MICROHARDNESS AND MICROSTRUCTURE BEHAVIOR OF NITI MANUFACTURED BY POWDER METALLURGY
Yıl 2024,
, 755 - 762, 03.09.2024
Gül Tosun
,
Tuncay Kaymak
,
Nihat Tosun
Öz
In this study, the biomaterial NiTi alloy was produced by the powder metallurgy method. Production parameters are 200, 400 MPa pressing pressure, 800, 1100ºC sintering temperature and 60, 90, 120 minutes sintering time. Microhardness and microstructure characterization of NiTi, which has a porous structure, was examined depending on the production parameters. As a result of the examinations, it was observed that there were significant changes in both microhardness and microstructure by changing the production parameters. The highest hardness was measured as 811.33 HV, while the lowest hardness was measured as 232 HV
Proje Numarası
TEKF.18.19
Kaynakça
- Akbarpour, M.R., Alipour, S., Najafi, M., Ebadzadeh, T., Kim, H.S. (2021). Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process. Intermetallics, 131, 107119, https://doi.org/10.1016/j.intermet.2021.107119
- Albayrak, O., Oncel, C., Tefek, M., & Altıntaş, S. (2007). Effects of Calcination on Electropheretic Deposition of Naturally Derived and Chemically Synthesized Hydroxyapatite. Review Advanced Material Science, 15, 10-15.
- Bogdanoviciene, I., Beganskiene, A., Tonsuaadu, K., Glaser, J., Meyer, H.J., & Kareiva, A. (2006). Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueus sol-jel processing. Materials Research Bulletin, 41, 1754-1762, https://doi.org/10.1016/j.materresbull.2006.02.016
- Güven, Ş. Y. (2014) Biyouumluluk ve Biyomalzemelerin Seçimi. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), ÖS:BiyoMekanik, 303-311, 2014 ISSN: 1308-669.
- Han J., Chen X., Zhang G., Lu L., Xin Y., Liu B., Cai Y., Zhang X. , Tian Y.(2022). Microstructure and mechanical properties of Ni50.8Ti49.2 and Ni53Ti47 alloys prepared in situ by wire-arc additive manufacturing. Journal of Materials Processing Tech. 306,117631. https://doi.org/10.1016/j.jmatprotec.2022.117631.
- Huang, Y., Xin, D., Chen, X. (2024). Microstructure and properties of NiTi shape memory alloy fabricated by double-wire plasma arc additive manufacturing with a nearly equal atomic ratio. Materials Letters, 354, 135406. https://doi.org/10.1016/j.matlet.2023.135406
- Jiang P.F., Nie M.H., Zong X.M., Wang X.B., Chen Z.K., Liu C.Z., Teng J.Z., Zhang Z.H.(2023). Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing. Materials Science and Engineering: A, 144678. https://doi.org/10.1016/j.msea.2023.144678
- Kapanen, A., Ilvesaro, J., Danilov, A., Ryhanen, J., Lehenkari, P., & Tuukkanen, J. (2002). Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures. Biomaterials, 23, 645–650. https://doi.org/10.1016/S0142-9612(01)00143-0
- Khorasani, A.M., Goldberg, M., Doeven, E.H., & Littlefair, G. (2015). Titanium in Biomedica Applications-Properties and Fabrication: A Review. Journal of Biomaterials and Tissue Engineering, 5, 593-619. DOI: 10.1166/jbt.2015.1361
- Korsacılar, D. (2012). Metalik implant malzeme yüzeylerinin elektropolimerizasyon yöntemi ile sentetik hidrojel polimerlele kaplanarak biyouyumluluğunun araştırılması. Yüksek Lisans Tezi, Dokuz Eylül Ü. Fen Bilimleri Enstitüsü, İzmir. 73
- Li. D., Du. C., He. Z., Li. Y., Luo. F., He. H. (2023). High-strength porous NiTi shape memory alloys with stable cyclic recovery properties fabricated using elemental powders. Materials Science & Engineering A, 886, 145682. https://doi.org/10.1016/j.msea.2023.145682
- Lu, H.Z., Liu, L.H., Luo, X., Ma, H.W., Cai, W.S., Lupoi, R., Yin, S., Yang, C. (2023). Formation mechanism of heterogeneous microstructures and shape memory effect in NiTi shape memory alloy fabricated via laser powder bed fusion. Materials & Design, 232, 11107, https://doi.org/10.1016/j.matdes.2023.112107
- Ma, X., Wang, H., Xie, H., Qu, J., Chen, X., Chen, F., Song, Q., Yin, H. (2019). Engineering the porosity and superelastic behaviors of NiTi alloys prepared by an electro-assisted powder metallurgical route in molten salts. Journal of Alloys and Compounds. 794, 455-464, https://doi.org/10.1016/j.jallcom.2019.04.16
- Parvizi, S., Hashami, S. M., Asgarinia, F., Nematollahi, M., & Elahinia, M. (2021). Effective parameters on the final properties of NiTi- based alloys manufactured by powder metallurgy methods: A review. Progress Material Science, 117, 100739, https://doi.org/10.1016/j.pmatsci.2020.100739
- Patel, S. K., Dubey, P., Roshan, R., Beher, A. (2023). Elastic and transformation behaviour of equiatomic NiTi shape memory alloys fabricated at different sintering temperatures. Materials Today Communications, 37,107203, https://doi.org/10.1016/j.mtcomm.2023.107203
- Tang, C.Y.; Zhang, L.N.; Wong, C.T.; Chan, K.C.; Yue, T.M. (2011). Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering, Materials Science and Engineering: A, C. 528, Sayı 18, 6006-6011. https://doi.org/10.1016/j.msea.2011.04.040
- Tüfekçi, K. (2008). Gerinim Hızının Kortikal Kemiğin Mekanik Özellikleri Üzerindeki Etkisinin İncelenmesi, Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü.
- Qin, R., Jiang, F., Cao, M., Li, Y., Zhang, H., Guo, C., Wang, Z. (2022). Preparation, microstructure and compressive property of NiTi alloy hollow spheres fabricated by powder metallurgy. MaterialsToday Communications, 30, 103039. https://doi.org/10.1016/j.mtcomm.2021.103039
- Yavaş, U.D. (2017). Ti6Al4V İmplantların Elektroforetik Biriktirme Yöntemi ile Hidroksiapatit Kaplanması Yüksek Lisans Tezi. Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.84
TOZ METALURJİSİYLE ÜRETİLEN NiTi’NİN MİKROSERTLİK VE MİKROYAPI DAVRANIŞI
Yıl 2024,
, 755 - 762, 03.09.2024
Gül Tosun
,
Tuncay Kaymak
,
Nihat Tosun
Öz
Bu çalışmada, biyomalzeme olan NiTi alaşımının toz metalürjisi yöntemiyle üretimi yapılmıştır. Üretim parametreleri 200, 400 MPa presleme basıncı, 800, 1100ºC sinterleme sıcaklığı ve 60, 90, 120 dakika sinterleme süresidir. Gözenekli yapıya sahip NiTi’nin üretim parametrelerine bağlı olarak mikrosertlik ve mikroyapı karekterizasyonu incelenmiştir. Yapılan incelemeler sonucunda, üretim parametrelerinin değiştirilmesiyle birlikte hem mikrosertlikte hem de mikroyapıda önemli değişimlerin olduğu görülmüştür. En yüksek sertlik 811,33 HV olarak ölçülürken en düşük sertlik ise 232 HV olarak ölçülmüştür.
Etik Beyan
Yapılan çalışma etik kurul izni gerektiren bir çalışma değildir.
Destekleyen Kurum
Fırat Üniversitesi Bilimsel Araştırma Projeleri Birimi (FÜBAP)
Proje Numarası
TEKF.18.19
Teşekkür
Bu çalışması Fırat Üniversitesi Bilimsel Araştırma Projeleri Birimi (FÜBAP) tarafından TEKF.18.19 nolu proje olarak desteklenmiştir. Desteklerinden dolayı FÜBAP’a teşekkür ederiz.
Kaynakça
- Akbarpour, M.R., Alipour, S., Najafi, M., Ebadzadeh, T., Kim, H.S. (2021). Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process. Intermetallics, 131, 107119, https://doi.org/10.1016/j.intermet.2021.107119
- Albayrak, O., Oncel, C., Tefek, M., & Altıntaş, S. (2007). Effects of Calcination on Electropheretic Deposition of Naturally Derived and Chemically Synthesized Hydroxyapatite. Review Advanced Material Science, 15, 10-15.
- Bogdanoviciene, I., Beganskiene, A., Tonsuaadu, K., Glaser, J., Meyer, H.J., & Kareiva, A. (2006). Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueus sol-jel processing. Materials Research Bulletin, 41, 1754-1762, https://doi.org/10.1016/j.materresbull.2006.02.016
- Güven, Ş. Y. (2014) Biyouumluluk ve Biyomalzemelerin Seçimi. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), ÖS:BiyoMekanik, 303-311, 2014 ISSN: 1308-669.
- Han J., Chen X., Zhang G., Lu L., Xin Y., Liu B., Cai Y., Zhang X. , Tian Y.(2022). Microstructure and mechanical properties of Ni50.8Ti49.2 and Ni53Ti47 alloys prepared in situ by wire-arc additive manufacturing. Journal of Materials Processing Tech. 306,117631. https://doi.org/10.1016/j.jmatprotec.2022.117631.
- Huang, Y., Xin, D., Chen, X. (2024). Microstructure and properties of NiTi shape memory alloy fabricated by double-wire plasma arc additive manufacturing with a nearly equal atomic ratio. Materials Letters, 354, 135406. https://doi.org/10.1016/j.matlet.2023.135406
- Jiang P.F., Nie M.H., Zong X.M., Wang X.B., Chen Z.K., Liu C.Z., Teng J.Z., Zhang Z.H.(2023). Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing. Materials Science and Engineering: A, 144678. https://doi.org/10.1016/j.msea.2023.144678
- Kapanen, A., Ilvesaro, J., Danilov, A., Ryhanen, J., Lehenkari, P., & Tuukkanen, J. (2002). Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures. Biomaterials, 23, 645–650. https://doi.org/10.1016/S0142-9612(01)00143-0
- Khorasani, A.M., Goldberg, M., Doeven, E.H., & Littlefair, G. (2015). Titanium in Biomedica Applications-Properties and Fabrication: A Review. Journal of Biomaterials and Tissue Engineering, 5, 593-619. DOI: 10.1166/jbt.2015.1361
- Korsacılar, D. (2012). Metalik implant malzeme yüzeylerinin elektropolimerizasyon yöntemi ile sentetik hidrojel polimerlele kaplanarak biyouyumluluğunun araştırılması. Yüksek Lisans Tezi, Dokuz Eylül Ü. Fen Bilimleri Enstitüsü, İzmir. 73
- Li. D., Du. C., He. Z., Li. Y., Luo. F., He. H. (2023). High-strength porous NiTi shape memory alloys with stable cyclic recovery properties fabricated using elemental powders. Materials Science & Engineering A, 886, 145682. https://doi.org/10.1016/j.msea.2023.145682
- Lu, H.Z., Liu, L.H., Luo, X., Ma, H.W., Cai, W.S., Lupoi, R., Yin, S., Yang, C. (2023). Formation mechanism of heterogeneous microstructures and shape memory effect in NiTi shape memory alloy fabricated via laser powder bed fusion. Materials & Design, 232, 11107, https://doi.org/10.1016/j.matdes.2023.112107
- Ma, X., Wang, H., Xie, H., Qu, J., Chen, X., Chen, F., Song, Q., Yin, H. (2019). Engineering the porosity and superelastic behaviors of NiTi alloys prepared by an electro-assisted powder metallurgical route in molten salts. Journal of Alloys and Compounds. 794, 455-464, https://doi.org/10.1016/j.jallcom.2019.04.16
- Parvizi, S., Hashami, S. M., Asgarinia, F., Nematollahi, M., & Elahinia, M. (2021). Effective parameters on the final properties of NiTi- based alloys manufactured by powder metallurgy methods: A review. Progress Material Science, 117, 100739, https://doi.org/10.1016/j.pmatsci.2020.100739
- Patel, S. K., Dubey, P., Roshan, R., Beher, A. (2023). Elastic and transformation behaviour of equiatomic NiTi shape memory alloys fabricated at different sintering temperatures. Materials Today Communications, 37,107203, https://doi.org/10.1016/j.mtcomm.2023.107203
- Tang, C.Y.; Zhang, L.N.; Wong, C.T.; Chan, K.C.; Yue, T.M. (2011). Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering, Materials Science and Engineering: A, C. 528, Sayı 18, 6006-6011. https://doi.org/10.1016/j.msea.2011.04.040
- Tüfekçi, K. (2008). Gerinim Hızının Kortikal Kemiğin Mekanik Özellikleri Üzerindeki Etkisinin İncelenmesi, Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü.
- Qin, R., Jiang, F., Cao, M., Li, Y., Zhang, H., Guo, C., Wang, Z. (2022). Preparation, microstructure and compressive property of NiTi alloy hollow spheres fabricated by powder metallurgy. MaterialsToday Communications, 30, 103039. https://doi.org/10.1016/j.mtcomm.2021.103039
- Yavaş, U.D. (2017). Ti6Al4V İmplantların Elektroforetik Biriktirme Yöntemi ile Hidroksiapatit Kaplanması Yüksek Lisans Tezi. Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.84