Araştırma Makalesi
BibTex RIS Kaynak Göster

MANTO PERİDOTİTLERİNDE KISMİ ERGİME VE METAZOMATİZMA ETKİSİ: KIZILDAĞ OFİYOLİTİ ÖRNEĞİ (HATAY, TÜRKİYE)

Yıl 2024, , 908 - 928, 03.09.2024
https://doi.org/10.17780/ksujes.1437482

Öz

Kızıldağ Ofiyoliti GD Anadolu Ofiyolit Kuşağı’nda yer alır ve tabandan tavana doğru manto peridotitleri, mafik/ultramafik kümülatlar, izotropik gabrolar, levha-dayk karmaşığı, plajiyogranitler ve volkanik kayaçlardan oluşmaktadır. Manto peridotitlerinde yapılan detaylı arazi çalışmaları ve petrografik gözlemler neticesinde seçilen örneklerin tüm kayaç ana oksit ve iz ve NTE içerikleri belirlenmiştir. Genellikle harzburjit ve az miktarda dünitten oluşan kayaçlar taneli ve elek dokular sergilemektedir. İlksel üst mantoya bileşimine kıyasla farklı derecelerde tüketilmiş olan kayaçlar; düşük Al2O3, CaO, TiO2 ve yüksek MgO içeriklerine sahiptir. Bazı örneklerde yüksek çekim alanlı elementler ve büyük iyon çaplı elementlerin bir kısmında zenginleşmeler görülmektedir. Arazide peridotitleri kesen ortopiroksenit kanallarının varlığı; petrografik olarak ikincil klinopiroksen oluşukları, kurtçuk şekilli (worm-like) piroksen-spinel simplektitler, olivinlerin spineller içinde kapanımı; jeokimyasal olarak bazı örneklerdeki iz element zenginleşmeleri (Cs, Rb, Ti, Sr, Pb, Ce, Zr/Hf ve Th/La) yiten levhadan türeyen sulu akışkanların ve ergiyiklerin metazomatizmasının bir sonucudur. Sonuç olarak Kızıldağ manto peridotitleri, %20’den fazla oranda tüketilmiş ve yitim zonu ortamını karakterize eden metazomatizma kanıtları gösteren yay önü peridotitleridir. .

Destekleyen Kurum

TÜBİTAK

Proje Numarası

117Y303

Kaynakça

  • Aldanmaz, E., van Hinsbergen, D. J. J., Yıldız-Yüksekol, Ö., Schmidt, M. W., McPhee, P. J., Meisel, T., Güçtekin, A., Mason, P. R. D. (2020). Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: constraints from ophiolites in eastern Mediterranean. Lithos, 360–361, 105438. https://doi.org/10.1016/j.lithos.2020.105438
  • Aldanmaz, E., Schmidt, M. W., Gourgaud, A., & Meisel, T. (2009). Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes. Lithos, 113(3–4), 691–708. https://doi.org/10.1016/j.lithos.2009.03.010https://doi.org/10.1016/j.lithos.2009.03.010
  • Allen, D.E., ve Seyfried, W.E. (2005). REE controls in ultramafic hostedMOR hydrothermal sys- tems: An experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta 69, 675–683. https://doi.org/10.1016/j.gca.2004.07.016
  • Arai, S. (1994). Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113(3), 191–204. https://doi.org/10.1016/0009-2541(94)90066-3
  • Baǧci, U., Parlak, O., & Höck, V. (2008). Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kizildaǧ (Hatay) Ophiolite, southern Turkey. Turkish Journal of Earth Sciences, 17(1), 43–71.
  • Bağci, U., Parlak, O., & Höck, V. (2005). Whole-rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean. Mineralogical Magazine, 69(1), 53–76. https://doi.org/10.1180/0026461056910234
  • Bédard, É., Hébert, R., Guilmette, C., Lesage, G., Wang, C.S., Dostal, J. (2009). Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: evidence for an arc–back-arc origin. Lithos 113,48–67.
  • Bingöl, A. F., Beyarslan, M., Lin, Y.-C., & Lee, H.-Y. (2018). Geochronological and geochemical constraints on the origin of the Southeast Anatolian ophiolites, Turkey. Arabian Journal of Geosciences, 569(11), 1–40. https://doi.org/10.1007/s12517-018-3880-0
  • Birck, J.L., Barman, M.R. ve Capmas, F. (1997). Re-Os isotopic measurements at the femtomole level in natural samples, . Geostand Newsletter, cilt 21, ss. 19-27. doi.org/10.1111/j.1751-908X.1997.tb00528.x
  • Birner, S.K., Warren, J.M., Cottrell, E., Davis, F.A., Kelley, F.A., Fallon, T.J. (2017). Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. J. Petrol. 58, 1755–1780.
  • Chen, C., Su, B.-X., Xiao, Y., Uysal, İ., Lin, W., Chu, Y., Jing, J-J., Sakyi, P. A. (2020). Highly siderophile elements and Os isotope constraints on the genesis of peridotites from the Kızıldağ ophiolite, southern Turkey. Lithos, 368–369, 105583. https://doi.org/10.1016/j.lithos.2020.105583
  • Cohen, A.S. ve Waters, F.G. (1996). Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry, Anal. Chim. Acta, cilt 332, ss. 269-275. doi.org/10.1016/0003-2670(96)00226-7
  • Creaser, R.A., Papanastassiou, D.A. ve Wasserburg, G.J. (1991). Negative thermal ion mass spectrometry of osmium, rhenium, and iridium, Geochim. Cosmochim. Acta, cilt 55, ss. 397-401. doi.org/10.1016/0016-7037(91)90427-7
  • Dick, H.J.B., Bullen, T. (1984). Chromium spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54–76.
  • Dilek, Y., & Furnes, H. (2009). Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113(1–2), 1–20. https://doi.org/10.1016/j.lithos.2009.04.022
  • Dilek, Y., & Morishita, T. (2009). Melt migration and upper mantle evolution during incipient arc construction: Jurassic Eastern Mirdita ophiolite, Albania. Island Arc 18(4), 551–554. https://doi.org/10.1111/j.1440-1738.2009.00692.x
  • Dilek, Y., and Thy, P. (2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos, 113(1–2), 68–87. https://doi.org/10.1016/j.lithos.2009.05.044
  • Dilek, Y. (2006). Collision tectonics of the Mediterranean region: Causes and consequences. Special Paper of the Geological Society of America, 409(May), 1–13. https://doi.org/10.1130/2006.2409(01)
  • Dilek, Y., and Flower, M. F. J. (2003). Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geological Society, London, Special Publications, 218(1), 43–68. https://doi.org/10.1144/GSL.SP.2003.218.01.04
  • Dilek, Y. and Thy, P. (1998). Structure, petrology and seafloor spreading tectonics of the Kızıldağ ophiolite, Turkey, edited by R.A. Mills, K. Harrison (Ed.), Modern Ocean Floor Processes and the Geological Record, London, Geological Society, London, Special Publications, 148, 43–69. doi.org/10.1144/GSL.SP.1998.148.01.04
  • Edwards, S. J. (1995). Boninitic and tholeiitic dykes in the Lewis Hills mantle section of the Bay of Islands ophiolite: implications for magmatism adjacent to a fracture zone in a backarc spreading environment. Canadian Journal of Earth Sciences, 32(12), 2128–2146. https://doi.org/https://doi.org/10.1139/e95-166
  • Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M., Handler, M. R. (1997). A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4), 311–326. https://doi.org/10.1016/S0009-2541(96)00100-3
  • Elderfield, H., and Greaves, M.J. (1982) The rare earth elements in seawater. Nature 296, 214–219. https://doi.org/10.1038/296214a0.
  • Erendil, M. (1984). Petrology and structures of the upper crustal units of the Kızıldağ ophiolite, O. Tekeli, M.C. Göncüoğlu (Ed.), Proceedings of International Symposium on the Geology of the Tauride Belt, Mineral Research and Exploration Institute (MTA) of Turkey Publications (pp. 269–284). Ankara.
  • Feng, G., Yang, J., Niu, X., Liu, F., Qiu, T., Dilek, Y. (2021). Formation processes and tectonic implications of mantle peridotites of the Yushigou ophiolite in the North Qilian Orogenic Belt, NW China. Lithos, 400–401(July), 106430. https://doi.org/10.1016/j.lithos.2021.106430
  • Frisby, C., Bizimis, M., and Mallick, S. (2016). Seawater-derived rare earth element addition to abyssal peridotites during serpentinization. Lithos 248–251, 432–454. https://doi. org/10.1016/j.lithos.2016.01.025
  • Furnes, H., and Safonova, I. (2019). Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geoscience Frontiers, 10(4), 1255–1284. https://doi.org/10.1016/j.gsf.2018.12.007
  • Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., Kress, V.C. (2002). The pMELTS: a re- vision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochem. Geophys. Geosyst. 3.
  • Godard M., Lagabrielle Y., Alard O. Harvey J., 2008. Geo- chemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge. Earth Planet. Sci. Lett., 267: 410-425.
  • Griffin, W. L., O’Reilly, S. Y., Afonso, J. C., Begg, G. C. (2009). The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. Journal of Petrology, 50(7), 1185–1204. https://doi.org/10.1093/petrology/egn033
  • Grove, T.L., Till, C.B., and Krawczynski, M.J. (2012). The role of H2Oin subductionzone magmatism. Annu. Rev. Earth Planet. Sci. 40, 413–439. https://doi.org/10.1146/ annurev-earth-042711-105310.
  • Haase, K.M., Freund, S., Koepke, J., Hauff, F., Erdmann, M. (2015). Melts of sediments in the mantle wedge of the Oman ophiolite. Geology 43, 275–278. https://doi.org/10.1130/ G36451.1.
  • Hart, S. R., and Dnnn, T. (1993). Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology, 113, 1–8. https://doi.org/https://doi.org/10.1007/BF00320827
  • Hart, S. R., and Zindler, A. (1986). In search of a bulk-Earth composition. Chemical Geology, 57(3–4), 247–267. https://doi.org/10.1016/0009-2541(86)90053-7
  • Hellebrand, E., Snow, J. E., Hoppe, P., Hofmann, A. W. (2002). Garnet-field melting and late-stage refertilization in “residual” abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43(12), 2305–2338. https://doi.org/10.1093/petrology/43.12.2305
  • Iizuka, Y., Bellwood, P., Hung, H.C., Dizon, E.Z. (2005). A non-destructive mineralogical study of nephritic artifacts from Itbayat Island, Batanes, Northern Philippines, Journal of Austronesian Studies, cilt 1(1), ss. 80-105
  • Inwood, J., Morris, A., Anderson, M. W., Robertson, A. H. F. (2009). Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: Palaeomagnetic evidence from the Hatay ophiolite (southern Turkey). Earth and Planetary Science Letters, 280(1–4), 105–117. https://doi.org/10.1016/j.epsl.2009.01.021
  • Ishii, T., Robinson, P. T., Maekawa, H., Fiske, R. (1992). Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. In Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.125.129.1992
  • Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. Vanke, H. (1979). The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules, Geochimica et Cosmochimica Acta 11, 2031–2050.
  • Jean, M. M., Shervais, J. W., Choi, S.-H., Mukasa, S. B. (2010). Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study. Contributions to Mineralogy and Petrology, 159(1), 113–136. https://doi.org/10.1007/s00410-009-0419-0
  • Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae, M.O., Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostand. Geoanal. Res. 40, 333–350. https:// doi.org/10.1111/j.1751-908X.2015.00392.x.
  • Johnson, C.M. and Beard, B.L. (1999). Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry, Inter J Mass Spectrom 193, 87–99. doi.org/10.1016/S1387-3806(99)00158-X
  • Johnson K. T. M. and Dick H. J. B. (1992) Open-system melting and temporal and spatial variation of peridotite and basalts at the Atlantis II Fracture Zone. J. Geophys. Res. 97, 9219–9241.
  • Karaoǧlan, F., Parlak, O., Klötzli, U., Thöni, M., Koller, F. (2013). U-Pb and Sm-Nd geochronology of the Kızıldaǧ (Hatay, Turkey) ophiolite: Implications for the timing and duration of suprasubduction zone type oceanic crust formation in the southern Neotethys. Geological Magazine, 150(2), 283–299. https://doi.org/10.1017/S0016756812000477
  • Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M., Dick, H.J.B., 1997. Areview ofmelt migration processes in the adiabatically upwellingmantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. London, A 355 (1723), 283–318.
  • Kelemen, P. B., Dick, H. J. B., and Quick, J. E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358(6388), 635–641. https://doi.org/10.1038/358635a0
  • Kusano, Y., Umino, S., Shinjo, R., Ikei, A., Adachi, Y., Miyashita, S., Arai, S. (2017). Contribution of slab-derived fluid and sedimentary melt in the incipient arc magmas with development of the paleo-arc in the Oman Ophiolite. Chem. Geol. 449, 206–225. https:// doi.org/10.1016/j.chemgeo.2016.12.012.
  • Kusky, T. M., Windley, B. F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., Santosh, M. (2013). Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8billion years of sea floor spreading, subduction, and accretion. Gondwana Research, 24(2), 501–547. https://doi.org/10.1016/j.gr.2013.01.004
  • Lin, K. Y., Wang, K. L., Chung, S. L., Bingöl, A. F., Iizuka, Y., Lee, H. Y. (2020). Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 376–377, 105737. https://doi.org/10.1016/j.lithos.2020.105737
  • Maruyama, S., Liou, J. G., and Terabayashi, M. (1996). Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(6), 485–594. https://doi.org/10.1080/00206819709465347
  • Mercier, J.-C. C and Nicolas, A. (1975). Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16(2), 454–487. https://doi.org/10.1093/petrology/16.2.454
  • MTA. (2002). 1/500000 Türkiye Jeoloji Haritası (M. Genel). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara Niu, Y. (2004). Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. Journal of Petrology, 45(12), 2423–2458. https://doi.org/10.1093/petrology/egh068
  • Niu, Y. (1997). Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. Journal of Petrology, 38(8), 1047–1074. https://doi.org/10.1093/petroj/38.8.1047
  • Orberger, B., Lorandb, J. P., Girardeau, J., Merciera, J. C. C., Pitragool, S. (1995). Petrogenesis of ultramafic rocks and associated chromitites in the Nan Uttaradit ophiolite, Northern Thailand. Lithos 35, 153–182.
  • Pagé, P., Bédard, J.H., and Tremblay, A. (2009). Geochemical variations in a depleted fore-arc mantle: The Ordovician Thetford Mines ophiolite. Lithos, 113, 21–47, doi:10.1016/j.lithos.2009.03.030.
  • Palme, H., and O’Neill, H. S. C. (2014). Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry, 1–39. https://doi.org/10.1016/B978-0-08-095975-7.00201-1
  • Parkinson, I. J., and Pearce, J. A. (1998). Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 39(9), 1577–1618. https://doi.org/10.1093/petroj/39.9.1577
  • Parlak, O., Rizaoǧlu, T., Baǧci, U., Karaoǧlan, F., Höck, V. (2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473(1–2), 173–187. https://doi.org/10.1016/j.tecto.2008.08.002
  • Pearce, J. A., and Robinson, P. T. (2010). The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research 18(1), 60–81. https://doi.org/10.1016/J.GR.2009.12.003
  • Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., Leat, P. T. (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1), 36–53. https://doi.org/10.1007/s004100050572
  • Pearce, J. A., van der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D. W., Parkinson, I. J. (1992). Boninite and harzburgite from leg 125 (Bonin-Mariana Forearc): a case study of magma genesis during the initial stages of subduction. In Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.125.172.1992
  • Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  • Pişkin, O.E., Delaloye, M., Moritz, R., Wagner, J.J. (1990). Geochemistry and geothermometry of the Hatay complex Turkey: implication for genesis of the ophiolite sequence. Pp. 329-337 in: Proceedings of Troodos Ophiolite Symposium (J. Malpas, E. Moores, A. Panayiotou and C. Xenophontos, editors). Geological Survey, Cyprus.
  • Plank, T. (2005). Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944. https://doi. org/10.1093/petrology/egi005.
  • Proenza, J., Gervilla, F., Melgarejo, J. C., Bodinier, J. L. (1999). Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (Eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4), 547–566. https://doi.org/10.2113/gsecongeo.94.4.547
  • Rizeli, M. E. (2020). GD Anadolu Orojenik Kuşağı ofiyolitlerinin manto peridotitleri bileşimleri ve petrolojisi: ana elementi, iz element jeokimyası, mineral kimyası ve Fe, Mg ve Os izotopları. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Rizeli, M. E., Bingöl, A. F., Wang, K., Lee, H. (2023). Abyssal and forearc features of mantle peridotites in the Guleman ophiolite in SE Turkey. Lithos, 436–437, 106958. https://doi.org/10.1016/j.lithos.2022.106958
  • Rizeli, M. E., Beyarslan, M., Wang, K.-L., Bingöl, A. F. (2016). Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): Evidence of a forearc setting. Journal of African Earth Sciences, 123, 392–402. https://doi.org/10.1016/j.jafrearsci.2016.08.013
  • Saccani, E., Dilek, Y., Marroni, M., Pandolfi, L. (2015) Continental margin ophiolites of neotethys: Remnants of ancient Ocean–Continent Transition Zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes, 38, 230–249, doi: 10.18814/epiiugs/2015/v38i4 /82418.
  • Saka, S., Uysal, I., Kapsiotis, A., Bağcı, U., Ersoy, E. Y., Su, B.-X., Seitz, H.-M., Hegner, E. (2019). Petrological characteristics and geochemical compositions of the Neotethyan Mersin ophiolite (southern Turkey): Processes of melt depletion, refertilization, chromitite formation and oceanic crust generation. Journal of Asian Earth Sciences, 176, 281–299. https://doi.org/10.1016/J.JSEAES.2019.01.003
  • Saka, S., Uysal, I., Akmaz, R. M., Kaliwoda, M., Hochleitner, R. (2014). The effects of partial melting, melt-mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozanti-Karsanti ophiolite, southern Turkey. Lithos, 202–203, 300–316. https://doi.org/10.1016/j.lithos.2014.05.027
  • Selçuk, H. (1981). Étude géologique de la partie méridionale du Hatay (Turquie). Thèse de doctorat, Université de Genève, Switzerland
  • Seyler M., Lorand J.-P., Dick H.J.B. Drouin M. (2007). Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N: ODP Hole1274A. Contrib. Mineral. Petrol., 153: 303-319.
  • Shirey, S.B. and Walker, R.J. (1995). Carius tube digestion for low-blank rhenium-osmium analyses, . Anal. Chim. Acta, cilt 67, ss. 2136-2141
  • Snow, J. E., and Dick, H. J. B. (1995). Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), 4219–4235. https://doi.org/10.1016/0016-7037(95)00239-V
  • Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., Whattam, S. (2012). To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4, 469–483
  • Suhr, G., Kelemen, P., and Paulick, H. (2008). Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate ofmelts percolating in peridotite as the lithosphere is intercepted. Geochem. Geophys. Geosyst., 9 (Q03012), 1–23. https://doi.org/10.1029/2007GC001726
  • Takazawa, E., Frey, F. A., Shimizu, N., Obata, M. (2000). Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process? Geochimica et Cosmochimica Acta, 64(4), 695–716. https://doi.org/10.1016/S0016-7037(99)00346-4
  • Tekeli, O., and Erendil, M., 1986. Geology and Petrology of the Kızıldağ Ophiolite (Hatay). Maden Tetk. ve Aram. Derg. 107, 21–37.
  • Tekeli, O., Aksay, A., Urgun, B. M., Işık, A. (1983). Geology of the Aladağ Mountains. In Proceedings of International Symposium on the Geology of the Taurus Belt (eds O. Tekeli & M. C. Göncüoğlu), pp. 143–58. MTA-Ankara, Turkey.
  • Tinkler, C., Wagner, J.J., Delaloye, M., Selçuk, H. (1981). Tectonic history of the Hatay ophiolites (south Turkey) and their interpretation with the Dead Sea rift. Tectonophysics, 72, 23–41. https://doi.org/10.1016/0040-1951(81)90085-8
  • Üner, T. (2020). Multi-stage evolution of forearc mantle peridotites of Kağızman Ophiolite (Ağrı-eastern Anatolia). Journal of African Earth Sciences, 161(April 2019), 103667. https://doi.org/10.1016/j.jafrearsci.2019.103667
  • Uysal, İ., Ersoy, E. Y., Karslı, O., Dilek, Y., Sadıklar, M. B., Ottley, C. J., Tiepolo, M., & Meisel, T. (2012). Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos, 132–133, 50–69. https://doi.org/10.1016/J.LITHOS.2011.11.009
  • Uysal, İ., Kaliwoda, M., Karsli, O., Tarkian, M., Sadiklar, M.B., Ottley, C.J. (2007). Compositional variations as a result of partial melting and melteperidotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Can. Mineral. 45, 1471-1493.
  • van Hinsbergen, D.J.J, Peters, K., Maffione, M., Spakman, W., Guilmette, C., Thieulot, C., Plümper, O., Gürer, D., Brouwer, F.M., Aldanmaz, E., Kaymakci, N. (2015) Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem Geophys Geosyst 16:1771–1785
  • Varfalvy, V., Hébert, R., Bedard, J. H., Laflèche, M. R. (1997). Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain massif, Bay of Islands Ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas. Canadian Mineralogist, 35(2), 543–570. https://doi.org/10.1016/0009-2541(95)00140-9
  • Vernon R.H. (2004). A practical guide to rock microstructure. Cambridge Univ. Press, 606 pp.
  • Völkening, J., Walczyk, T. and Heumann, K.G. (1991). Osmium isotope ratio determinations by negative thermal ionization mass spectrometry, Int. J. Mass Spectrom. Ion Process. cilt 105, ss. 147-159
  • Workman, R. K., and Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
  • Xiong, F., Yang, J., Robinson, P. T., Xu, X., Liu, Z., Zhou, W., Feng, G., Xu, J., Li, J., Niu, X. (2017). High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Reviews, 80, 1020–1041. https://doi.org/10.1016/j.oregeorev.2016.09.009
  • Zhou, M.-F, Robinson, P.T., Malpas, J., Edwards, S.J., Qi, L. (2005): REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J. Petrol. 46, 615–639.
  • Zhou, M. -F., Robinson, P. T., Malpas, J., Li, Z. (1996). Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1), 3–21. https://doi.org/10.1093/petrology/37.1.3

PARTIAL MELTING AND METASOMATISM EFFECTS IN MANTLE PERIDOTITES: THE CASE OF KIZILDAĞ OPHIOLITE (HATAY, TURKEY)

Yıl 2024, , 908 - 928, 03.09.2024
https://doi.org/10.17780/ksujes.1437482

Öz

The Kızıldağ ophiolite is located in the SE Anatolian Ophiolite Belt and composed, from bottom to top, of mantle peridotites, mafic-ultramafic cumulates, isotropic gabbros, sheeted-dyke complex, plagiogranites and volcanic rocks. Based on detailed field studies and petrographic observations in mantle peridotites, selected samples' major oxide, trace, and REE contents were determined for the whole rock. The investigated rocks, generally composed of harzburgite and a small amount of dunite, display granoblastic and mesh textures. Rocks that have been depleted to different degrees compared to the composition of the primordial upper mantle have low Al2O3, CaO, TiO2, and high MgO contents. Enrichments in high-field strength elements and large ion lithophile elements are observed in some samples. Presence of orthopyroxenite channels cutting peridotites in the field; petrographically, secondary clinopyroxene formations, worm-like pyroxene-spinel symplectites, olivine inclusions within spinels; geochemically, trace element enrichments (Cs, Rb, Ti, Sr, Pb, Ce, Zr/Hf and Th/La) in some samples are a result of the metasomatism of aqueous fluids and melts derived from the subducted slab. As a result, Kızıldağ mantle peridotites are fore-arc peridotites that have been depleted by more than 20% and show evidence of metasomatism that characterizes the subduction zone environment.

Proje Numarası

117Y303

Kaynakça

  • Aldanmaz, E., van Hinsbergen, D. J. J., Yıldız-Yüksekol, Ö., Schmidt, M. W., McPhee, P. J., Meisel, T., Güçtekin, A., Mason, P. R. D. (2020). Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: constraints from ophiolites in eastern Mediterranean. Lithos, 360–361, 105438. https://doi.org/10.1016/j.lithos.2020.105438
  • Aldanmaz, E., Schmidt, M. W., Gourgaud, A., & Meisel, T. (2009). Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes. Lithos, 113(3–4), 691–708. https://doi.org/10.1016/j.lithos.2009.03.010https://doi.org/10.1016/j.lithos.2009.03.010
  • Allen, D.E., ve Seyfried, W.E. (2005). REE controls in ultramafic hostedMOR hydrothermal sys- tems: An experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta 69, 675–683. https://doi.org/10.1016/j.gca.2004.07.016
  • Arai, S. (1994). Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113(3), 191–204. https://doi.org/10.1016/0009-2541(94)90066-3
  • Baǧci, U., Parlak, O., & Höck, V. (2008). Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kizildaǧ (Hatay) Ophiolite, southern Turkey. Turkish Journal of Earth Sciences, 17(1), 43–71.
  • Bağci, U., Parlak, O., & Höck, V. (2005). Whole-rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean. Mineralogical Magazine, 69(1), 53–76. https://doi.org/10.1180/0026461056910234
  • Bédard, É., Hébert, R., Guilmette, C., Lesage, G., Wang, C.S., Dostal, J. (2009). Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: evidence for an arc–back-arc origin. Lithos 113,48–67.
  • Bingöl, A. F., Beyarslan, M., Lin, Y.-C., & Lee, H.-Y. (2018). Geochronological and geochemical constraints on the origin of the Southeast Anatolian ophiolites, Turkey. Arabian Journal of Geosciences, 569(11), 1–40. https://doi.org/10.1007/s12517-018-3880-0
  • Birck, J.L., Barman, M.R. ve Capmas, F. (1997). Re-Os isotopic measurements at the femtomole level in natural samples, . Geostand Newsletter, cilt 21, ss. 19-27. doi.org/10.1111/j.1751-908X.1997.tb00528.x
  • Birner, S.K., Warren, J.M., Cottrell, E., Davis, F.A., Kelley, F.A., Fallon, T.J. (2017). Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. J. Petrol. 58, 1755–1780.
  • Chen, C., Su, B.-X., Xiao, Y., Uysal, İ., Lin, W., Chu, Y., Jing, J-J., Sakyi, P. A. (2020). Highly siderophile elements and Os isotope constraints on the genesis of peridotites from the Kızıldağ ophiolite, southern Turkey. Lithos, 368–369, 105583. https://doi.org/10.1016/j.lithos.2020.105583
  • Cohen, A.S. ve Waters, F.G. (1996). Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry, Anal. Chim. Acta, cilt 332, ss. 269-275. doi.org/10.1016/0003-2670(96)00226-7
  • Creaser, R.A., Papanastassiou, D.A. ve Wasserburg, G.J. (1991). Negative thermal ion mass spectrometry of osmium, rhenium, and iridium, Geochim. Cosmochim. Acta, cilt 55, ss. 397-401. doi.org/10.1016/0016-7037(91)90427-7
  • Dick, H.J.B., Bullen, T. (1984). Chromium spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54–76.
  • Dilek, Y., & Furnes, H. (2009). Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113(1–2), 1–20. https://doi.org/10.1016/j.lithos.2009.04.022
  • Dilek, Y., & Morishita, T. (2009). Melt migration and upper mantle evolution during incipient arc construction: Jurassic Eastern Mirdita ophiolite, Albania. Island Arc 18(4), 551–554. https://doi.org/10.1111/j.1440-1738.2009.00692.x
  • Dilek, Y., and Thy, P. (2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos, 113(1–2), 68–87. https://doi.org/10.1016/j.lithos.2009.05.044
  • Dilek, Y. (2006). Collision tectonics of the Mediterranean region: Causes and consequences. Special Paper of the Geological Society of America, 409(May), 1–13. https://doi.org/10.1130/2006.2409(01)
  • Dilek, Y., and Flower, M. F. J. (2003). Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geological Society, London, Special Publications, 218(1), 43–68. https://doi.org/10.1144/GSL.SP.2003.218.01.04
  • Dilek, Y. and Thy, P. (1998). Structure, petrology and seafloor spreading tectonics of the Kızıldağ ophiolite, Turkey, edited by R.A. Mills, K. Harrison (Ed.), Modern Ocean Floor Processes and the Geological Record, London, Geological Society, London, Special Publications, 148, 43–69. doi.org/10.1144/GSL.SP.1998.148.01.04
  • Edwards, S. J. (1995). Boninitic and tholeiitic dykes in the Lewis Hills mantle section of the Bay of Islands ophiolite: implications for magmatism adjacent to a fracture zone in a backarc spreading environment. Canadian Journal of Earth Sciences, 32(12), 2128–2146. https://doi.org/https://doi.org/10.1139/e95-166
  • Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M., Handler, M. R. (1997). A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4), 311–326. https://doi.org/10.1016/S0009-2541(96)00100-3
  • Elderfield, H., and Greaves, M.J. (1982) The rare earth elements in seawater. Nature 296, 214–219. https://doi.org/10.1038/296214a0.
  • Erendil, M. (1984). Petrology and structures of the upper crustal units of the Kızıldağ ophiolite, O. Tekeli, M.C. Göncüoğlu (Ed.), Proceedings of International Symposium on the Geology of the Tauride Belt, Mineral Research and Exploration Institute (MTA) of Turkey Publications (pp. 269–284). Ankara.
  • Feng, G., Yang, J., Niu, X., Liu, F., Qiu, T., Dilek, Y. (2021). Formation processes and tectonic implications of mantle peridotites of the Yushigou ophiolite in the North Qilian Orogenic Belt, NW China. Lithos, 400–401(July), 106430. https://doi.org/10.1016/j.lithos.2021.106430
  • Frisby, C., Bizimis, M., and Mallick, S. (2016). Seawater-derived rare earth element addition to abyssal peridotites during serpentinization. Lithos 248–251, 432–454. https://doi. org/10.1016/j.lithos.2016.01.025
  • Furnes, H., and Safonova, I. (2019). Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geoscience Frontiers, 10(4), 1255–1284. https://doi.org/10.1016/j.gsf.2018.12.007
  • Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., Kress, V.C. (2002). The pMELTS: a re- vision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochem. Geophys. Geosyst. 3.
  • Godard M., Lagabrielle Y., Alard O. Harvey J., 2008. Geo- chemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge. Earth Planet. Sci. Lett., 267: 410-425.
  • Griffin, W. L., O’Reilly, S. Y., Afonso, J. C., Begg, G. C. (2009). The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. Journal of Petrology, 50(7), 1185–1204. https://doi.org/10.1093/petrology/egn033
  • Grove, T.L., Till, C.B., and Krawczynski, M.J. (2012). The role of H2Oin subductionzone magmatism. Annu. Rev. Earth Planet. Sci. 40, 413–439. https://doi.org/10.1146/ annurev-earth-042711-105310.
  • Haase, K.M., Freund, S., Koepke, J., Hauff, F., Erdmann, M. (2015). Melts of sediments in the mantle wedge of the Oman ophiolite. Geology 43, 275–278. https://doi.org/10.1130/ G36451.1.
  • Hart, S. R., and Dnnn, T. (1993). Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology, 113, 1–8. https://doi.org/https://doi.org/10.1007/BF00320827
  • Hart, S. R., and Zindler, A. (1986). In search of a bulk-Earth composition. Chemical Geology, 57(3–4), 247–267. https://doi.org/10.1016/0009-2541(86)90053-7
  • Hellebrand, E., Snow, J. E., Hoppe, P., Hofmann, A. W. (2002). Garnet-field melting and late-stage refertilization in “residual” abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43(12), 2305–2338. https://doi.org/10.1093/petrology/43.12.2305
  • Iizuka, Y., Bellwood, P., Hung, H.C., Dizon, E.Z. (2005). A non-destructive mineralogical study of nephritic artifacts from Itbayat Island, Batanes, Northern Philippines, Journal of Austronesian Studies, cilt 1(1), ss. 80-105
  • Inwood, J., Morris, A., Anderson, M. W., Robertson, A. H. F. (2009). Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: Palaeomagnetic evidence from the Hatay ophiolite (southern Turkey). Earth and Planetary Science Letters, 280(1–4), 105–117. https://doi.org/10.1016/j.epsl.2009.01.021
  • Ishii, T., Robinson, P. T., Maekawa, H., Fiske, R. (1992). Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. In Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.125.129.1992
  • Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. Vanke, H. (1979). The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules, Geochimica et Cosmochimica Acta 11, 2031–2050.
  • Jean, M. M., Shervais, J. W., Choi, S.-H., Mukasa, S. B. (2010). Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study. Contributions to Mineralogy and Petrology, 159(1), 113–136. https://doi.org/10.1007/s00410-009-0419-0
  • Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae, M.O., Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostand. Geoanal. Res. 40, 333–350. https:// doi.org/10.1111/j.1751-908X.2015.00392.x.
  • Johnson, C.M. and Beard, B.L. (1999). Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry, Inter J Mass Spectrom 193, 87–99. doi.org/10.1016/S1387-3806(99)00158-X
  • Johnson K. T. M. and Dick H. J. B. (1992) Open-system melting and temporal and spatial variation of peridotite and basalts at the Atlantis II Fracture Zone. J. Geophys. Res. 97, 9219–9241.
  • Karaoǧlan, F., Parlak, O., Klötzli, U., Thöni, M., Koller, F. (2013). U-Pb and Sm-Nd geochronology of the Kızıldaǧ (Hatay, Turkey) ophiolite: Implications for the timing and duration of suprasubduction zone type oceanic crust formation in the southern Neotethys. Geological Magazine, 150(2), 283–299. https://doi.org/10.1017/S0016756812000477
  • Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M., Dick, H.J.B., 1997. Areview ofmelt migration processes in the adiabatically upwellingmantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. London, A 355 (1723), 283–318.
  • Kelemen, P. B., Dick, H. J. B., and Quick, J. E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358(6388), 635–641. https://doi.org/10.1038/358635a0
  • Kusano, Y., Umino, S., Shinjo, R., Ikei, A., Adachi, Y., Miyashita, S., Arai, S. (2017). Contribution of slab-derived fluid and sedimentary melt in the incipient arc magmas with development of the paleo-arc in the Oman Ophiolite. Chem. Geol. 449, 206–225. https:// doi.org/10.1016/j.chemgeo.2016.12.012.
  • Kusky, T. M., Windley, B. F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., Santosh, M. (2013). Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8billion years of sea floor spreading, subduction, and accretion. Gondwana Research, 24(2), 501–547. https://doi.org/10.1016/j.gr.2013.01.004
  • Lin, K. Y., Wang, K. L., Chung, S. L., Bingöl, A. F., Iizuka, Y., Lee, H. Y. (2020). Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 376–377, 105737. https://doi.org/10.1016/j.lithos.2020.105737
  • Maruyama, S., Liou, J. G., and Terabayashi, M. (1996). Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(6), 485–594. https://doi.org/10.1080/00206819709465347
  • Mercier, J.-C. C and Nicolas, A. (1975). Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16(2), 454–487. https://doi.org/10.1093/petrology/16.2.454
  • MTA. (2002). 1/500000 Türkiye Jeoloji Haritası (M. Genel). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara Niu, Y. (2004). Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. Journal of Petrology, 45(12), 2423–2458. https://doi.org/10.1093/petrology/egh068
  • Niu, Y. (1997). Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. Journal of Petrology, 38(8), 1047–1074. https://doi.org/10.1093/petroj/38.8.1047
  • Orberger, B., Lorandb, J. P., Girardeau, J., Merciera, J. C. C., Pitragool, S. (1995). Petrogenesis of ultramafic rocks and associated chromitites in the Nan Uttaradit ophiolite, Northern Thailand. Lithos 35, 153–182.
  • Pagé, P., Bédard, J.H., and Tremblay, A. (2009). Geochemical variations in a depleted fore-arc mantle: The Ordovician Thetford Mines ophiolite. Lithos, 113, 21–47, doi:10.1016/j.lithos.2009.03.030.
  • Palme, H., and O’Neill, H. S. C. (2014). Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry, 1–39. https://doi.org/10.1016/B978-0-08-095975-7.00201-1
  • Parkinson, I. J., and Pearce, J. A. (1998). Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 39(9), 1577–1618. https://doi.org/10.1093/petroj/39.9.1577
  • Parlak, O., Rizaoǧlu, T., Baǧci, U., Karaoǧlan, F., Höck, V. (2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473(1–2), 173–187. https://doi.org/10.1016/j.tecto.2008.08.002
  • Pearce, J. A., and Robinson, P. T. (2010). The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research 18(1), 60–81. https://doi.org/10.1016/J.GR.2009.12.003
  • Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., Leat, P. T. (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1), 36–53. https://doi.org/10.1007/s004100050572
  • Pearce, J. A., van der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D. W., Parkinson, I. J. (1992). Boninite and harzburgite from leg 125 (Bonin-Mariana Forearc): a case study of magma genesis during the initial stages of subduction. In Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.125.172.1992
  • Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  • Pişkin, O.E., Delaloye, M., Moritz, R., Wagner, J.J. (1990). Geochemistry and geothermometry of the Hatay complex Turkey: implication for genesis of the ophiolite sequence. Pp. 329-337 in: Proceedings of Troodos Ophiolite Symposium (J. Malpas, E. Moores, A. Panayiotou and C. Xenophontos, editors). Geological Survey, Cyprus.
  • Plank, T. (2005). Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944. https://doi. org/10.1093/petrology/egi005.
  • Proenza, J., Gervilla, F., Melgarejo, J. C., Bodinier, J. L. (1999). Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (Eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4), 547–566. https://doi.org/10.2113/gsecongeo.94.4.547
  • Rizeli, M. E. (2020). GD Anadolu Orojenik Kuşağı ofiyolitlerinin manto peridotitleri bileşimleri ve petrolojisi: ana elementi, iz element jeokimyası, mineral kimyası ve Fe, Mg ve Os izotopları. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Rizeli, M. E., Bingöl, A. F., Wang, K., Lee, H. (2023). Abyssal and forearc features of mantle peridotites in the Guleman ophiolite in SE Turkey. Lithos, 436–437, 106958. https://doi.org/10.1016/j.lithos.2022.106958
  • Rizeli, M. E., Beyarslan, M., Wang, K.-L., Bingöl, A. F. (2016). Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): Evidence of a forearc setting. Journal of African Earth Sciences, 123, 392–402. https://doi.org/10.1016/j.jafrearsci.2016.08.013
  • Saccani, E., Dilek, Y., Marroni, M., Pandolfi, L. (2015) Continental margin ophiolites of neotethys: Remnants of ancient Ocean–Continent Transition Zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes, 38, 230–249, doi: 10.18814/epiiugs/2015/v38i4 /82418.
  • Saka, S., Uysal, I., Kapsiotis, A., Bağcı, U., Ersoy, E. Y., Su, B.-X., Seitz, H.-M., Hegner, E. (2019). Petrological characteristics and geochemical compositions of the Neotethyan Mersin ophiolite (southern Turkey): Processes of melt depletion, refertilization, chromitite formation and oceanic crust generation. Journal of Asian Earth Sciences, 176, 281–299. https://doi.org/10.1016/J.JSEAES.2019.01.003
  • Saka, S., Uysal, I., Akmaz, R. M., Kaliwoda, M., Hochleitner, R. (2014). The effects of partial melting, melt-mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozanti-Karsanti ophiolite, southern Turkey. Lithos, 202–203, 300–316. https://doi.org/10.1016/j.lithos.2014.05.027
  • Selçuk, H. (1981). Étude géologique de la partie méridionale du Hatay (Turquie). Thèse de doctorat, Université de Genève, Switzerland
  • Seyler M., Lorand J.-P., Dick H.J.B. Drouin M. (2007). Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N: ODP Hole1274A. Contrib. Mineral. Petrol., 153: 303-319.
  • Shirey, S.B. and Walker, R.J. (1995). Carius tube digestion for low-blank rhenium-osmium analyses, . Anal. Chim. Acta, cilt 67, ss. 2136-2141
  • Snow, J. E., and Dick, H. J. B. (1995). Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), 4219–4235. https://doi.org/10.1016/0016-7037(95)00239-V
  • Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., Whattam, S. (2012). To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4, 469–483
  • Suhr, G., Kelemen, P., and Paulick, H. (2008). Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate ofmelts percolating in peridotite as the lithosphere is intercepted. Geochem. Geophys. Geosyst., 9 (Q03012), 1–23. https://doi.org/10.1029/2007GC001726
  • Takazawa, E., Frey, F. A., Shimizu, N., Obata, M. (2000). Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process? Geochimica et Cosmochimica Acta, 64(4), 695–716. https://doi.org/10.1016/S0016-7037(99)00346-4
  • Tekeli, O., and Erendil, M., 1986. Geology and Petrology of the Kızıldağ Ophiolite (Hatay). Maden Tetk. ve Aram. Derg. 107, 21–37.
  • Tekeli, O., Aksay, A., Urgun, B. M., Işık, A. (1983). Geology of the Aladağ Mountains. In Proceedings of International Symposium on the Geology of the Taurus Belt (eds O. Tekeli & M. C. Göncüoğlu), pp. 143–58. MTA-Ankara, Turkey.
  • Tinkler, C., Wagner, J.J., Delaloye, M., Selçuk, H. (1981). Tectonic history of the Hatay ophiolites (south Turkey) and their interpretation with the Dead Sea rift. Tectonophysics, 72, 23–41. https://doi.org/10.1016/0040-1951(81)90085-8
  • Üner, T. (2020). Multi-stage evolution of forearc mantle peridotites of Kağızman Ophiolite (Ağrı-eastern Anatolia). Journal of African Earth Sciences, 161(April 2019), 103667. https://doi.org/10.1016/j.jafrearsci.2019.103667
  • Uysal, İ., Ersoy, E. Y., Karslı, O., Dilek, Y., Sadıklar, M. B., Ottley, C. J., Tiepolo, M., & Meisel, T. (2012). Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos, 132–133, 50–69. https://doi.org/10.1016/J.LITHOS.2011.11.009
  • Uysal, İ., Kaliwoda, M., Karsli, O., Tarkian, M., Sadiklar, M.B., Ottley, C.J. (2007). Compositional variations as a result of partial melting and melteperidotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Can. Mineral. 45, 1471-1493.
  • van Hinsbergen, D.J.J, Peters, K., Maffione, M., Spakman, W., Guilmette, C., Thieulot, C., Plümper, O., Gürer, D., Brouwer, F.M., Aldanmaz, E., Kaymakci, N. (2015) Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem Geophys Geosyst 16:1771–1785
  • Varfalvy, V., Hébert, R., Bedard, J. H., Laflèche, M. R. (1997). Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain massif, Bay of Islands Ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas. Canadian Mineralogist, 35(2), 543–570. https://doi.org/10.1016/0009-2541(95)00140-9
  • Vernon R.H. (2004). A practical guide to rock microstructure. Cambridge Univ. Press, 606 pp.
  • Völkening, J., Walczyk, T. and Heumann, K.G. (1991). Osmium isotope ratio determinations by negative thermal ionization mass spectrometry, Int. J. Mass Spectrom. Ion Process. cilt 105, ss. 147-159
  • Workman, R. K., and Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
  • Xiong, F., Yang, J., Robinson, P. T., Xu, X., Liu, Z., Zhou, W., Feng, G., Xu, J., Li, J., Niu, X. (2017). High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Reviews, 80, 1020–1041. https://doi.org/10.1016/j.oregeorev.2016.09.009
  • Zhou, M.-F, Robinson, P.T., Malpas, J., Edwards, S.J., Qi, L. (2005): REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J. Petrol. 46, 615–639.
  • Zhou, M. -F., Robinson, P. T., Malpas, J., Li, Z. (1996). Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1), 3–21. https://doi.org/10.1093/petrology/37.1.3
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mineraloji-Petrografi
Bölüm Jeoloji Mühendisliği
Yazarlar

Mustafa Eren Rizeli 0000-0003-3725-3063

A. Feyzi Bingol 0000-0002-1767-1076

Abdullah Sar 0000-0002-9752-7807

Kuo-lung Wang 0000-0002-6447-2168

Proje Numarası 117Y303
Yayımlanma Tarihi 3 Eylül 2024
Gönderilme Tarihi 15 Şubat 2024
Kabul Tarihi 14 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Rizeli, M. E., Bingol, A. F., Sar, A., Wang, K.-l. (2024). MANTO PERİDOTİTLERİNDE KISMİ ERGİME VE METAZOMATİZMA ETKİSİ: KIZILDAĞ OFİYOLİTİ ÖRNEĞİ (HATAY, TÜRKİYE). Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 908-928. https://doi.org/10.17780/ksujes.1437482