Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECTS OF AIR ENTERING FROM WATER INTAKES ON TURBIDITY

Yıl 2023, , 241 - 249, 15.03.2023
https://doi.org/10.17780/ksujes.1220981

Öz

In reservoirs, when water level is low, air entering also occurs with the water. The vortex occurs with air entering causes the fine substances on the water surface and suspended to enter the pipelines with water and muddy the water. The distance between the water mouth and the water surface, which is called the critical submergence (Sc), where the air entering starts, varies according to many factors. The size, shape, flow rate and obstructions near the intake are just some of these factors. In this study, Sc that occur when water is drawn from a sand laid reservoir with different flow rates with a circular pipe were determined. The turbidity values of the water were measured just above the critical submergence height and at the critical submergence height, and the effects of critical submergence and flow on turbidity were investigated. Regression equations were established to determine the dimensionless critical submergence/water intake pipe diameter ratio (Sc/D) from Froude number and flow rate values, and significance of the equations was tested. In addition, equations for the determination of turbidity values were generated. The generated equations statistically showed that turbidity can be approximated using flow rate and Sc/D values. It has been observed that the closeness of the water intake openings to the bottom of the channel significantly increases the turbidity. It has been determined that turbidity increases by 700-800% with air entering. It is also very important for the water intakes to be designed considering the critical submergence height in terms of maintaining water quality.

Kaynakça

  • APHA/AWWA/WEF (2012). Standard method 2130: turbidity. Standard methods for the examination of water and wastewater, 22nd edition. Washington, DC:American Public Health Association, American Water Works Association and Water Environment Federation.
  • Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science Association, 81(12), 1782-1788. https://doi.org/10.1093/ps/81.12.1782
  • Bohling, B. (2009). Measurements of threshold values for incipient motion of sediment particles with two diferent erosion devices. Journal of Marine Systems, 75, 330–335. https://doi.org/10.1016/j.jmarsys.2007.01.014
  • Davies-Colley, R. J., and Smith, D. G. (2001). Turbidity Suspended Sediment, and Water Clarity: A Review. Journal of the American Water Resources Association, 37(5), 1085–1101. doi:10.1111/j.1752-1688.2001.tb03624.x
  • Eroglu, N., ve Bahadirli, T. (2007). Prediction of critical submergence for a rectangular intake. Journal of Energy Engineering, 133(2), 91–103. https://doi.org/10.1061/(ASCE)0733- 9402(2007)133:2(91)
  • Halder, J. N., and Islam, M. N. (2015) Water pollution and its impact on the human health. Journal of Environment and Human, 2(1), 36-46. doi: 10.15764/EH.2015.01005
  • Hashid, M., Hussain, A., Ahmad, Z. (2021) Critical submergence for side circular intake in an open channel flow. Journal of Hydraulic Research, 59(1), 136-147. doi: 10.1080/00221686.2020.1744749
  • Hrudey, S. E. and Hrudey, E. J. (2004) Safe drinking water—lessons from recent outbreaks in affluent nations. IWA Publishing, London, UK
  • ISO (2016). International Standard ISO 7027–1:2016(E): Water quality – determination of turbidity. Part 1: quantitative methods. Geneva: International Organization for Standardization.
  • Gökçe, H. (2020). Bakır Malzemenin Delinme Performansının Kesme Kuvveti ve Takım Sıcaklığı Açısından İncelenmesi. El-Cezeri, 7(3), 1039-1053. doi.org/10.31202/ecjse.730812
  • Karakul, A., ve Özaydın, G. (2019). Türkiye'nin İnovasyon Göstergeleri Arasındaki İlişkilerin Değişen Varyans Problemli Çok Değişkenli Doğrusal Regresyon İle Modellenmesi. İzmir Katip Çelebi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2(2), 125-139.
  • Kutner, M. H., Nachtsheim, C. J., Neter, J., Li, W., (2005). Applied linear statistical models. McGraw-Hill Irwin Companies Inc. New York.
  • Mann, A. G., Tam, C. C., Higgins, C. D., and Rodrigues, L. C. (2007) The association between drinking water turbidity and gastrointestinal illness: a systematic review. BMC Public Health, 7(1), 1-7. doi.org/10.1186/1471-2458-7-256
  • Montgomery, D.C., Peck, E.A., Vining G.G. (2013). Linear Regression Analysis. 5th. John Wiley & Sons. Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48, 500-506. doi.org/10.1016/j.proeng.2012.09.545
  • Rawlings D, John O, Pantula, Sastry G, Dickey, David A. (1998). Applied Regression Analysis (2nd ed.): A Research Tool, Springer Science & Business Media.
  • Sarkardeh, H., Zarrati, A. R., Roshan, R. (2010). Effect of intake head wall and trash rack on vortices. Journal of Hydraulic Research, 48(1), 108–112. https://doi.org/10.1080/00221680903565952
  • Tang C. Y., Li, Y., Acharya, K., Du, W., Gao, X., Luo, L., and Yu, Z. (2019). Impact of intermittent turbulent bursts on sediment resuspension and internal nutrient release in Lake Taihu, China. Environmental Science and Pollution Research, 26:16519– 16528. https://doi.org/10.1007/s11356-019-04847-2
  • Yıldırım, N., and Kocabas, F. (1995). Critical submergence for intakes in open channel flow. Journal of Hydraulic Engineering, 121(12), 900–905. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(900)
  • Zhang, Y., Yao, X., Wu, Q., Huang, Y., Zhou, Z., Yang, J., and Liu, X. (2021). Turbidity prediction of lake-type raw water using random forest model based on meteorological data: A case study of Tai lake, China. Journal of Environmental Management, 290, 112657. https://doi.org/10.1016/j.jenvman.2021.112657

SU ALMA AĞIZLARINDAN HAVA GİRİŞİNİN BULANIKLIK ÜZERİNE ETKİLERİ

Yıl 2023, , 241 - 249, 15.03.2023
https://doi.org/10.17780/ksujes.1220981

Öz

Rezervuarlarda su seviyesinin düşük olduğu durumlarda su ile birlikte hava girişi de meydana gelmektedir. Hava girişiyle beraber oluşan çevrinti, su yüzeyinde ve askıda bulunan ince maddelerin suyla beraber boru hatlarına girmesine ve suyu bulandırmasına sebep olmaktadır. Hava girişinin başladığı kritik batıklık (Sc) olarak adlandırılan su ağzı ile su yüzeyi arasındaki mesafe çok sayıda faktöre göre değişmektedir. Su alma ağzının boyutu, şekli, debisi, su alma ağzının yakınındaki engeller bu faktörlerden sadece bazılarıdır. Bu çalışmada dairesel kesitli bir boru ile farklı debilerle kum serili rezervuardan su çekilmesi durumunda oluşan kritik batıklık yükseklikleri belirlenmiştir. Kritik batıklık yüksekliğinin hemen üzerinde ve kritik batıklık yüksekliğinde suyun bulanıklık değerleri ölçülerek kritik batıklık ve debinin bulanıklık üzerine etkileri araştırılmıştır. Froude sayısı ve debi değerlerinden boyutsuz kritik batıklık/su alma borusu çapı oranının (Sc/D) belirlenmesine yönelik regresyon denklemleri kurulmuş ve denklemlerin anlamlılıkları test edilmiştir. Ayrıca bulanıklık değerlerinin belirlenmesine yönelik denklemler oluşturulmuştur. Oluşturulan denklemler istatistiksel olarak bulanıklığın, debi ve Sc/D değerleri kullanılarak yaklaşık olarak belirlenebileceğini göstermiştir. Su alma ağızlarının kanal tabanına yakın olmasının bulanıklığı önemli ölçüde artırdığı görülmüştür. Hava girişi ile beraber bulanıklığın %700-800 kadar arttığı durumlar olmaktadır. Su alma ağızlarının kritik batıklık yüksekliği dikkate alınarak tasarlanması, su kalitesinin korunması bakımından da oldukça önemlidir.

Kaynakça

  • APHA/AWWA/WEF (2012). Standard method 2130: turbidity. Standard methods for the examination of water and wastewater, 22nd edition. Washington, DC:American Public Health Association, American Water Works Association and Water Environment Federation.
  • Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science Association, 81(12), 1782-1788. https://doi.org/10.1093/ps/81.12.1782
  • Bohling, B. (2009). Measurements of threshold values for incipient motion of sediment particles with two diferent erosion devices. Journal of Marine Systems, 75, 330–335. https://doi.org/10.1016/j.jmarsys.2007.01.014
  • Davies-Colley, R. J., and Smith, D. G. (2001). Turbidity Suspended Sediment, and Water Clarity: A Review. Journal of the American Water Resources Association, 37(5), 1085–1101. doi:10.1111/j.1752-1688.2001.tb03624.x
  • Eroglu, N., ve Bahadirli, T. (2007). Prediction of critical submergence for a rectangular intake. Journal of Energy Engineering, 133(2), 91–103. https://doi.org/10.1061/(ASCE)0733- 9402(2007)133:2(91)
  • Halder, J. N., and Islam, M. N. (2015) Water pollution and its impact on the human health. Journal of Environment and Human, 2(1), 36-46. doi: 10.15764/EH.2015.01005
  • Hashid, M., Hussain, A., Ahmad, Z. (2021) Critical submergence for side circular intake in an open channel flow. Journal of Hydraulic Research, 59(1), 136-147. doi: 10.1080/00221686.2020.1744749
  • Hrudey, S. E. and Hrudey, E. J. (2004) Safe drinking water—lessons from recent outbreaks in affluent nations. IWA Publishing, London, UK
  • ISO (2016). International Standard ISO 7027–1:2016(E): Water quality – determination of turbidity. Part 1: quantitative methods. Geneva: International Organization for Standardization.
  • Gökçe, H. (2020). Bakır Malzemenin Delinme Performansının Kesme Kuvveti ve Takım Sıcaklığı Açısından İncelenmesi. El-Cezeri, 7(3), 1039-1053. doi.org/10.31202/ecjse.730812
  • Karakul, A., ve Özaydın, G. (2019). Türkiye'nin İnovasyon Göstergeleri Arasındaki İlişkilerin Değişen Varyans Problemli Çok Değişkenli Doğrusal Regresyon İle Modellenmesi. İzmir Katip Çelebi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2(2), 125-139.
  • Kutner, M. H., Nachtsheim, C. J., Neter, J., Li, W., (2005). Applied linear statistical models. McGraw-Hill Irwin Companies Inc. New York.
  • Mann, A. G., Tam, C. C., Higgins, C. D., and Rodrigues, L. C. (2007) The association between drinking water turbidity and gastrointestinal illness: a systematic review. BMC Public Health, 7(1), 1-7. doi.org/10.1186/1471-2458-7-256
  • Montgomery, D.C., Peck, E.A., Vining G.G. (2013). Linear Regression Analysis. 5th. John Wiley & Sons. Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48, 500-506. doi.org/10.1016/j.proeng.2012.09.545
  • Rawlings D, John O, Pantula, Sastry G, Dickey, David A. (1998). Applied Regression Analysis (2nd ed.): A Research Tool, Springer Science & Business Media.
  • Sarkardeh, H., Zarrati, A. R., Roshan, R. (2010). Effect of intake head wall and trash rack on vortices. Journal of Hydraulic Research, 48(1), 108–112. https://doi.org/10.1080/00221680903565952
  • Tang C. Y., Li, Y., Acharya, K., Du, W., Gao, X., Luo, L., and Yu, Z. (2019). Impact of intermittent turbulent bursts on sediment resuspension and internal nutrient release in Lake Taihu, China. Environmental Science and Pollution Research, 26:16519– 16528. https://doi.org/10.1007/s11356-019-04847-2
  • Yıldırım, N., and Kocabas, F. (1995). Critical submergence for intakes in open channel flow. Journal of Hydraulic Engineering, 121(12), 900–905. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(900)
  • Zhang, Y., Yao, X., Wu, Q., Huang, Y., Zhou, Z., Yang, J., and Liu, X. (2021). Turbidity prediction of lake-type raw water using random forest model based on meteorological data: A case study of Tai lake, China. Journal of Environmental Management, 290, 112657. https://doi.org/10.1016/j.jenvman.2021.112657
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Ercan Gemici 0000-0001-8464-4281

Betül Tuba Gemici 0000-0003-1731-536X

Yayımlanma Tarihi 15 Mart 2023
Gönderilme Tarihi 19 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gemici, E., & Gemici, B. T. (2023). SU ALMA AĞIZLARINDAN HAVA GİRİŞİNİN BULANIKLIK ÜZERİNE ETKİLERİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 241-249. https://doi.org/10.17780/ksujes.1220981