Derleme
BibTex RIS Kaynak Göster

TÜRKİYE'DEKİ KARBON KUANTUM NOKTALARI ARAŞTIRMALARININ İNCELENMESİ: BİLİMSEL BİR HARİTALAMA ANALİZİ

Yıl 2024, , 1501 - 1513, 03.12.2024
https://doi.org/10.17780/ksujes.1455022

Öz

Bu çalışmada sunulan bibliyometrik analiz, 2014'ten 2024'e kadar Türkiyede yapılan araştırmalarda "karbon noktaları" ve "karbon kuantum noktaları" ile ilgili geniş kapsamlı katkıları dikkatle inceleyen ayrıntılı ve kapsamlı bir analizdir. Biblioshiny'yi ana analitik araç olarak ve Web of Science veritabanını kullanan bu çalışma, bu alandaki yıllık eğilimleri, bölgesel dağılımları, kurumsal bağları, yazar eğilimlerini ve karmaşık anahtar kelime kümelerini metodik olarak incelemektedir. Çalışmada uluslararası ve yerel atıfların kapsamlı bir analizinin ardından, Türkiye'nin karbon nokta projesi için yıllık %14.72'lik kayda değer bir büyüme oranı tespit edilmiştir. 2014 yılında bir makaleyle başlayan araştırma çıktıları hızla artarak 2024 Mayıs itibarıyla altmış kritik belgeye ulaşmıştır. Bu kapsamlı çalışma, önemli yayın kaynaklarını açıklığa kavuşturuyor; özellikle ChemistrySelect'i ve Floresan'ın yayınlanmasını alana en çok katkıda bulunan iki kaynak olarak vurgulamaktadır. Bu kapsamlı değerlendirme, Türkiye'deki karbon çalışmalarının durumu hakkındaki bilgimize önemli ölçüde katkıda bulunmakta, paha biçilemez öngörüler sağlamakta ve özellikle "karbon noktaları" ile ilgili araştırmacılar ve akademisyenlere sürekli gelişen bu alanda gelecekteki araştırma projeleri için tavsiyelerde bulunmakta ve yön belirlemek için bir rehberlik sağlamaktadır.

Kaynakça

  • Abraham, W. L., Demirci, S., Wypyski, M. S., Ayyala, R. S., Bhethanabotla, V. R., Lawson, L. B., & Sahiner, N. (2022). Biofilm inhibition and bacterial eradication by C-dots derived from polyethyleneimine-citric acid. Colloids and Surfaces B: Biointerfaces, 217, 112704. https://doi.org/10.1016/J.COLSURFB.2022.112704
  • Akbıyık, M. A., Bodur, O. C., Keskin, M., Kara, M., Dinç, S., Arslan, H., Özmen, M., & Arslan, F. (2023). A Sensitive Amperometric Biosensor Based on Carbon Dot 3-Chloropropyl-trimethoxysilane Modified Electrode for Detection of Neurotransmitter Dopamine. Journal of The Electrochemical Society, 170(3), 037517. https://doi.org/10.1149/1945-7111/ACC364
  • Akkurt, F. (2014). Characterisation of azo dye and carbon nanoparticle-doped guest–host liquid crystalline matrix. Liquid Crystals, 41(9), 1269–1276. https://doi.org/10.1080/02678292.2014.915590
  • Alas, M. O., Alkas, F. B., Aktas Sukuroglu, A., Genc Alturk, R., & Battal, D. (2020). Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. Journal of Materials Science 2020 55:31, 55(31), 15074–15105. https://doi.org/10.1007/S10853-020-05054-Y
  • Alaş, M. Ö., Doǧan, G., Yalcin, M. S., Ozdemir, S., & Genç, R. (2022). Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega, 7(34), 29967–29983. https://doi.org/10.1021/ACSOMEGA.2C02984
  • Aslan, M., & Eskalen, H. (2021). A study of carbon nanodots (carbon quantum dots) synthesized from tangerine juice using one-step hydrothermal method. Fullerenes, Nanotubes and Carbon Nanostructures, 29(12), 1026–1033. https://doi.org/10.1080/1536383X.2021.1926452
  • Aslan, M., Eskalen, H., & Kavgaci, M. (2023). Carbon Quantum Dot (CQD) Nanoparticles Synthesized by Sucrose and Urea: Application as Reinforcement Effect on Al–Mg–Cu–Zn Composite. Russian Journal of General Chemistry, 93(8), 2152–2160. https://doi.org/10.1134/S1070363223080236
  • Başkaya, S. K., Tahta, B. ·, Uruş, ·Serhan, Eskalen, ·Hasan, Çeşme, · Mustafa, & Özğan, · Şükrü. (2022). Multifunctional B, N, P, and S-doped fluorescent carbon quantum dot synthesis from pigeon manure: highly effective Hg (II) sensor and fluorescent ink properties. Biomass Conversion and Biorefinery, 1, 1–15. https://doi.org/10.1007/S13399-022-03017-8
  • Bodur, O. C., Dinç, S., Özmen, M., & Arslan, F. (2021). A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot-modified carbon paste electrode. Biotechnology and Applied Biochemistry, 68(1), 20–29. https://doi.org/10.1002/BAB.1886
  • Budak, E., & Ünlü, C. (2021). Boron regulated dual emission in B, N doped graphene quantum dots. Optical Materials, 111, 110577. https://doi.org/10.1016/J.OPTMAT.2020.110577
  • Burcu, B. A. Ç., & Genç, R. (2017). Naked eye and smartphone applicable detection of toxic mercury ions using fluorescent carbon nanodots. Turkish Journal of Chemistry, 41(6), 931–943. https://doi.org/10.3906/kim-1701-46
  • Çeşme, M., & Eskalen, H. (2020). Cumhuriyet Science Journal Green synthesis of carbon quantum dots from sumac: characterization and investigation with cyclic voltammetry technique. Cumhuriyet Sci. J, 41(4), 2587–2680. https://doi.org/10.17776/csj.714200
  • Çeşme, M., Eskalen, H., & Başkaya, S. K. (2022). Fluorescent Carbon Dots from Vegetable and Fruit Wastes and Their Applications. Fruits and Vegetable Wastes, 365–383. https://doi.org/10.1007/978-981-16-9527-8_15
  • Çolak, M.Ö.A., Güngör, A., Akturk, M. B., Erdem, E., & Genç, R. (2023). Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization. Nanoscale. https://doi.org/10.1039/D3NR04893D
  • Dinç, S., & Günhan, R. S. (2020). Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. Turkish Journal of Analytical Chemistry, 2(1), 47–54.
  • Dinc, S., & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products: A Mini-Review. Journal of Apitherapy and Nature/Apiterapi ve Doğa Dergisi, 1(1), 33–37.
  • Dinç, S., Kara, M., & Yavuz, E. (2022). Synthesis of carbon dots from biomass resources. Carbon Dots in Agricultural Systems: Strategies to Enhance Plant Productivity, 69–116. https://doi.org/10.1016/B978-0-323-90260-1.00001-2
  • Eskalen, H. (2020). Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Applied Physics A: Materials Science and Processing, 126(9), 1–10. https://doi.org/10.1007/S00339-020-03906-7
  • Eskalen, H., & Çeşme, M. (2021). Carbon Dots from Turnip Juice: Synthesis, Characterization and Investigation of pH-Dependent Optical Properties. Bilecik Seyh Edebali University Journal of Science, 8(2), 924–930. https://doi.org/10.35193/BSEUFBD.979306
  • Eskalen, H., Kavgacı, M., Kayış, A., & Özğan, Ş. (2021.a). One-Pot Synthesis of Carbon Quantum Dots and Their Application As a Fluorescent Inks. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 22(4), 366–377. https://doi.org/10.18038/estubtda.991595
  • Eskalen, H., Uruş, S., Cömertpay, S., Kurt, A. H., & Özgan, Ş. (2020). Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties. Industrial Crops and Products, 147, 112209. https://doi.org/10.1016/J.INDCROP.2020.112209
  • Eskalen, H., Uruş, S., Kavgacı, M., Kalmış, H. V., & Tahta, B. (2023). Carbon quantum dots derived from pomegranate peel: highly effective Fe(III) sensor. Biomass Conversion and Biorefinery, 1, 1–14. https://doi.org/10.1007/S13399-023-04048-5
  • Eskalen, H., Urus, S., Ozgan, S., Tahta, B., & Sünbül, A. B. (2021.b). Green and One-Pot Synthesis of Mint Derived Carbon Quantum Dots for Metal Ion Sensing. In Materials Research Foundations (Vol. 96, pp. 81–94). Materials Research Forum LLC. https://doi.org/10.21741/9781644901250-3
  • Eskalen, H., Yaykaşlı, H., Kavgacı, M., & Kayış, A. (2022). Investigating the PVA/TiO2/CDs polymer nanocomposites: effect of carbon dots for photocatalytic degradation of Rhodamine B. Journal of Materials Science: Materials in Electronics, 33(7), 4643–4658. https://doi.org/10.1007/S10854-021-07653-0
  • Genc, R., Alas, M. O., Harputlu, E., Repp, S., Kremer, N., Castellano, M., Colak, S. G., Ocakoglu, K., & Erdem, E. (2017). High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots. Scientific Reports 2017 7:1, 7(1), 1–13. https://doi.org/10.1038/s41598-017-11347-1
  • Kavgacı, M., Kalmış, H. V., & Eskalen, H. (2023). Synthesis of Fluorescent Carbon Quantum Dots with Hydrothremal and Solvothermal Method Application for Anticounterfeiting and Encryption. International Journal of Innovative Engineering Applications, 7, 1. https://doi.org/10.46460/ijiea.1182009
  • Korkmaz, U., Özlem, B., Erol, E., Alas, M. Ö., Genç Altürk, R., Çelikbilek Ersundu, M., & Ersundu, A. E. (2023). The coupling of blue emitting carbon dots with Eu3+/Tb3+ co-doped luminescent glasses for utilization in white light emitting diodes. Physical Chemistry Chemical Physics, 25(16), 11452–11463. https://doi.org/10.1039/D3CP00137G
  • Makhija, A., Punia, R., Dahiya, S., Ohlan, A., & Maan, A. S. (2023). Development trends of rare-earth luminescence: A bibliometric analysis. Materials Today: Proceedings, 79, 11–17. https://doi.org/10.1016/J.MATPR.2022.07.424
  • Navidfar, A., Peker, M. I., Budak, E., Unlu, C., & Trabzon, L. (2022). Carbon quantum dots enhanced graphene/carbon nanotubes polyurethane hybrid nanocomposites. Composites Part B: Engineering, 247, 110310. https://doi.org/10.1016/J.COMPOSITESB.2022.110310
  • Özğan, A. O., & Aluçla, İ. (2023.a). Biyofilik Tasarımın Akademik Değerlendirmesi. Turkish Journal of Forest Science, 7(2), 267–283. https://doi.org/10.32328/TURKJFORSCI.1347473
  • Özğan, A. O., & Aluçlu, İ. (2023.b). Doğayla Uyumlu Mekânlar: Biyofilik Tasarımın Bibliyometrik Değerlendirmesi. İdealkent, 15(41), 483–505. https://doi.org/10.31198/IDEALKENT.1350785
  • Sagbas, S., & Sahiner, N. (2019). Carbon dots: preparation, properties, and application. Nanocarbon and Its Composites: Preparation, Properties and Applications, 651–676. https://doi.org/10.1016/B978-0-08-102509-3.00022-5
  • Sahiner, M., Ari, B., Ram, M. K., & Sahiner, N. (2022). Nitrogen Doped Carbon-Dot Embedded Poly(lactic acid-co-glycolic acid) Composite Films for Potential Use in Food Packing Industry and Wound Dressing. Journal of Composites Science 2022, Vol. 6, Page 260, 6(9), 260. https://doi.org/10.3390/JCS6090260
  • Simsek, S., Alas, M. O., Ozbek, B., & Genc, R. (2019). Fluorescent Carbon Dots from Nerium oleander: Effects of Physical Conditions and the Extract Types. Journal of Fluorescence, 29(4), 853–864. https://doi.org/10.1007/S10895-019-02390-4
  • Suner, S. S., Sahiner, M., Yilmaz, A. S., Ayyala, R. S., & Sahiner, N. (2022). Light-Activated Modified Arginine Carbon Dots as Antibacterial Particles. Catalysts 2022, Vol. 12, Page 1376, 12(11), 1376. https://doi.org/10.3390/CATAL12111376
  • Sutekin, S. D., Sahiner, M., Suner, S. S., Demirci, S., Güven, O., & Sahiner, N. (2021). Poly(Vinylamine) Derived N-Doped C-Dots with Antimicrobial and Antibiofilm Activities. C 2021, Vol. 7, Page 40, 7(2), 40. https://doi.org/10.3390/C7020040
  • Umar, E., Ikram, M., Haider, J., Nabgan, W., Haider, A., Imran, M., & Nazir, G. (2023). A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 35, e00529. https://doi.org/10.1016/J.SUSMAT.2022.E00529

EXAMINING CARBON QUANTUM DOTS RESEARCH IN TURKEY: A SCIENTIFIC MAPPING ANALYSIS

Yıl 2024, , 1501 - 1513, 03.12.2024
https://doi.org/10.17780/ksujes.1455022

Öz

The bibliometric analysis presented in this work is thorough and comprehensive, carefully examining the wide range of contributions related to "carbon dots" and "carbon quantum dots" in Turkish research from 2014 to 2023. Using Biblioshiny as the major analytical tool and the Web of Science database, this study methodically breaks down the annual trends, regional spreads, institutional ties, authorship trends, and the complex clusters of keywords in this field. After a comprehensive analysis of international and local citations, the research identifies a noteworthy yearly growth rate of 14.72% for Turkey's carbon dot project. Starting with one manuscript in 2014, the research output increased rapidly, reaching sixty critical documents by the end of May 2024. This thorough study clarifies important publication sources; in particular, it emphasizes ChemistrySelect and the publication of Fluorescence as two of the field's top contributors. This thorough evaluation significantly contributes to our knowledge of the state of carbon studies in Turkey, providing priceless insights and a guide to advise and set the direction for future research projects in this continuously developing field, especially for researchers and academics connected with "carbon dots".

Kaynakça

  • Abraham, W. L., Demirci, S., Wypyski, M. S., Ayyala, R. S., Bhethanabotla, V. R., Lawson, L. B., & Sahiner, N. (2022). Biofilm inhibition and bacterial eradication by C-dots derived from polyethyleneimine-citric acid. Colloids and Surfaces B: Biointerfaces, 217, 112704. https://doi.org/10.1016/J.COLSURFB.2022.112704
  • Akbıyık, M. A., Bodur, O. C., Keskin, M., Kara, M., Dinç, S., Arslan, H., Özmen, M., & Arslan, F. (2023). A Sensitive Amperometric Biosensor Based on Carbon Dot 3-Chloropropyl-trimethoxysilane Modified Electrode for Detection of Neurotransmitter Dopamine. Journal of The Electrochemical Society, 170(3), 037517. https://doi.org/10.1149/1945-7111/ACC364
  • Akkurt, F. (2014). Characterisation of azo dye and carbon nanoparticle-doped guest–host liquid crystalline matrix. Liquid Crystals, 41(9), 1269–1276. https://doi.org/10.1080/02678292.2014.915590
  • Alas, M. O., Alkas, F. B., Aktas Sukuroglu, A., Genc Alturk, R., & Battal, D. (2020). Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. Journal of Materials Science 2020 55:31, 55(31), 15074–15105. https://doi.org/10.1007/S10853-020-05054-Y
  • Alaş, M. Ö., Doǧan, G., Yalcin, M. S., Ozdemir, S., & Genç, R. (2022). Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega, 7(34), 29967–29983. https://doi.org/10.1021/ACSOMEGA.2C02984
  • Aslan, M., & Eskalen, H. (2021). A study of carbon nanodots (carbon quantum dots) synthesized from tangerine juice using one-step hydrothermal method. Fullerenes, Nanotubes and Carbon Nanostructures, 29(12), 1026–1033. https://doi.org/10.1080/1536383X.2021.1926452
  • Aslan, M., Eskalen, H., & Kavgaci, M. (2023). Carbon Quantum Dot (CQD) Nanoparticles Synthesized by Sucrose and Urea: Application as Reinforcement Effect on Al–Mg–Cu–Zn Composite. Russian Journal of General Chemistry, 93(8), 2152–2160. https://doi.org/10.1134/S1070363223080236
  • Başkaya, S. K., Tahta, B. ·, Uruş, ·Serhan, Eskalen, ·Hasan, Çeşme, · Mustafa, & Özğan, · Şükrü. (2022). Multifunctional B, N, P, and S-doped fluorescent carbon quantum dot synthesis from pigeon manure: highly effective Hg (II) sensor and fluorescent ink properties. Biomass Conversion and Biorefinery, 1, 1–15. https://doi.org/10.1007/S13399-022-03017-8
  • Bodur, O. C., Dinç, S., Özmen, M., & Arslan, F. (2021). A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot-modified carbon paste electrode. Biotechnology and Applied Biochemistry, 68(1), 20–29. https://doi.org/10.1002/BAB.1886
  • Budak, E., & Ünlü, C. (2021). Boron regulated dual emission in B, N doped graphene quantum dots. Optical Materials, 111, 110577. https://doi.org/10.1016/J.OPTMAT.2020.110577
  • Burcu, B. A. Ç., & Genç, R. (2017). Naked eye and smartphone applicable detection of toxic mercury ions using fluorescent carbon nanodots. Turkish Journal of Chemistry, 41(6), 931–943. https://doi.org/10.3906/kim-1701-46
  • Çeşme, M., & Eskalen, H. (2020). Cumhuriyet Science Journal Green synthesis of carbon quantum dots from sumac: characterization and investigation with cyclic voltammetry technique. Cumhuriyet Sci. J, 41(4), 2587–2680. https://doi.org/10.17776/csj.714200
  • Çeşme, M., Eskalen, H., & Başkaya, S. K. (2022). Fluorescent Carbon Dots from Vegetable and Fruit Wastes and Their Applications. Fruits and Vegetable Wastes, 365–383. https://doi.org/10.1007/978-981-16-9527-8_15
  • Çolak, M.Ö.A., Güngör, A., Akturk, M. B., Erdem, E., & Genç, R. (2023). Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization. Nanoscale. https://doi.org/10.1039/D3NR04893D
  • Dinç, S., & Günhan, R. S. (2020). Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. Turkish Journal of Analytical Chemistry, 2(1), 47–54.
  • Dinc, S., & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products: A Mini-Review. Journal of Apitherapy and Nature/Apiterapi ve Doğa Dergisi, 1(1), 33–37.
  • Dinç, S., Kara, M., & Yavuz, E. (2022). Synthesis of carbon dots from biomass resources. Carbon Dots in Agricultural Systems: Strategies to Enhance Plant Productivity, 69–116. https://doi.org/10.1016/B978-0-323-90260-1.00001-2
  • Eskalen, H. (2020). Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Applied Physics A: Materials Science and Processing, 126(9), 1–10. https://doi.org/10.1007/S00339-020-03906-7
  • Eskalen, H., & Çeşme, M. (2021). Carbon Dots from Turnip Juice: Synthesis, Characterization and Investigation of pH-Dependent Optical Properties. Bilecik Seyh Edebali University Journal of Science, 8(2), 924–930. https://doi.org/10.35193/BSEUFBD.979306
  • Eskalen, H., Kavgacı, M., Kayış, A., & Özğan, Ş. (2021.a). One-Pot Synthesis of Carbon Quantum Dots and Their Application As a Fluorescent Inks. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 22(4), 366–377. https://doi.org/10.18038/estubtda.991595
  • Eskalen, H., Uruş, S., Cömertpay, S., Kurt, A. H., & Özgan, Ş. (2020). Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties. Industrial Crops and Products, 147, 112209. https://doi.org/10.1016/J.INDCROP.2020.112209
  • Eskalen, H., Uruş, S., Kavgacı, M., Kalmış, H. V., & Tahta, B. (2023). Carbon quantum dots derived from pomegranate peel: highly effective Fe(III) sensor. Biomass Conversion and Biorefinery, 1, 1–14. https://doi.org/10.1007/S13399-023-04048-5
  • Eskalen, H., Urus, S., Ozgan, S., Tahta, B., & Sünbül, A. B. (2021.b). Green and One-Pot Synthesis of Mint Derived Carbon Quantum Dots for Metal Ion Sensing. In Materials Research Foundations (Vol. 96, pp. 81–94). Materials Research Forum LLC. https://doi.org/10.21741/9781644901250-3
  • Eskalen, H., Yaykaşlı, H., Kavgacı, M., & Kayış, A. (2022). Investigating the PVA/TiO2/CDs polymer nanocomposites: effect of carbon dots for photocatalytic degradation of Rhodamine B. Journal of Materials Science: Materials in Electronics, 33(7), 4643–4658. https://doi.org/10.1007/S10854-021-07653-0
  • Genc, R., Alas, M. O., Harputlu, E., Repp, S., Kremer, N., Castellano, M., Colak, S. G., Ocakoglu, K., & Erdem, E. (2017). High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots. Scientific Reports 2017 7:1, 7(1), 1–13. https://doi.org/10.1038/s41598-017-11347-1
  • Kavgacı, M., Kalmış, H. V., & Eskalen, H. (2023). Synthesis of Fluorescent Carbon Quantum Dots with Hydrothremal and Solvothermal Method Application for Anticounterfeiting and Encryption. International Journal of Innovative Engineering Applications, 7, 1. https://doi.org/10.46460/ijiea.1182009
  • Korkmaz, U., Özlem, B., Erol, E., Alas, M. Ö., Genç Altürk, R., Çelikbilek Ersundu, M., & Ersundu, A. E. (2023). The coupling of blue emitting carbon dots with Eu3+/Tb3+ co-doped luminescent glasses for utilization in white light emitting diodes. Physical Chemistry Chemical Physics, 25(16), 11452–11463. https://doi.org/10.1039/D3CP00137G
  • Makhija, A., Punia, R., Dahiya, S., Ohlan, A., & Maan, A. S. (2023). Development trends of rare-earth luminescence: A bibliometric analysis. Materials Today: Proceedings, 79, 11–17. https://doi.org/10.1016/J.MATPR.2022.07.424
  • Navidfar, A., Peker, M. I., Budak, E., Unlu, C., & Trabzon, L. (2022). Carbon quantum dots enhanced graphene/carbon nanotubes polyurethane hybrid nanocomposites. Composites Part B: Engineering, 247, 110310. https://doi.org/10.1016/J.COMPOSITESB.2022.110310
  • Özğan, A. O., & Aluçla, İ. (2023.a). Biyofilik Tasarımın Akademik Değerlendirmesi. Turkish Journal of Forest Science, 7(2), 267–283. https://doi.org/10.32328/TURKJFORSCI.1347473
  • Özğan, A. O., & Aluçlu, İ. (2023.b). Doğayla Uyumlu Mekânlar: Biyofilik Tasarımın Bibliyometrik Değerlendirmesi. İdealkent, 15(41), 483–505. https://doi.org/10.31198/IDEALKENT.1350785
  • Sagbas, S., & Sahiner, N. (2019). Carbon dots: preparation, properties, and application. Nanocarbon and Its Composites: Preparation, Properties and Applications, 651–676. https://doi.org/10.1016/B978-0-08-102509-3.00022-5
  • Sahiner, M., Ari, B., Ram, M. K., & Sahiner, N. (2022). Nitrogen Doped Carbon-Dot Embedded Poly(lactic acid-co-glycolic acid) Composite Films for Potential Use in Food Packing Industry and Wound Dressing. Journal of Composites Science 2022, Vol. 6, Page 260, 6(9), 260. https://doi.org/10.3390/JCS6090260
  • Simsek, S., Alas, M. O., Ozbek, B., & Genc, R. (2019). Fluorescent Carbon Dots from Nerium oleander: Effects of Physical Conditions and the Extract Types. Journal of Fluorescence, 29(4), 853–864. https://doi.org/10.1007/S10895-019-02390-4
  • Suner, S. S., Sahiner, M., Yilmaz, A. S., Ayyala, R. S., & Sahiner, N. (2022). Light-Activated Modified Arginine Carbon Dots as Antibacterial Particles. Catalysts 2022, Vol. 12, Page 1376, 12(11), 1376. https://doi.org/10.3390/CATAL12111376
  • Sutekin, S. D., Sahiner, M., Suner, S. S., Demirci, S., Güven, O., & Sahiner, N. (2021). Poly(Vinylamine) Derived N-Doped C-Dots with Antimicrobial and Antibiofilm Activities. C 2021, Vol. 7, Page 40, 7(2), 40. https://doi.org/10.3390/C7020040
  • Umar, E., Ikram, M., Haider, J., Nabgan, W., Haider, A., Imran, M., & Nazir, G. (2023). A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 35, e00529. https://doi.org/10.1016/J.SUSMAT.2022.E00529
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fonksiyonel Malzemeler, Malzeme Mühendisliği (Diğer)
Bölüm Malzeme Bilimi ve Mühendisliği
Yazarlar

Hasan Eskalen 0000-0002-4523-6573

Mustafa Kavgacı 0000-0001-8747-0635

Şükrü Özğan 0000-0001-9334-327X

Yayımlanma Tarihi 3 Aralık 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 1 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Eskalen, H., Kavgacı, M., & Özğan, Ş. (2024). EXAMINING CARBON QUANTUM DOTS RESEARCH IN TURKEY: A SCIENTIFIC MAPPING ANALYSIS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1501-1513. https://doi.org/10.17780/ksujes.1455022