontan, L. (2018). Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control, Renewable Energy, 126, 855-864. https://doi.org/10.1016/j.renene.2018.03.070
  • Rumyantsev,V.D., Chosta, O.I., Grilikhes, V.A., Sadchikov, N.A., Soluyanov, A.A. & Shvarts, M.Z. (2002). Terrestrial and space concentrator PV modules with composite (glass-silicone) Fresnel lenses. Proceedings of the 29th IEEE Photovoltaic Specialists Conference (pp. 1596-1599). IEEE.
  • Segev, G. & Kribus, A. (2013). Performance of CPV modules based on vertical multi junction cells under non-uniform illumination. Solar Energy, 88, 120-128. https://doi.org/10.1016/j.solener.2012.11.020
  • Shepard, N.F. & Chan, T.S. (1981). The design and performance of a point-focus concentrator module. Proceedings of the 15th IEEE Photovoltaic Specialists Conference (pp. 336-341). IEEE.
  • Şahin, F.E. & Yılmaz, M. (2019). High concentration photovoltaics (HCPV) with diffractive secondary optical elements. Photonics, 6 (2), 68-76. https://doi.org/10.3390/photonics6020068
  • Tawfik, M., Tonnellier, X. & Sansom, C. (2018). Light source selection for a solar simulator for thermal applications: A review. Renewable and Sustainable Energy Reviews, 90, 802-813. https://doi.org/10.1016/j.rser.2018.03.059
  • Tien, N.X. & Shin, S. (2016). A novel concentrator photovoltaic (CPV) system with the improvement of irradiance uniformity and the capturing of diffuse solar radiation. Applied Sciences, 6 (9), 251-265. https://doi.org/10.3390/app6090251
  • Victoria, M., Dominguez, C., Antion, I. & Sala, G. (2009). Comparative analysis of different secondary optical elements for aspheric primary lenses. Optics Express, 17 (8), 6488-6492. https://doi.org/10.1364/OE.17.006487
  • Yadav, P., Tripathi, B., Rathod, S. & Kumar, M. (2013). Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology. Renewable and Sustainable Energy Reviews, 28, 812-823. https://doi.org/10.1016/j.rser.2013.08.047
  • Xie, W.T., Dai, Y.J. & Sumaty K. (2011). Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews, 15, 2588-2606. https://doi.org/10.1016/j.rser.2011.03.031

PERFORMANCE ANALYSIS AND OPTIMIZATION OF A CONCENTRATED PHOTOVOLTAIC SYSTEM WITH DOUBLE FRESNEL LENSES

Yıl 2022, , 71 - 94, 03.06.2022
https://doi.org/10.17780/ksujes.1084548

Öz

In this study, the performance of a CPV system with double optical elements using point-focus Fresnel lenses has been analysed experimentally. In this context, the effects of concentration ratios (𝐶1, 𝐶2) and 𝑓- numbers (𝑓1, 𝑓2) of primary and secondary optical elements and distance between Fresnel lenses (𝐿𝐷) on the CPV system performance have been investigated for different configurations with single and double Fresnel lenses. In general, it has been observed that the CPV system performance improves with increasing L_D until it reaches a critical value (L_(D,crit)), but it starts to worsen after L_D exceeds L_(D,crit). It is also notices that L_(D,crit) significantly dependents on the optical properties of the Fresnel lens pairs. Besides this, CPV systems with double Fresnel lenses with a high f_1 value have been seen to perform better than single Fresnel lens applications. It has been detected that the performance of the CPV system can be improved by using a secondary Fresnel lens when f_1>0.5. Beyond these, the ANOVA analyses have been carried out by using the experimental data in order to compare the contribution ratio of the optical properties of Fresnel lens pairs on CPV system performance. The results of ANOVA analysis have indicated that primary optical element properties C_1 and f_1 are predominantly effective on double Fresnel lens CPV system performance. On the other hand, compared with other parameters, f_2 has found to have the least contribution ratio on CPV system performance. Finally, optimum C_1, C_2, f_1, f_2 and L_(D,crit) have been predicted by genetic algorithm and artificial neural network based studies.

Kaynakça

  • Akbaba, M. & Alattawi, M.A.A. (1995). A new model for I-V characteristic of solar cell generators and its applications. Solar Energy Materials and Solar Cells, 37, 123-132. https://doi.org/10.1016/0927-0248(94)00201-0
  • Cai, H., Sun, Y., Wang, X. & Zhan, S. (2020). Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm. Opt. Express, 28, 15347-15359. https://doi.org/10.1364/OE.393423
  • Cai, H., Sun, Y., Liu, J. & Wang, X. (2021). Genetic algorithm optimization for highly efficient solar thermal absorber based on optical metamaterials. Journal of Quantitative Spectroscopy and Radiative Transfer, 271, 107712. https://doi.org/10.1016/j.jqsrt.2021.107712
  • Canbolat, A.S., Bademlioğlu, A.H., Arslanoğlu, N. & Kaynakli, O. (2019). Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and grey relational analysis methods. Journal of Cleaner Production, 229, 874-885. https://doi.org/10.1016/j.jclepro.2019.05.020
  • Chen, Y.C. & Su, C.H. (2010). Concentrator design of a Fresnel lens and a secondary optical element. 6th International Conference on Concentrating Photovoltaic Systems (CPV- 6 ) (pp. 109-112).
  • Chen, Y.C. & Chiang, H.W., 2015. Design of the secondary optical elements for concentrated photovoltaic units with Fresnel lenses. Applied Sciences, 5, 770-786. https://doi.org/10.3390/app5040770
  • El Himer, S., Ahaitouf, A., El-Yahyaoui, S., Mechaqrane, A. & Ouagazzaden, A. (2012). A comparative of four secondary optical elements for CPV systems. 14th International Conference on Concentrator Photovoltaic Systems (CPV-14 ) (pp. 1-7).
  • Grilikhes, V.A., Rumyantsev, V.D. & Shvarts, M.Z. (1996). Indoor and outdoor testing of space concentrator AlGaAs/GaAs photovoltaic modules with Fresnel lenses. Proceedings of the 25th IEEE Photovoltaic Specialists Conference (pp. 345-348). IEEE.
  • Harmon, S. (1977). Solar-optical analyses of a mass-produced plastic circular Fresnel lens. Solar Energy, 19(1), 105-108. https://doi.org/10.1016/0038-092X(77)90096-2
  • James, L.W. & Williams, J.K. (1978). Fresnel optics for solar concentration on photovoltaic cells. Proceedings of the 13th IEEE Photovoltaic Specialists Conference (pp. 673-679). IEEE.
  • Kemmoku, Y., Sakakibara, T., Hiramatsu, M., Miyazaki, Y. & Egami, T. (2003). Field test of a concentrator photovoltaic system with flat Fresnel. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (pp. 2379-2382).
  • Li, P., Gao, X. & Zhou, X. (2022). Effect of the temperature difference between land and lake on photovoltaic power generation. Renewable Energy, 185, 86-95. https://doi.org/10.1016/j.renene.2021.12.011
  • Moffat, A.L. & Scharlack, R.S. (1982). The design and development of a high concentration and high efficiency photovoltaic concentrator utilizing a curved Fresnel lens. Proceedings of the 16th IEEE Photovoltaic Specialists Conference (pp. 601-606). IEEE.
  • Nakata, Y., Shibuya, N., Kobe, T., Okamoto, K., Suzuki, A. & Tsuji, T. (1980). Performance of circular Fresnel lens photovoltaic concentrator. Japanese Journal of Applied Physics, 19(2), 75-78. DOI:10.7567/JJAPS.19S2.75
  • Pallant, J. (2016). SPSS survival manual. (6th ed.). A&U Academic, London.
  • Renzi, M., Cioccolanti, L., Barazza, G., Egidi, L. & Comodi, G. (2017). Design and experimental test of refractive secondary optics on the electrical performance of a 3-Junction cell used in CPV systems. Applied Energy, 185 (1), 233-243. https://doi.org/10.1016/j.apenergy.2016.10.064
  • Rodriguez, F., Fleetwood, A., Galarza, A. & Fontan, L. (2018). Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control, Renewable Energy, 126, 855-864. https://doi.org/10.1016/j.renene.2018.03.070
  • Rumyantsev,V.D., Chosta, O.I., Grilikhes, V.A., Sadchikov, N.A., Soluyanov, A.A. & Shvarts, M.Z. (2002). Terrestrial and space concentrator PV modules with composite (glass-silicone) Fresnel lenses. Proceedings of the 29th IEEE Photovoltaic Specialists Conference (pp. 1596-1599). IEEE.
  • Segev, G. & Kribus, A. (2013). Performance of CPV modules based on vertical multi junction cells under non-uniform illumination. Solar Energy, 88, 120-128. https://doi.org/10.1016/j.solener.2012.11.020
  • Shepard, N.F. & Chan, T.S. (1981). The design and performance of a point-focus concentrator module. Proceedings of the 15th IEEE Photovoltaic Specialists Conference (pp. 336-341). IEEE.
  • Şahin, F.E. & Yılmaz, M. (2019). High concentration photovoltaics (HCPV) with diffractive secondary optical elements. Photonics, 6 (2), 68-76. https://doi.org/10.3390/photonics6020068
  • Tawfik, M., Tonnellier, X. & Sansom, C. (2018). Light source selection for a solar simulator for thermal applications: A review. Renewable and Sustainable Energy Reviews, 90, 802-813. https://doi.org/10.1016/j.rser.2018.03.059
  • Tien, N.X. & Shin, S. (2016). A novel concentrator photovoltaic (CPV) system with the improvement of irradiance uniformity and the capturing of diffuse solar radiation. Applied Sciences, 6 (9), 251-265. https://doi.org/10.3390/app6090251
  • Victoria, M., Dominguez, C., Antion, I. & Sala, G. (2009). Comparative analysis of different secondary optical elements for aspheric primary lenses. Optics Express, 17 (8), 6488-6492. https://doi.org/10.1364/OE.17.006487
  • Yadav, P., Tripathi, B., Rathod, S. & Kumar, M. (2013). Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology. Renewable and Sustainable Energy Reviews, 28, 812-823. https://doi.org/10.1016/j.rser.2013.08.047
  • Xie, W.T., Dai, Y.J. & Sumaty K. (2011). Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews, 15, 2588-2606. https://doi.org/10.1016/j.rser.2011.03.031
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Ferhat Kartal 0000-0003-2790-6331

Osman Turan 0000-0003-3421-2020

Yayımlanma Tarihi 3 Haziran 2022
Gönderilme Tarihi 8 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kartal, F., & Turan, O. (2022). ÇİFT FRENSEL LENSLİ BİR YOĞUNLAŞTIRILMIŞ FOTOVOLTAİK SİSTEMİN PERFORMANS ANALİZİ VE OPTİMİZASYONU. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 71-94. https://doi.org/10.17780/ksujes.1084548