THE EFFECT OF USE OF DIFFERENT DIAMETER ON IMPROVEMENT OF FLOW AND HEAT TRANSFER IN TUBE BANK HEAT EXCHANGERS
Yıl 2023,
, 625 - 636, 03.09.2023
Muhammet Nasıf Kuru
,
Mehmet Tahir Erdinç
,
İlyas Karasu
,
Şaban Ünal
Öz
In tube bank heat exchangers, heat transfer is carried out with another fluid which is passed around in the cross direction to the fluid inside the tubes. The fluid that passes through the outside of the tube in the cross direction is also mostly gas fluids. In tubes placed one after another, the highest heat transfer is usually obtained in the first tube. The heat and flow characteristics become similar to each other after the first tube. In this case, periodic flow is obtained by repeating the velocity and temperature contours. Ensuring that the boundary layer is constantly renewed in successive tubes allows obtaining high heat transfer in the other tubes, as in the first tube. While improving heat transfer, the most important problem is the increase in pressure drop. In this study, a numerical optimization was carried out in order to increase the heat transfer and reduce the pressure drop by using tubes of four different diameters placed in an in-line arrangement. Comparisons are made assuming that the heat transfer surface area is constant and the longitudinal and transversal distances between the tubes are the same. If the diameters of four tubes are placed successively where D_1=5 mm,D_2=15 mm,D_3=6 mm,D_4=14 mm, the heat transfer increases by 14.5% and the pressure drop increases by 377%.
Proje Numarası
TUBİTAK BİDEB 2218 Yurtiçi Doktora Sonrası Araştırma Burs Programı tarafından 121C377 proje numarası ve Tarsus Üniversitesi Bilimsel Araştırma Projeleri Birimi OSB.21.001 proje numarası
Kaynakça
- Abolfathi, S., Mirabdolah Lavasani, A., Mobedi, P., & Salehi Afshar, K. (2021). Experimental study on flow around a tube in mixed tube bundles comprising cam-shaped and circular cylinders in in-line arrangement. International Journal of Thermal Sciences, 163. https://doi.org/10.1016/j.ijthermalsci.2020.106812
- Ansys Fluent User’s Guide. (2019). ANSYS Inc. (No. 2019).
- Bahaidarah, H. M. S., Anand, N. K., & Chen, H. C. (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numerical Heat Transfer; Part A: Applications, 48(4), 359–385. https://doi.org/10.1080/10407780590957134
- Bayat, H., Lavasani, A. M., & Maarefdoost, T. (2014). Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Conversion and Management, 85, 470–476. https://doi.org/10.1016/j.enconman.2014.06.009
- Buyruk, E. (1999). Heat transfer and flow structures around circular cylinders in cross-flow. Turkish Journal of Engineering and Environmental Sciences, 23(5), 299–315.
- Erdinc, M. T. (2023). Computational thermal-hydraulic analysis and geometric optimization of elliptic and circular wavy fin and tube heat exchangers. International Communications in Heat and Mass Transfer, 140, 106518. https://doi.org/10.1016/j.icheatmasstransfer.2022.106518
- Erdinc, M. T., Aktas, A. E., Kuru, M. N., Bilgili, M., & Aydin, O. (2021). An optimization study on thermo-hydraulic performance arrays of circular and diamond shaped cross-sections in periodic flow. International Communications in Heat and Mass Transfer, 129, 105706. https://doi.org/10.1016/j.icheatmasstransfer.2021.105706
- Fluent, A. (2021). Ansys fluent theory guide. In ANSYS Inc., USA.
- Horvat, A., Leskovar, M., & Mavko, B. (2006). Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes. International Journal of Heat and Mass Transfer, 49(5–6), 1027–1038. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.030
- Ibrahim, T. A., & Gomaa, A. (2009). Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences, 48(11), 2148–2158. https://doi.org/10.1016/j.ijthermalsci.2009.03.011
- Jayavel, S., & Tiwari, S. (2008). Numerical study of flow and heat transfer for flow past inline circular tubes built in a rectangular channel in the presence of vortex generators. Numerical Heat Transfer; Part A: Applications, 54(8), 777–797. https://doi.org/10.1080/10407780802359120
- Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2006). Convection heat transfer from tube banks in crossflow: Analytical approach. International Journal of Heat and Mass Transfer, 49(25–26), 4831–4838. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.042
- Mangrulkar, C. K., Dhoble, A. S., Deshmukh, A. R., & Mandavgane, S. A. (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering, 110, 521–538. https://doi.org/10.1016/j.applthermaleng.2016.08.174
- Mirabdolah Lavasani, A., Bayat, H., & Maarefdoost, T. (2014). Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering, 65(1–2), 85–93. https://doi.org/10.1016/j.applthermaleng.2013.12.078
- Nasif Kuru, M., Erdinc, M. T., & Yilmaz, A. (2020). Optimization of Heat Transfer and Pressure Drop in Axially Finned Staggered Tube Banks. Heat Transfer Engineering, 1–18. https://doi.org/10.1080/01457632.2020.1785696
- Sayed Ahmed, S. A. E., Ibrahiem, E. Z., Mesalhy, O. M., & Abdelatief, M. A. (2014). Heat transfer characteristics of staggered wing-shaped tubes bundle at different angles of attack. Heat and Mass Transfer, 50(8), 1091–1102. https://doi.org/10.1007/s00231-014-1323-3
- Yilmaz, A., Erdinç, M. T., & Yilmaz, T. (2017). Optimization of crossflow staggered tube banks for prescribed pressure loss and effectiveness. Journal of Thermophysics and Heat Transfer, 31(4), 878–888. https://doi.org/10.2514/1.T5033
- Yilmaz, A., & Yilmaz, T. (2016). Optimum Design of Cross-Flow In-Line Tube Banks at Constant Wall Temperature. Heat Transfer Engineering, 37(6), 523–534. https://doi.org/10.1080/01457632.2015.1060753
- Žukauskas, A. (1972). Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, 8(C), 93–160. https://doi.org/10.1016/S0065-2717(08)70038-8
- Žukauskas, A., & Ulinskas, R. (1985). Efficiency parameters for heat transfer in tube banks. Heat Transfer Engineering, 6(1), 19–25. https://doi.org/10.1080/01457638508939614
BORU DEMETİ ISI DEĞİŞTİRİCİLERİNDE FARKLI BORU ÇAPI KULLANIMININ AKIŞ VE ISI TRANSFERİNİ İYİLEŞTİRMEYE ETKİSİ
Yıl 2023,
, 625 - 636, 03.09.2023
Muhammet Nasıf Kuru
,
Mehmet Tahir Erdinç
,
İlyas Karasu
,
Şaban Ünal
Öz
Boru demeti ısı değiştiricilerinde, boruların içindeki akışkana çapraz yönde etrafından geçirilen başka bir akışkan ile ısı transferi gerçekleştirilir. Boru dışından çapraz yönde geçirilen akışkan çoğunlukla gaz akışkanlardır. Art arda yerleştirilen borularda, en fazla ısı transferi çoğu kez birinci boruda elde edilmektedir. Birinci borudan sonra ısı ve akış karakteristiği birbirine benzer hal almaktadır. Bu durumda, hız ve sıcaklık konturlarının tekrarlanması ile periyodik akış elde edilmiş olur. Ardışık olarak gelen borularda sınır tabakanın sürekli olarak yenilenmesini sağlamak, diğer borularda birinci borudaki gibi yüksek ısı transferi elde edilmesine imkân tanıyacaktır. Isı transferi iyileştirilirken en önemli sorun basınç düşümünün de artmasıdır. Bu çalışmada düzgün sıralı dizilişe sahip boru demetinde, art arda yerleştirilen dört farklı çaptaki borular kullanılarak, ısı transferinin arttırılması ve basınç düşümünün azaltılması amaçlarıyla sayısal optimizasyon yapılmıştır. Karşılaştırmalar, ısı transferi yüzey alanının sabit, borular arasındaki boyuna ve enine mesafelerin aynı olduğu varsayılarak yapılmıştır. Düzgün sıralı dizilişe sahip boru demetinde ardışık olarak yerleştirilen dört adet borunun çaplarının D_1=5 mm,D_2=15 mm,D_3=6 mm,D_4=14 mm olması durumunda ısı transferi %14.5 oranında artarken, basınç düşümü de %377 oranında artmıştır.
Destekleyen Kurum
TUBİTAK ve Tarsus Üniversitesi
Proje Numarası
TUBİTAK BİDEB 2218 Yurtiçi Doktora Sonrası Araştırma Burs Programı tarafından 121C377 proje numarası ve Tarsus Üniversitesi Bilimsel Araştırma Projeleri Birimi OSB.21.001 proje numarası
Teşekkür
Bu çalışma, TUBİTAK BİDEB 2218 Yurtiçi Doktora Sonrası Araştırma Burs Programı tarafından 121C377 proje numarası ile ve Tarsus Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından OSB.21.001 proje numarası ile desteklenmektedir.
Kaynakça
- Abolfathi, S., Mirabdolah Lavasani, A., Mobedi, P., & Salehi Afshar, K. (2021). Experimental study on flow around a tube in mixed tube bundles comprising cam-shaped and circular cylinders in in-line arrangement. International Journal of Thermal Sciences, 163. https://doi.org/10.1016/j.ijthermalsci.2020.106812
- Ansys Fluent User’s Guide. (2019). ANSYS Inc. (No. 2019).
- Bahaidarah, H. M. S., Anand, N. K., & Chen, H. C. (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numerical Heat Transfer; Part A: Applications, 48(4), 359–385. https://doi.org/10.1080/10407780590957134
- Bayat, H., Lavasani, A. M., & Maarefdoost, T. (2014). Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Conversion and Management, 85, 470–476. https://doi.org/10.1016/j.enconman.2014.06.009
- Buyruk, E. (1999). Heat transfer and flow structures around circular cylinders in cross-flow. Turkish Journal of Engineering and Environmental Sciences, 23(5), 299–315.
- Erdinc, M. T. (2023). Computational thermal-hydraulic analysis and geometric optimization of elliptic and circular wavy fin and tube heat exchangers. International Communications in Heat and Mass Transfer, 140, 106518. https://doi.org/10.1016/j.icheatmasstransfer.2022.106518
- Erdinc, M. T., Aktas, A. E., Kuru, M. N., Bilgili, M., & Aydin, O. (2021). An optimization study on thermo-hydraulic performance arrays of circular and diamond shaped cross-sections in periodic flow. International Communications in Heat and Mass Transfer, 129, 105706. https://doi.org/10.1016/j.icheatmasstransfer.2021.105706
- Fluent, A. (2021). Ansys fluent theory guide. In ANSYS Inc., USA.
- Horvat, A., Leskovar, M., & Mavko, B. (2006). Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes. International Journal of Heat and Mass Transfer, 49(5–6), 1027–1038. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.030
- Ibrahim, T. A., & Gomaa, A. (2009). Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences, 48(11), 2148–2158. https://doi.org/10.1016/j.ijthermalsci.2009.03.011
- Jayavel, S., & Tiwari, S. (2008). Numerical study of flow and heat transfer for flow past inline circular tubes built in a rectangular channel in the presence of vortex generators. Numerical Heat Transfer; Part A: Applications, 54(8), 777–797. https://doi.org/10.1080/10407780802359120
- Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2006). Convection heat transfer from tube banks in crossflow: Analytical approach. International Journal of Heat and Mass Transfer, 49(25–26), 4831–4838. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.042
- Mangrulkar, C. K., Dhoble, A. S., Deshmukh, A. R., & Mandavgane, S. A. (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering, 110, 521–538. https://doi.org/10.1016/j.applthermaleng.2016.08.174
- Mirabdolah Lavasani, A., Bayat, H., & Maarefdoost, T. (2014). Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering, 65(1–2), 85–93. https://doi.org/10.1016/j.applthermaleng.2013.12.078
- Nasif Kuru, M., Erdinc, M. T., & Yilmaz, A. (2020). Optimization of Heat Transfer and Pressure Drop in Axially Finned Staggered Tube Banks. Heat Transfer Engineering, 1–18. https://doi.org/10.1080/01457632.2020.1785696
- Sayed Ahmed, S. A. E., Ibrahiem, E. Z., Mesalhy, O. M., & Abdelatief, M. A. (2014). Heat transfer characteristics of staggered wing-shaped tubes bundle at different angles of attack. Heat and Mass Transfer, 50(8), 1091–1102. https://doi.org/10.1007/s00231-014-1323-3
- Yilmaz, A., Erdinç, M. T., & Yilmaz, T. (2017). Optimization of crossflow staggered tube banks for prescribed pressure loss and effectiveness. Journal of Thermophysics and Heat Transfer, 31(4), 878–888. https://doi.org/10.2514/1.T5033
- Yilmaz, A., & Yilmaz, T. (2016). Optimum Design of Cross-Flow In-Line Tube Banks at Constant Wall Temperature. Heat Transfer Engineering, 37(6), 523–534. https://doi.org/10.1080/01457632.2015.1060753
- Žukauskas, A. (1972). Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, 8(C), 93–160. https://doi.org/10.1016/S0065-2717(08)70038-8
- Žukauskas, A., & Ulinskas, R. (1985). Efficiency parameters for heat transfer in tube banks. Heat Transfer Engineering, 6(1), 19–25. https://doi.org/10.1080/01457638508939614