Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATING CUTTING FORCE AND CUTTING POWER WHEN TURNING AA6082-T4 ALLOY AT CUTTING DEPTHS SMALLER THAN TOOL NOSE RADIUS

Yıl 2023, , 972 - 982, 03.12.2023
https://doi.org/10.17780/ksujes.1339021

Öz

Aluminum alloys are widely preferred engineering materials in the manufacturing industry due to their high formability, good mechanical strength, and low density. Machining problems in aluminum alloys include built-up-edge formation, chip rupturing, and low surface quality, particularly in the 6xxx series due to the high Si content in the machining area. The aim of this study was to investigate the influence of cutting depth smaller than the tool corner radius, and various cutting parameters on cutting force and cutting power in machining AA6082-T4 alloy. In this context, the Johnson-Cook material model was established for AA6082-T4 alloy, and machining behaviors in terms of cutting force, and cutting power were investigated by performing finite element method (FEM) analyses using a full factorial design and variance analyses with different machining parameters. In conclusion, the lowest cutting forces were achieved with a cutting depth of 0.3 mm and a feed of 0.1 mm/rev, and the lowest cutting power was obtained with a cutting speed of 300 m/min, a cutting depth of 0.3 mm, and a feed of 0.1 mm/rev. In addition, the most effective machining parameters have been determined as cutting depth with a ratio of 91.74% for cutting force and cutting speed with a ratio of 33.13% for cutting power based on the results of variance and regression analysis.

Kaynakça

  • AdvantEdge. (2015). AdvantEdge 7.1 User’s Manual. Minneapolis, USA: Third Wave Systems.
  • Bolar, G., Das, A., & Joshi, S. N. (2018). Measurement and analysis of cutting force and product surface quality during end-milling of thin-wall components. Measurement, 121, 190-204.
  • Børvik, T., Olovsson, L., Dey, S., & Langseth, M. (2011). Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. International Journal of Impact Engineering, 38(7), 577-589.
  • Campatelli, G., & Scippa, A. (2012). Prediction of milling cutting force coefficients for Aluminum 6082-T4. Procedia CirP, 1, 563-568.
  • Chandrasekaran, V. V., & Payton, L. N. (15-21 November 2013). Comparison orthogonal tube turning data versus finite element simulation using LS Dyna. Paper presented at the ASME International Mechanical Engineering Congress and Exposition, California, USA.
  • Ciftci, I. (2006). Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International, 39(6), 565-569. doi:https://doi.org/10.1016/j.triboint.2005.05.005
  • Çiftçi, İ., & Gökçe, H. (2019). Molibden alaşımlarının işlenmesinde kesici takım ve kesme parametrelerinin Taguchi Metodu ile optimizasyonu. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1).
  • Dandekar, C. R., Shin, Y. C., & Barnes, J. (2010). Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 50(2), 174-182.
  • Davim, J. P., Maranhao, C., Jackson, M., Cabral, G., & Gracio, J. (2008). FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. The International Journal of Advanced Manufacturing Technology, 39(11-12), 1093-1100.
  • Davim, J. P., Reis, P., Maranhao, C., Jackson, M., Cabral, G., & Gracio, J. (2010). Finite element simulation and experimental analysis of orthogonal cutting of an aluminium alloy using polycrystalline diamond tools. International Journal of Materials and Product Technology, 37(1-2), 46-59.
  • Davoudinejad, A., Doagou-Rad, S., & Tosello, G. (2018). A finite element modeling prediction in high precision milling process of aluminum 6082-T6. Nanomanufacturing and Metrology, 1(4), 236-247.
  • DTS. Diamond Indexable Inserts. Retrieved from https://en.diamond-toolingsystems.com/wp-content/uploads/2021/11/01_Diamond-Inserts-Catalog_DTSGmbH.pdf
  • El-Danaf, E. A., AlMajid, A. A., & Soliman, M. S. (2008). Hot deformation of AA6082-T4 aluminum alloy. Journal of materials science, 43(18), 6324-6330.
  • Eurocode. (2007). 9: Design of Aluminium Structures-Part 1-1: General Structural Rules. European Committee for Standardization. In. Brussels, Belgium: CEN, EN 1999-1-1: 2007.
  • Gao, G., Wu, B., Zhang, D., & Luo, M. (2013). Mechanistic identification of cutting force coefficients in bull-nose milling process. Chinese Journal of Aeronautics, 26(3), 823-830.
  • Gurusamy, M., & Sriram, S. (2022). Investigations on the Choice of Johnson–Cook Constitutive Model Parameters for the Orthogonal Cutting Simulation of Inconel 718. Journal of Advanced Manufacturing Systems, 1-25.
  • Gürbüz, H., Kafkas, F., & Şeker, U. (2012). AISI 316L eçeliğinin işlenmesinde kesici takım kesici kenar formu ve talaş kırıcı formlarının kesme kuvvetleri ve yüzey pürüzlülüğü üzerine etkisi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 1(2), 173-184.
  • Gürbüz, H., Şeker, U., & Kafkas, F. (2020). Effects of cutting tool forms on the surface integrity in turning of AISI 316L stainless steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 225-240. doi:https://doi.org/10.17341/gazimmfd.454386
  • Hasçelik, A., & Aslantaş, K. (2021). Mikro Tornalama İşleminde Kesici Takım Burun Yarıçapının Kesme Kuvvetlerine Etkisi. Journal of Materials and Mechatronics: A, 2(1), 13-25.
  • Hazir, E., Erdinler, E. S., & Koc, K. H. (2018). Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function. Journal of Forestry Research, 29(5), 1423-1434.
  • Jaspers, S., & Dautzenberg, J. (2002). Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. Journal of Materials Processing Technology, 122(2-3), 322-330.
  • Karahan, B., İnce, U., Yurtdaş, S., Kılınçdemir, N. E., Ağarer, F. C., & Kılıçaslan, C. (29-30 September 2017). On the Cold Forging of 6082 H13 and T4 Aluminum Alloy Bushes. Paper presented at the 5th International Symposium on Innovative Technologies in Engineering and Science, Baku, Azerbaijan.
  • Kumar, S. L. (2018). Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm. Measurement, 124, 386-394.
  • Mamedov, A., & Lazoglu, I. (2013). Machining forces and tool deflections in micro milling. Procedia CirP, 8, 147-151.
  • Mazzolani, F. (1994). Aluminium alloy structures. London, UK: CRC Press.
  • Ozlu, B., & Ugur, L. (2021). Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis. Journal of Engineering Research and Applied Science, 10(2), 1789-1795.
  • Rao, B., Dandekar, C. R., & Shin, Y. C. (2011). An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 211(2), 294-304.
  • Shetty, R., Kumar, S., Mallagi, R., & Keni, L. (2021). L 1 6 Orthogonal Array-Based Three-Dimensional Finite Element Modeling for Cutting Force and Chip Formation Analysis During Dry Machining of Ti–6Al–4V. Journal of Advanced Manufacturing Systems, 20(01), 123-134.
  • Spigarelli, S., Evangelista, E., & McQueen, H. (2003). Study of hot workability of a heat treated AA6082 aluminum alloy. Scripta Materialia, 49(2), 179-183.
  • Stanojković, J., & Radovanović, M. (2017). Selection of solid carbide end mill for machining aluminum 6082-T4 using mcdm method. University Politehnica of Bucharest Scientific Bulletin Series D, 79(1), 175-184.
  • Torić, N., Brnić, J., Boko, I., Brčić, M., Burgess, I. W., & Uzelac, I. (2017). Experimental analysis of the behaviour of aluminium alloy EN 6082AW T6 at high temperature. Metals, 7(4), 126.
  • Uğur, L. (2022). A Numerical and Statistical Approach of Drilling Performance on Machining of Ti-6Al-4V Alloy. Surface Review and Letters, 29(12), 2250168-2250137.
  • Uğur, L., Kazan, H., & Özlü, B. (2022). Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. İmalat Teknolojileri ve Uygulamaları, 3(3), 55-61.
  • Yadav, R. N. (2021). Statistical and Intelligent Techniques for Modeling and Optimization of Duplex Turning for Aerospace Material. Journal of Advanced Manufacturing Systems, 20(02), 341-367.
  • Yağmur, S., Kaya, M., & Şeker, U. (7-9 Kasım 2019). PCD Takımlarda Farklı Talaş Kırıcı Formlarının AA6082 T4 Alaşımının Yüzey Pürüzlülüğüne Etkisi. Paper presented at the 10th International Congress on Machining, Antalya, Turkey.
  • Yağmur, S., Kaya, M. K., & Şeker, U. (2021). AA-6082 T4 Alaşımının Tornalamasında Çok Kristalli Elmas (ÇKE) Takımlara Uygulanan Talaş Kırıcı Formlarının Kesme Kuvvetleri Üzerindeki Etkilerinin Araştırılması. Gazi Mühendislik Bilimleri Dergisi, 7(1), 51-57.
  • Yılmaz, V., Dilipak, H., Sarıkaya, M., Yılmaz, C. Y., & Özdemir, M. (2014). Frezeleme işlemlerinde kesme kuvveti, titreşim ve yüzey pürüzlülüğü sonuçlarının modellenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(4), 220-226.
  • Zhao, J., Ai, X., & Li, Z. L. (2006). Finite element analysis of cutting forces in high speed machining. Paper presented at the Materials Science Forum, Switzerland.

AA6082-T4 ALAŞIMININ TAKIM BURUN YARIÇAPINDAN DAHA KÜÇÜK KESME DERİNLİKLERİNDE TORNALANMASINDA KESME KUVVETİ VE KESME GÜCÜNÜN ARAŞTIRILMASI

Yıl 2023, , 972 - 982, 03.12.2023
https://doi.org/10.17780/ksujes.1339021

Öz

Alüminyum alaşımlar, düşük özgül ağırlık, iyi mekanik dayanım, yüksek şekillenebilme kabiliyeti vb. özelliklere sahip olmaları sebebiyle endüstride çok tercih edilen mühendislik malzemeleri arasındadır. Alüminyum alaşımların genelinde yığıntı talaş oluşumu ve 6xxx serisi için ise Si içeriği sebebiyle talaş kaldırma bölgesinde yırtılma ve kötü yüzey kalitesi problemleri, işleme sorunları olarak bilinmektedir. Bu çalışmada, AA6082-T4 alaşım için takım uç yarıçapından daha küçük kesme derinlikleri ve farklı işleme parametrelerinin kesme kuvveti ve kesme gücü üzerindeki etkilerine odaklanılmıştır. Bu kapsamda, AA6082-T4 alaşım için Johnson-Cook malzeme modeli kurulmuş ve farklı işleme parametreleri ile tam faktöriyel olarak sonlu eleman metodu (FEM) ve varyans analizleri yapılarak kesme kuvveti ve kesme gücü açılarından işleme davranışları incelenmiştir. Sonuç olarak; 0,3 mm kesme derinliği ve 0,1 mm/dev ilerleme miktarında en düşük kesme kuvvetleri, 300 m/dk kesme hızı, 0,3 mm kesme derinliği ve 0,1 mm/dev ilerleme miktarında ise en düşük kesme gücü elde edilmiştir. Buna ek olarak en etkili işleme parametrelerinin, kesme kuvveti için %91,74 oranla kesme derinliği ve kesme gücü için %33,13 oranla kesme hızı olduğu sonuçlarına ulaşılmıştır.

Kaynakça

  • AdvantEdge. (2015). AdvantEdge 7.1 User’s Manual. Minneapolis, USA: Third Wave Systems.
  • Bolar, G., Das, A., & Joshi, S. N. (2018). Measurement and analysis of cutting force and product surface quality during end-milling of thin-wall components. Measurement, 121, 190-204.
  • Børvik, T., Olovsson, L., Dey, S., & Langseth, M. (2011). Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. International Journal of Impact Engineering, 38(7), 577-589.
  • Campatelli, G., & Scippa, A. (2012). Prediction of milling cutting force coefficients for Aluminum 6082-T4. Procedia CirP, 1, 563-568.
  • Chandrasekaran, V. V., & Payton, L. N. (15-21 November 2013). Comparison orthogonal tube turning data versus finite element simulation using LS Dyna. Paper presented at the ASME International Mechanical Engineering Congress and Exposition, California, USA.
  • Ciftci, I. (2006). Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International, 39(6), 565-569. doi:https://doi.org/10.1016/j.triboint.2005.05.005
  • Çiftçi, İ., & Gökçe, H. (2019). Molibden alaşımlarının işlenmesinde kesici takım ve kesme parametrelerinin Taguchi Metodu ile optimizasyonu. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1).
  • Dandekar, C. R., Shin, Y. C., & Barnes, J. (2010). Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 50(2), 174-182.
  • Davim, J. P., Maranhao, C., Jackson, M., Cabral, G., & Gracio, J. (2008). FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. The International Journal of Advanced Manufacturing Technology, 39(11-12), 1093-1100.
  • Davim, J. P., Reis, P., Maranhao, C., Jackson, M., Cabral, G., & Gracio, J. (2010). Finite element simulation and experimental analysis of orthogonal cutting of an aluminium alloy using polycrystalline diamond tools. International Journal of Materials and Product Technology, 37(1-2), 46-59.
  • Davoudinejad, A., Doagou-Rad, S., & Tosello, G. (2018). A finite element modeling prediction in high precision milling process of aluminum 6082-T6. Nanomanufacturing and Metrology, 1(4), 236-247.
  • DTS. Diamond Indexable Inserts. Retrieved from https://en.diamond-toolingsystems.com/wp-content/uploads/2021/11/01_Diamond-Inserts-Catalog_DTSGmbH.pdf
  • El-Danaf, E. A., AlMajid, A. A., & Soliman, M. S. (2008). Hot deformation of AA6082-T4 aluminum alloy. Journal of materials science, 43(18), 6324-6330.
  • Eurocode. (2007). 9: Design of Aluminium Structures-Part 1-1: General Structural Rules. European Committee for Standardization. In. Brussels, Belgium: CEN, EN 1999-1-1: 2007.
  • Gao, G., Wu, B., Zhang, D., & Luo, M. (2013). Mechanistic identification of cutting force coefficients in bull-nose milling process. Chinese Journal of Aeronautics, 26(3), 823-830.
  • Gurusamy, M., & Sriram, S. (2022). Investigations on the Choice of Johnson–Cook Constitutive Model Parameters for the Orthogonal Cutting Simulation of Inconel 718. Journal of Advanced Manufacturing Systems, 1-25.
  • Gürbüz, H., Kafkas, F., & Şeker, U. (2012). AISI 316L eçeliğinin işlenmesinde kesici takım kesici kenar formu ve talaş kırıcı formlarının kesme kuvvetleri ve yüzey pürüzlülüğü üzerine etkisi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 1(2), 173-184.
  • Gürbüz, H., Şeker, U., & Kafkas, F. (2020). Effects of cutting tool forms on the surface integrity in turning of AISI 316L stainless steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 225-240. doi:https://doi.org/10.17341/gazimmfd.454386
  • Hasçelik, A., & Aslantaş, K. (2021). Mikro Tornalama İşleminde Kesici Takım Burun Yarıçapının Kesme Kuvvetlerine Etkisi. Journal of Materials and Mechatronics: A, 2(1), 13-25.
  • Hazir, E., Erdinler, E. S., & Koc, K. H. (2018). Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function. Journal of Forestry Research, 29(5), 1423-1434.
  • Jaspers, S., & Dautzenberg, J. (2002). Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. Journal of Materials Processing Technology, 122(2-3), 322-330.
  • Karahan, B., İnce, U., Yurtdaş, S., Kılınçdemir, N. E., Ağarer, F. C., & Kılıçaslan, C. (29-30 September 2017). On the Cold Forging of 6082 H13 and T4 Aluminum Alloy Bushes. Paper presented at the 5th International Symposium on Innovative Technologies in Engineering and Science, Baku, Azerbaijan.
  • Kumar, S. L. (2018). Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm. Measurement, 124, 386-394.
  • Mamedov, A., & Lazoglu, I. (2013). Machining forces and tool deflections in micro milling. Procedia CirP, 8, 147-151.
  • Mazzolani, F. (1994). Aluminium alloy structures. London, UK: CRC Press.
  • Ozlu, B., & Ugur, L. (2021). Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis. Journal of Engineering Research and Applied Science, 10(2), 1789-1795.
  • Rao, B., Dandekar, C. R., & Shin, Y. C. (2011). An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 211(2), 294-304.
  • Shetty, R., Kumar, S., Mallagi, R., & Keni, L. (2021). L 1 6 Orthogonal Array-Based Three-Dimensional Finite Element Modeling for Cutting Force and Chip Formation Analysis During Dry Machining of Ti–6Al–4V. Journal of Advanced Manufacturing Systems, 20(01), 123-134.
  • Spigarelli, S., Evangelista, E., & McQueen, H. (2003). Study of hot workability of a heat treated AA6082 aluminum alloy. Scripta Materialia, 49(2), 179-183.
  • Stanojković, J., & Radovanović, M. (2017). Selection of solid carbide end mill for machining aluminum 6082-T4 using mcdm method. University Politehnica of Bucharest Scientific Bulletin Series D, 79(1), 175-184.
  • Torić, N., Brnić, J., Boko, I., Brčić, M., Burgess, I. W., & Uzelac, I. (2017). Experimental analysis of the behaviour of aluminium alloy EN 6082AW T6 at high temperature. Metals, 7(4), 126.
  • Uğur, L. (2022). A Numerical and Statistical Approach of Drilling Performance on Machining of Ti-6Al-4V Alloy. Surface Review and Letters, 29(12), 2250168-2250137.
  • Uğur, L., Kazan, H., & Özlü, B. (2022). Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. İmalat Teknolojileri ve Uygulamaları, 3(3), 55-61.
  • Yadav, R. N. (2021). Statistical and Intelligent Techniques for Modeling and Optimization of Duplex Turning for Aerospace Material. Journal of Advanced Manufacturing Systems, 20(02), 341-367.
  • Yağmur, S., Kaya, M., & Şeker, U. (7-9 Kasım 2019). PCD Takımlarda Farklı Talaş Kırıcı Formlarının AA6082 T4 Alaşımının Yüzey Pürüzlülüğüne Etkisi. Paper presented at the 10th International Congress on Machining, Antalya, Turkey.
  • Yağmur, S., Kaya, M. K., & Şeker, U. (2021). AA-6082 T4 Alaşımının Tornalamasında Çok Kristalli Elmas (ÇKE) Takımlara Uygulanan Talaş Kırıcı Formlarının Kesme Kuvvetleri Üzerindeki Etkilerinin Araştırılması. Gazi Mühendislik Bilimleri Dergisi, 7(1), 51-57.
  • Yılmaz, V., Dilipak, H., Sarıkaya, M., Yılmaz, C. Y., & Özdemir, M. (2014). Frezeleme işlemlerinde kesme kuvveti, titreşim ve yüzey pürüzlülüğü sonuçlarının modellenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(4), 220-226.
  • Zhao, J., Ai, X., & Li, Z. L. (2006). Finite element analysis of cutting forces in high speed machining. Paper presented at the Materials Science Forum, Switzerland.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Süreçleri ve Teknolojileri
Bölüm Makine Mühendisliği
Yazarlar

Kutay Aydın 0000-0003-3614-4877

Yayımlanma Tarihi 3 Aralık 2023
Gönderilme Tarihi 7 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aydın, K. (2023). INVESTIGATING CUTTING FORCE AND CUTTING POWER WHEN TURNING AA6082-T4 ALLOY AT CUTTING DEPTHS SMALLER THAN TOOL NOSE RADIUS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 972-982. https://doi.org/10.17780/ksujes.1339021