Araştırma Makalesi
BibTex RIS Kaynak Göster

TARIMSAL TRAKTÖRLERLE YAPILAN YOL İÇİ TAŞIMACILIKTA KULLANICI BÖLÜMÜ YAPISININ HAVA AKIŞI DİRENCİ AÇISINDAN DENEYSEL İNCELENMESİ

Yıl 2023, , 694 - 706, 03.09.2023
https://doi.org/10.17780/ksujes.1288107

Öz

Bu çalışmada bir rüzgâr tüneli kullanılarak ölçeklendirilmiş tarımsal traktör modellerine etki eden hava akışı direnci deneysel olarak tespit edilmiştir. Traktör modelleri aynı şekle sahiptir fakat kullanıcının bulunduğu bölümde üç farklı tasarım denenmiştir. Bunlar kabinle kuşatılmış platform, güneşlikli platform ve devrilme sırasında kullanıcıyı koruyacak koruma çubuklu platformdur. Böylece kullanıcı bölümünün tasarımına bağlı olarak yol içi taşımacılıkta traktörlerin maruz kaldığı hava direnci değişimleri ilk defa deneysel olarak belirlenmiş olmaktadır. Geometrik benzerlik esaslarına göre rüzgâr tünelinde kullanılan traktör modelleri 1:13 oranında hazırlanmıştır. Rüzgâr tüneli testlerinde kinematik ve dinamik benzerlik sağlanamamakta fakat Reynolds sayısı bağımsızlığı elde edilebilmektedir. Rüzgâr tüneli hava akış hızı aralığında farklı hava hızlarında deneyler yapılarak bir Reynolds sayısı aralığı taranmıştır. Bu aralıkta modellere etki eden aerodinamik direnç kuvvetleri ve traktörlerin simetri ekseninde hava akışı kaynaklı basınç dağılımları ölçülmüştür. Elde edilen ölçümlerden boyutsuz aerodinamik direnç katsayısı ve basınç katsayısı değerleri hesaplanmıştır. Hesaplamalara göre kabin kullanımı aerodinamik direnci %3-15 aralığında arttırmaktadır. Düşük hızlarda kabin kullanımı kaynaklı direnç artış yüzdesi fazlayken yüksek hızlarda azalmaktadır. Kabin kullanımı sonucunda akışa dik traktör ön izdüşüm alanı artmaktadır. Fakat aerodinamik dirençteki artış ön iz düşüm alanındaki artışa göre bir mertebe daha düşüktür. Kabin kullanımının iş güvenliği açısından sağladıkları da düşünüldüğünde kabin kullanımı kaynaklı aerodinamik direnç artışının kabul edilebilir bir maliyet olduğu anlaşılmaktadır. Çalışma sonuçlarının tarımsal traktörlerle yol içi taşımacılıkta enerji tüketiminin ayrıştırılmasına katkı sağlaması beklenmektedir.

Destekleyen Kurum

Karamanoğlu Mehmetbey Üniversitesi Bilimsel Araştırma Projeleri Komisyonunca

Proje Numarası

08-M21

Teşekkür

Çalışma aynı zamanda kısmi olarak Hanifi Küçüksarıyıldız’ın doktora tez çalışmasından faydalanmaktadır. Yardımlarından dolayı araştırmacılar Erkunt Traktör A.Ş. firmasına teşekkür eder.

Kaynakça

  • Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some salient features of the time-averaged ground vehicle wake. SAE transactions, 473-503.
  • Altıntaş, N. (2015). Eskişehir İli Tarım İşletmelerinde Traktör Kullanımının Ekonomik Analizi. (Doktora Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Anonim. (2022). Tarım Makine Sanayi Etkileşimi Raporu. Retrieved from Ankara, Türkiye: https://tarmakbir.org/raporlar/
  • Bauskar, M. P., Dhande, D. Y., Vadgeri, S., & Patil, S. R. (2019). Study of aerodynamic drag of sports utility vehicle by experimental and numerical method. Materials Today: Proceedings, 16, 750-757.
  • Bayındırlı, C. (2015). Çekici ve Çekici Römork Kombinasyonlarında Aerodinamik Dirençlerin İncelenmesi. (Doktora Tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Bayındırlı, C., Çelik, M., & Demiralp, M. (2018). Bir otobüs modeli etrafındaki akış yapısının CFD yöntemi ile incelenmesi ve sürükleme kuvvetinin pasif akış kontrol yöntemi ile iyileştirilmesi. Politeknik Dergisi, 21(4), 785-795.
  • Biswas, K., Gadekar, G., & Chalipat, S. (2019). Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool (0148-7191). Retrieved from India:
  • Canli, E., Kucuksariyildiz, H., & Carman, K. (2022). Impact assessment of new generation high-speed agricultural tractor aerodynamics on transportation fuel consumption and related phenomena. Environmental Science and Pollution Research, 30, 6658-6680.
  • Chilbule, C., Upadhyay, A., & Mukkamala, Y. (2014). Analyzing the profile modification of truck-trailer to prune the aerodynamic drag and its repercussion on fuel consumption. Procedia Engineering, 97, 1208-1219.
  • Chowdhury, H., Juwono, R., Zaid, M., Islam, R., Loganathan, B., & Alam, F. (2019). An experimental study on of the effect of various deflectors used for light trucks in Indian subcontinent. Energy Procedia, 160, 34-39.
  • Cogotti, F., Pfadenhauer, M., & Wiegand, T. (2017). Potential of Porsche reference cars for aerodynamic development. Paper presented at the FKFS Conference.
  • Cooper, K. R. (2004). Commercial vehicle aerodynamic drag reduction: historical perspective as a guide. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (pp. 9-28): Springer.
  • Çengel, Y. A., & Cimbala, J. M. (2018). Akışkanlar mekaniği: Temelleri ve uygulamaları (T. Engin Ed. 3 ed. Vol. 3). Palme Yayınevi: Ankara.
  • Dalessio, L., Duncan, B., Chang, C., Gargoloff, J. I., & Tate, E. (2017). Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient. SAE International Journal of Passenger Cars-Mechanical Systems, 10(1), 265-278.
  • Drollinger, R. A. (1987). Heavy duty truck aerodynamics (0148-7191). Retrieved from SAE Technical Paper, No:870001, USA:
  • El Gaouti, Y., Colin, G., Thiam, B., & Mazellier, N. (2021). Online vehicle aerodynamic drag observer with Kalman filters. IFAC-PapersOnLine, 54(2), 51-56.
  • Gulavani, R. A., Chalipat, S., Dighe, A., & Anwar, F. (2019). External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment (0148-7191).
  • Hol, P. A., & Agrewale, M. R. (2019). Aerodynamic analysis of passenger car with luggage carrier (roof rack) (0148-7191). Retrieved from SAE Technical Paper, 2019-26-0067, India:
  • Holman, J. P. (2011). Experimental methods for engineers (8 th ed.). The McGraw-Hill Companies, Inc. : Americas, New York.
  • Hsu, M.-C., Wang, C., Xu, F., Herrema, A. J., & Krishnamurthy, A. (2016). Direct immersogeometric fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43, 143-158.
  • Hucho, W.-H. (1990). Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Butterworth-Heinemann, London, England.
  • İleri, M. S. (2023). Tarım Makineleri Endüstrisi Sektör İstatistikleri Raporu. Retrieved from Ankara, Türkiye: https://tarmakbir.org/wp-content/uploads/2023/02/tarmekstat022023sum.pdf
  • Jacuzzi, E., & Granlund, K. (2019). Passive flow control for drag reduction in vehicle platoons. Journal of Wind Engineering and Industrial Aerodynamics, 189, 104-117.
  • Karakulak, S. S., & Yetkin, E. (2020). Agricultural Tractor Cabin Safety Analysis and Test Correlation. International Journal of Automotive Science And Technology, 4(1), 1-9.
  • Kumar, A., Mahajan, A., Prasanth, S., Darekar, S., Chellan, J., Kumar, K. A., & Kumar, J. K. R. (2015). Agricultural tractor cabin structure design for durability and rollover protective structure test (0148-7191). Retrieved from
  • Martini, H., Bergqvist, B., Hjelm, L., & Löfdahl, L. (2011). Influence of different truck and trailer combinations on the aerodynamic drag (0148-7191). Retrieved from
  • Mattetti, M., Maraldi, M., Lenzini, N., Fiorati, S., Sereni, E., & Molari, G. (2021). Outlining the mission profile of agricultural tractors through CAN-BUS data analytics. Computers and Electronics in Agriculture, 184, 106078.
  • McAuliffe, B. (2015). Improving the aerodynamic efficiency of heavy duty vehicles: Wind tunnel test results of trailer-based drag-reduction technologies. Report, National Research Council Canada. Aerospace, 1-87.
  • Mederle, M., Urban, A., Fischer, H., Hufnagel, U., & Bernhardt, H. (2015). Optimization potential of a standard tractor in road transportation. landtechnik, 70(5), 194-202.
  • Modi, V., Hill, S. S., & Yokomizo, T. (1995). Drag reduction of trucks through boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics, 54, 583-594.
  • Oh, J., Choi, K., Son, G.-h., Park, Y.-J., Kang, Y.-S., & Kim, Y.-J. (2020). Flow analysis inside tractor cabin for determining air conditioner vent location. Computers and Electronics in Agriculture, 169, 105199.
  • Palanivendhan, M., Chandradass, J., Saravanan, C., Philip, J., & Sharan, R. (2021). Reduction in aerodynamic drag acting on a commercial vehicle by using a dimpled surface. Materials Today: Proceedings, 45, 7072-7078.
  • Patidar, A., Gupta, U., & Bansal, A. (2015). Fuel Efficiency Improvement of Commercial Vehicle by Investigating Drag Resistance (0148-7191). Retrieved from SAE Technical Paper, 2015-01-2893, India:
  • Peng, J., Wang, T., Yang, T., Sun, X., & Li, G. (2018). Research on the aerodynamic characteristics of tractor-trailers with a parametric cab design. Applied Sciences, 8(5), 791.
  • Saleh, Z., & Ali, A. (2020). Numerical Investigation of Drag Reduction Techniques in a Car Model. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Sivaraj, G., Parammasivam, K., & Suganya, G. (2018). Reduction of aerodynamic drag force for reducing fuel consumption in road vehicle using basebleed. Journal of Applied Fluid Mechanics, 11(6), 1489-1495.
  • Urquhart, M., Varney, M., Sebben, S., & Passmore, M. (2020). Aerodynamic drag improvements on a square-back vehicle at yaw using a tapered cavity and asymmetric flaps. International Journal of Heat and Fluid Flow, 86, 108737.
  • Van Raemdonck, G. M., & Van Tooren, M. J. (2008). Design of an Aerodynamic Aid for the Underbody of a Trailer within a Tractor-Trailer Combination. Paper presented at the BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications, Milano, Italy.
  • Vignesh, S., Gangad, V. S., Jishnu, V., Krishna, A., & Mukkamala, Y. S. (2019). Windscreen angle and Hood inclination optimization for drag reduction in cars. Procedia Manufacturing, 30, 685-692.
  • Wong, J. Y. (2008). Theory of ground vehicles (4th ed.). John Wiley & Sons, Inc.: Hoboken, New Jersey. Wood, R. M., & Bauer, S. X. (2003). Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks. SAE transactions, 143-160.
  • Xu, F., Schillinger, D., Kamensky, D., Varduhn, V., Wang, C., & Hsu, M.-C. (2016). The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries. Computers & Fluids, 141, 135-154.
  • Zheng, E., Zhong, X., Zhu, R., Xue, J., Cui, S., Gao, H., & Lin, X. (2019). Investigation into the vibration characteristics of agricultural wheeled tractor-implement system with hydro-pneumatic suspension on the front axle. Biosystems Engineering, 186, 14-33.

EXPERIMENTAL INVESTIGATION OF USER COMPARTMENT STRUCTURE IN TERMS OF AIR FLOW RESISTANCE FOR ON ROAD TRANSPORTATION WITH AGRICULTURAL TRACTORS

Yıl 2023, , 694 - 706, 03.09.2023
https://doi.org/10.17780/ksujes.1288107

Öz

In this study, the air flow resistance acting on scaled agricultural tractor models using a wind tunnel was determined experimentally. Tractor models have the same shape, but three different designs were tried on the operator platform section. These are the platform surrounded by the cab, the sunshade platform and the platform with the protection bar to protect the user in case of overturning. Thus, depending on the design of the user section, the air resistance changes that the tractors are exposed to in on-road transportation are determined experimentally for the first time. Tractor models used in the wind tunnel were prepared in a ratio of 1:13 according to geometric similarity principles. In wind tunnel tests, kinematic and dynamic similarity cannot be achieved, but Reynolds number independence can be obtained. A Reynolds number range was surveyed by performing experiments at different air velocities in the wind tunnel air flow rate range. In this range, the aerodynamic resistance forces acting on the models and the air flow-induced pressure distributions in the symmetry axis of the tractors were measured. Dimensionless aerodynamic drag coefficient and pressure coefficient values were calculated from the measurements obtained. According to the calculations, the use of the cabin increases the aerodynamic resistance in the range of 3-15%. While the percentage of resistance increase due to cabin usage is high at low speeds, it decreases at high speeds. As a result of the use of the cabin, the tractor front projection area perpendicular to the flow increases. However, the increase in aerodynamic drag is one order lower than the increase in the frontal projection area. Considering the benefits of cabin use in terms of occupational safety, it is understood that the increase in aerodynamic resistance due to cabin use is an acceptable cost. It is expected that the results of the study will contribute to the separation of energy consumption in on-road transportation with agricultural tractors.

Proje Numarası

08-M21

Kaynakça

  • Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some salient features of the time-averaged ground vehicle wake. SAE transactions, 473-503.
  • Altıntaş, N. (2015). Eskişehir İli Tarım İşletmelerinde Traktör Kullanımının Ekonomik Analizi. (Doktora Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Anonim. (2022). Tarım Makine Sanayi Etkileşimi Raporu. Retrieved from Ankara, Türkiye: https://tarmakbir.org/raporlar/
  • Bauskar, M. P., Dhande, D. Y., Vadgeri, S., & Patil, S. R. (2019). Study of aerodynamic drag of sports utility vehicle by experimental and numerical method. Materials Today: Proceedings, 16, 750-757.
  • Bayındırlı, C. (2015). Çekici ve Çekici Römork Kombinasyonlarında Aerodinamik Dirençlerin İncelenmesi. (Doktora Tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Bayındırlı, C., Çelik, M., & Demiralp, M. (2018). Bir otobüs modeli etrafındaki akış yapısının CFD yöntemi ile incelenmesi ve sürükleme kuvvetinin pasif akış kontrol yöntemi ile iyileştirilmesi. Politeknik Dergisi, 21(4), 785-795.
  • Biswas, K., Gadekar, G., & Chalipat, S. (2019). Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool (0148-7191). Retrieved from India:
  • Canli, E., Kucuksariyildiz, H., & Carman, K. (2022). Impact assessment of new generation high-speed agricultural tractor aerodynamics on transportation fuel consumption and related phenomena. Environmental Science and Pollution Research, 30, 6658-6680.
  • Chilbule, C., Upadhyay, A., & Mukkamala, Y. (2014). Analyzing the profile modification of truck-trailer to prune the aerodynamic drag and its repercussion on fuel consumption. Procedia Engineering, 97, 1208-1219.
  • Chowdhury, H., Juwono, R., Zaid, M., Islam, R., Loganathan, B., & Alam, F. (2019). An experimental study on of the effect of various deflectors used for light trucks in Indian subcontinent. Energy Procedia, 160, 34-39.
  • Cogotti, F., Pfadenhauer, M., & Wiegand, T. (2017). Potential of Porsche reference cars for aerodynamic development. Paper presented at the FKFS Conference.
  • Cooper, K. R. (2004). Commercial vehicle aerodynamic drag reduction: historical perspective as a guide. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (pp. 9-28): Springer.
  • Çengel, Y. A., & Cimbala, J. M. (2018). Akışkanlar mekaniği: Temelleri ve uygulamaları (T. Engin Ed. 3 ed. Vol. 3). Palme Yayınevi: Ankara.
  • Dalessio, L., Duncan, B., Chang, C., Gargoloff, J. I., & Tate, E. (2017). Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient. SAE International Journal of Passenger Cars-Mechanical Systems, 10(1), 265-278.
  • Drollinger, R. A. (1987). Heavy duty truck aerodynamics (0148-7191). Retrieved from SAE Technical Paper, No:870001, USA:
  • El Gaouti, Y., Colin, G., Thiam, B., & Mazellier, N. (2021). Online vehicle aerodynamic drag observer with Kalman filters. IFAC-PapersOnLine, 54(2), 51-56.
  • Gulavani, R. A., Chalipat, S., Dighe, A., & Anwar, F. (2019). External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment (0148-7191).
  • Hol, P. A., & Agrewale, M. R. (2019). Aerodynamic analysis of passenger car with luggage carrier (roof rack) (0148-7191). Retrieved from SAE Technical Paper, 2019-26-0067, India:
  • Holman, J. P. (2011). Experimental methods for engineers (8 th ed.). The McGraw-Hill Companies, Inc. : Americas, New York.
  • Hsu, M.-C., Wang, C., Xu, F., Herrema, A. J., & Krishnamurthy, A. (2016). Direct immersogeometric fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43, 143-158.
  • Hucho, W.-H. (1990). Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Butterworth-Heinemann, London, England.
  • İleri, M. S. (2023). Tarım Makineleri Endüstrisi Sektör İstatistikleri Raporu. Retrieved from Ankara, Türkiye: https://tarmakbir.org/wp-content/uploads/2023/02/tarmekstat022023sum.pdf
  • Jacuzzi, E., & Granlund, K. (2019). Passive flow control for drag reduction in vehicle platoons. Journal of Wind Engineering and Industrial Aerodynamics, 189, 104-117.
  • Karakulak, S. S., & Yetkin, E. (2020). Agricultural Tractor Cabin Safety Analysis and Test Correlation. International Journal of Automotive Science And Technology, 4(1), 1-9.
  • Kumar, A., Mahajan, A., Prasanth, S., Darekar, S., Chellan, J., Kumar, K. A., & Kumar, J. K. R. (2015). Agricultural tractor cabin structure design for durability and rollover protective structure test (0148-7191). Retrieved from
  • Martini, H., Bergqvist, B., Hjelm, L., & Löfdahl, L. (2011). Influence of different truck and trailer combinations on the aerodynamic drag (0148-7191). Retrieved from
  • Mattetti, M., Maraldi, M., Lenzini, N., Fiorati, S., Sereni, E., & Molari, G. (2021). Outlining the mission profile of agricultural tractors through CAN-BUS data analytics. Computers and Electronics in Agriculture, 184, 106078.
  • McAuliffe, B. (2015). Improving the aerodynamic efficiency of heavy duty vehicles: Wind tunnel test results of trailer-based drag-reduction technologies. Report, National Research Council Canada. Aerospace, 1-87.
  • Mederle, M., Urban, A., Fischer, H., Hufnagel, U., & Bernhardt, H. (2015). Optimization potential of a standard tractor in road transportation. landtechnik, 70(5), 194-202.
  • Modi, V., Hill, S. S., & Yokomizo, T. (1995). Drag reduction of trucks through boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics, 54, 583-594.
  • Oh, J., Choi, K., Son, G.-h., Park, Y.-J., Kang, Y.-S., & Kim, Y.-J. (2020). Flow analysis inside tractor cabin for determining air conditioner vent location. Computers and Electronics in Agriculture, 169, 105199.
  • Palanivendhan, M., Chandradass, J., Saravanan, C., Philip, J., & Sharan, R. (2021). Reduction in aerodynamic drag acting on a commercial vehicle by using a dimpled surface. Materials Today: Proceedings, 45, 7072-7078.
  • Patidar, A., Gupta, U., & Bansal, A. (2015). Fuel Efficiency Improvement of Commercial Vehicle by Investigating Drag Resistance (0148-7191). Retrieved from SAE Technical Paper, 2015-01-2893, India:
  • Peng, J., Wang, T., Yang, T., Sun, X., & Li, G. (2018). Research on the aerodynamic characteristics of tractor-trailers with a parametric cab design. Applied Sciences, 8(5), 791.
  • Saleh, Z., & Ali, A. (2020). Numerical Investigation of Drag Reduction Techniques in a Car Model. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Sivaraj, G., Parammasivam, K., & Suganya, G. (2018). Reduction of aerodynamic drag force for reducing fuel consumption in road vehicle using basebleed. Journal of Applied Fluid Mechanics, 11(6), 1489-1495.
  • Urquhart, M., Varney, M., Sebben, S., & Passmore, M. (2020). Aerodynamic drag improvements on a square-back vehicle at yaw using a tapered cavity and asymmetric flaps. International Journal of Heat and Fluid Flow, 86, 108737.
  • Van Raemdonck, G. M., & Van Tooren, M. J. (2008). Design of an Aerodynamic Aid for the Underbody of a Trailer within a Tractor-Trailer Combination. Paper presented at the BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications, Milano, Italy.
  • Vignesh, S., Gangad, V. S., Jishnu, V., Krishna, A., & Mukkamala, Y. S. (2019). Windscreen angle and Hood inclination optimization for drag reduction in cars. Procedia Manufacturing, 30, 685-692.
  • Wong, J. Y. (2008). Theory of ground vehicles (4th ed.). John Wiley & Sons, Inc.: Hoboken, New Jersey. Wood, R. M., & Bauer, S. X. (2003). Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks. SAE transactions, 143-160.
  • Xu, F., Schillinger, D., Kamensky, D., Varduhn, V., Wang, C., & Hsu, M.-C. (2016). The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries. Computers & Fluids, 141, 135-154.
  • Zheng, E., Zhong, X., Zhu, R., Xue, J., Cui, S., Gao, H., & Lin, X. (2019). Investigation into the vibration characteristics of agricultural wheeled tractor-implement system with hydro-pneumatic suspension on the front axle. Biosystems Engineering, 186, 14-33.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Hanifi Küçüksarıyıldız 0000-0001-5218-3409

Osman Babayiğit 0000-0003-3788-7787

Eyüb Canlı 0000-0002-9358-1603

Kazım Çarman 0000-0002-9860-7403

Proje Numarası 08-M21
Yayımlanma Tarihi 3 Eylül 2023
Gönderilme Tarihi 26 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Küçüksarıyıldız, H., Babayiğit, O., Canlı, E., Çarman, K. (2023). TARIMSAL TRAKTÖRLERLE YAPILAN YOL İÇİ TAŞIMACILIKTA KULLANICI BÖLÜMÜ YAPISININ HAVA AKIŞI DİRENCİ AÇISINDAN DENEYSEL İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 694-706. https://doi.org/10.17780/ksujes.1288107