Araştırma Makalesi
BibTex RIS Kaynak Göster

Microwave-Assisted Synthesis And Characterizatıon of Novel RuxM1-xAl2O3 Nanoparticles

Yıl 2015, , 23 - 30, 11.08.2015
https://doi.org/10.17780/ksujes.16379

Öz

In this study, three metal composed of nanostructures of RuxM1-xAl2O3 have been successfully synthesized by a simple and rapid microwave-assisted method using thiourea as the fuel and ethylene glycol (EG) as the reducing agent. In comparison with conventional heating, microwave-assisted method shortens the reaction time. The morphology, particle size and microstructure were analyzed using SEM and XRD. Microwave irradiation has yielded nanosized spherical phase particles. The mean grain size of the nanoparticles less than 100 nm. The FT-IR studies confirms the presence of metal–oxygen and metal-oxygen-metal bond. XRD and SEM of the synthesized nanoparticles show that the prepared nano compounds have low crystallinity and sphere and flower-like shape. Flower shape Ru0.63Co0.37Al2O3, Ru0.93Ni0.07Al2O3 and Ru0.54Cu0.46Al2O3 particles were obtained. Generally, the crystallite sizes were found in the range of 41-94 nm. The synthesized RuxM1-xAl2O3 architectures (M: Fe, Co, Ni, Cu) were found to be polycrystalline and spherical in shape. The EDX analysis indicated that the elements of  Ru, Fe, Co, Ni, Cu and Al existed in the products. The surface treatment of spray gold for elimination of charged effects were responsible for the signals of gold in the EDX analysis of the products. In other words, no impurities like N, S, P, Cl, etc. were detected except for Ru, Fe, Co, Ni, Cu and Al elements, indicating the nanoparticles were pure.

Kaynakça

  • Krishnakumar T., Jayaprakash R., Pinna N., Singh V.N., Mehta B.R., Phani A.R., (2009), “Microwave- assisted synthesis and characterization of flower shaped zinc oxide nanostructures”, Mater. Lett. 63, 242.
  • UmaSangari N., ChitraDevi S., (2013), “Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method”, J. Solid State Chem., 197, 483.
  • Shen Y., Li W., Li T., (2011), “Microwave-assisted synthesis of BaWO4 nanoparticles and its photoluminescence properties”, Mater. Lett. 65, 2956.
  • Astruc D., (2008), “Nanoparticles and Catalysis”,
  • Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 3 Ranu B.C., Chattopadhyay K., Adak L., Saha A., Bhadra S., Dey R., Saha D., (2009), “Metal nanoparticles as efficient catalysts for organic reactions”, Pure Appl. Chem. 81, 2337.
  • Jia J. C., Schüth F., (2011), “Colloidal metal nanoparticles as a component of designed catalyst” Phys. Chem. 13, 2457.
  • Li Y., Somorjai G.A., (2010), “Nanoscale advances in catalysis and energy applications”, Nano Lett. 10, 22
  • Joo S.H., Park J.Y., Renzas J.R., Butcher D.R., Huang W., Somorjai G.A., (2010), “Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation”, Nano letters 10, 2709.
  • Su F., Lee F.Y., Lv L., Liu J., Tian X.N., Zhao X.S., (2007), “Sandwiched ruthernium/carbon nanostructures for highly active heterogeneous hydrogenation”, Adv. Funct. Mater. 17, 1926.
  • Liu H., Song C., Zhang L. , Zhang J., Wang H., Wilkinson D.P., (2006), “A review of anode catalysis in the direct methanol fuel cell”, J. Power Sources, 155, 95.
  • Kang J., Zhang S., Zhang Q., Wang Y., (2009), “Ruthenium Nanoparticles Supported on Fuel” Angew. Chem. 121 2603.
  • Perkas N., Minh D.P., Gallezot P., Gedanken A., Besson M., (2005), “Antibacterial activity of Ruthenium
  • Nanoparticles synthesized using Gloriosa superba L. Leaf extract” Appl. Catal. B:Environ. 59 121. Algul O., Kaessler A., Apcin Y. , Yilmaz A., Jose J., (2008) “Comparative Studies on Conventional and Microwave Synthesis of Some Benzimidazole,
  • Benzothiazole and Indole Derivatives and Testing on Inhibition of Hyaluronidase”, Molecules, 13, 736. Glaspell G., Fuoco L., El-Shall M.S., (2005),
  • “Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation”, J. Phys. Chem. B 109, 17350.
  • Gupta S., Giordano C., Gradzielski M., Mehta K. S., (2013) , “Microwave-assisted synthesis of small Ru nanoparticles and their rolein degradation of congo red”, J. Coll. Inter. Sci., 411, 173.
  • Wang, Z., Xie Y., Wangb, P., Mab, Y., Jin, S., Liu, X., (2011), “Micro wave anneal effect on magnetic properties of
  • Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method”, J. Magn.Mag. Mater., 323, 3121. in catalysis and chemo-/biosensing”, Nanotech. Rev, 2,
  • Krishnakumar T., Jayaprakash R., Pinna V.N., use of the nanoparticles ’ surfaces and their application Singh B.R., Mehta A.R., (2009), “Microwave-assisted based synthesis of metallic nanoparticles toward efficient synthesis and characterization of flower shaped zinc oxide
  • Nanostructures”, Mater. Letters, 63, 242. Farhadi S., Pourzare K., Sadeghinejad S., (2013),
  • “Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [CoII(NH3)6](NO) complex at low temperature”, J. Nanostruc.Chem., 3, 16. Souza A. E., Santos G.T. A., Silva R.A., (2012),
  • “Morphological and Structural changes of CaxSr1-xTiO3 Powders Obtained by the Microwave-Assisted Hydrothermal Method”, J. Appl. Ceram. Technol., 9, 1 Santos, T., Valente, M. A., Monteiro, J., Sousa, J., Costa, L. C. (2011), “Electromagnetic and thermal history during microwave heating”, Appl.Therm. Engin., 31, 3255.
  • Krishnakumar, T., Jayaprakash, R., Pinna, N., Singh, V. N., Mehta, B. R., Phani, A. R. (2009),
  • “Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures” Materials Letters, 63, 242 UmaSangari N., ChitraDevi S., (2013), “Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method” J. Solid State Chem. 197, 483.
  • Ragupathi, C., Kennedy, L. J., Vijaya, J. J., (2014),
  • “A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate” Adv. Powder Tech.,25, 267. Li Z.Q., Chen X.T., Xue Z.L, (2013), “Microwave- assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite”, J. Coll.Inter.Sci., 394, 69
  • Azam A., (2012), “Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles”, J. Alloys Comp., 540, 145
  • UmaSangari N., ChitraDevi S., (2013), “Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method”, J. Solid State Chem., 197, 483.

Yeni RuxM1-xAl2O3 Nano Parçacıkların Mikrodalga Destekli Sentezi ve Tanımlanması

Yıl 2015, , 23 - 30, 11.08.2015
https://doi.org/10.17780/ksujes.16379

Öz

Bu çalışmada, yapısında üç metal bulunan nanoyapılar basit ve hızlı mikrodalga-yardımlı metod ile sentezlenmiştir. Bu sentezlerde tiyoüre yakıt olarak kullanılırken, etilen glikol (EG) yüzey gerilimini düşürücü ve indirgen olarak kullanılmıştır. Bilinen eski yöntemlerle kıyaslandığında bu yöntem reaksiyon süresini kısaltmıştır. Oksitlerin morfolojisi, parça büyüklüğü ve mikroyapısı SEM ve XRD ile analiz edilmiştir. Mikrodalga radyasyonu nanobüyüklükte küresel fazlı parçacıklar üretmiştir. Nanoparçacıkların ortalama tanecik boyutu 100 nm’den küçüktür. FT-IR çalışmaları metal-oksijen ve metal-oksijen-metal bağlarının varlığını doğrulamaktadır. Sentezlenen nanopartiküllerin XRD ve SEM sonuçları nano bileşiklerin düşük kristaliniteye sahip olduğunu, küresel ve çiçekbenzer şekillerde olduğunu göstermektedir. Çiçek tipi Ru0.63Co0.37Al2O3, Ru0.93Ni0.07Al2O3 ve Ru0.54Cu0.46Al2O3parçacıkları elde edilmiştir. Genelde, kristal büyüklükleri 41-94 nm aralığındadır. EDX analizleri sentezlenen bileşiklerin yapısında Ru, Fe, Co, Ni, Cu ve Al elementlerinin varlığını doğrulamaktadır. Bileşiklerin EDX analizlerinde gözlemlenen Altın elementine ait pik, yük etkisini yok etmek amacıyla yüzeye püskürtülen Altın’a aittir. Ek olarak, yapılarda N, S, P ve Cl gibi safsızlıkların olmayışı ve yalnız Ru, Fe, Co, Ni, Cu ve Al elementlerin gözlemlenmesi, nanoparçacıkların saf olduğunu göstermektedir

Kaynakça

  • Krishnakumar T., Jayaprakash R., Pinna N., Singh V.N., Mehta B.R., Phani A.R., (2009), “Microwave- assisted synthesis and characterization of flower shaped zinc oxide nanostructures”, Mater. Lett. 63, 242.
  • UmaSangari N., ChitraDevi S., (2013), “Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method”, J. Solid State Chem., 197, 483.
  • Shen Y., Li W., Li T., (2011), “Microwave-assisted synthesis of BaWO4 nanoparticles and its photoluminescence properties”, Mater. Lett. 65, 2956.
  • Astruc D., (2008), “Nanoparticles and Catalysis”,
  • Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 3 Ranu B.C., Chattopadhyay K., Adak L., Saha A., Bhadra S., Dey R., Saha D., (2009), “Metal nanoparticles as efficient catalysts for organic reactions”, Pure Appl. Chem. 81, 2337.
  • Jia J. C., Schüth F., (2011), “Colloidal metal nanoparticles as a component of designed catalyst” Phys. Chem. 13, 2457.
  • Li Y., Somorjai G.A., (2010), “Nanoscale advances in catalysis and energy applications”, Nano Lett. 10, 22
  • Joo S.H., Park J.Y., Renzas J.R., Butcher D.R., Huang W., Somorjai G.A., (2010), “Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation”, Nano letters 10, 2709.
  • Su F., Lee F.Y., Lv L., Liu J., Tian X.N., Zhao X.S., (2007), “Sandwiched ruthernium/carbon nanostructures for highly active heterogeneous hydrogenation”, Adv. Funct. Mater. 17, 1926.
  • Liu H., Song C., Zhang L. , Zhang J., Wang H., Wilkinson D.P., (2006), “A review of anode catalysis in the direct methanol fuel cell”, J. Power Sources, 155, 95.
  • Kang J., Zhang S., Zhang Q., Wang Y., (2009), “Ruthenium Nanoparticles Supported on Fuel” Angew. Chem. 121 2603.
  • Perkas N., Minh D.P., Gallezot P., Gedanken A., Besson M., (2005), “Antibacterial activity of Ruthenium
  • Nanoparticles synthesized using Gloriosa superba L. Leaf extract” Appl. Catal. B:Environ. 59 121. Algul O., Kaessler A., Apcin Y. , Yilmaz A., Jose J., (2008) “Comparative Studies on Conventional and Microwave Synthesis of Some Benzimidazole,
  • Benzothiazole and Indole Derivatives and Testing on Inhibition of Hyaluronidase”, Molecules, 13, 736. Glaspell G., Fuoco L., El-Shall M.S., (2005),
  • “Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation”, J. Phys. Chem. B 109, 17350.
  • Gupta S., Giordano C., Gradzielski M., Mehta K. S., (2013) , “Microwave-assisted synthesis of small Ru nanoparticles and their rolein degradation of congo red”, J. Coll. Inter. Sci., 411, 173.
  • Wang, Z., Xie Y., Wangb, P., Mab, Y., Jin, S., Liu, X., (2011), “Micro wave anneal effect on magnetic properties of
  • Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method”, J. Magn.Mag. Mater., 323, 3121. in catalysis and chemo-/biosensing”, Nanotech. Rev, 2,
  • Krishnakumar T., Jayaprakash R., Pinna V.N., use of the nanoparticles ’ surfaces and their application Singh B.R., Mehta A.R., (2009), “Microwave-assisted based synthesis of metallic nanoparticles toward efficient synthesis and characterization of flower shaped zinc oxide
  • Nanostructures”, Mater. Letters, 63, 242. Farhadi S., Pourzare K., Sadeghinejad S., (2013),
  • “Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [CoII(NH3)6](NO) complex at low temperature”, J. Nanostruc.Chem., 3, 16. Souza A. E., Santos G.T. A., Silva R.A., (2012),
  • “Morphological and Structural changes of CaxSr1-xTiO3 Powders Obtained by the Microwave-Assisted Hydrothermal Method”, J. Appl. Ceram. Technol., 9, 1 Santos, T., Valente, M. A., Monteiro, J., Sousa, J., Costa, L. C. (2011), “Electromagnetic and thermal history during microwave heating”, Appl.Therm. Engin., 31, 3255.
  • Krishnakumar, T., Jayaprakash, R., Pinna, N., Singh, V. N., Mehta, B. R., Phani, A. R. (2009),
  • “Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures” Materials Letters, 63, 242 UmaSangari N., ChitraDevi S., (2013), “Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method” J. Solid State Chem. 197, 483.
  • Ragupathi, C., Kennedy, L. J., Vijaya, J. J., (2014),
  • “A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate” Adv. Powder Tech.,25, 267. Li Z.Q., Chen X.T., Xue Z.L, (2013), “Microwave- assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite”, J. Coll.Inter.Sci., 394, 69
  • Azam A., (2012), “Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles”, J. Alloys Comp., 540, 145
  • UmaSangari N., ChitraDevi S., (2013), “Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method”, J. Solid State Chem., 197, 483.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Köksal

Othman Hamad

Yayımlanma Tarihi 11 Ağustos 2015
Gönderilme Tarihi 28 Temmuz 2015
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

APA Köksal, H., & Hamad, O. (2015). Microwave-Assisted Synthesis And Characterizatıon of Novel RuxM1-xAl2O3 Nanoparticles. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 18(1), 23-30. https://doi.org/10.17780/ksujes.16379