Araştırma Makalesi
BibTex RIS Kaynak Göster

3 BOYUTLU YAZICIDA ABS VE PLA FİLAMENTLER İLE FARKLI TABLA VE NOZUL SICAKLIKLARI KULLANILARAK ÜRETİLEN ÇEKME TEST NUMUNELERİNİN MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI

Yıl 2021, , 341 - 358, 03.12.2021
https://doi.org/10.17780/ksujes.997195

Öz

3 boyutlu yazıcı ile çeşitli ürünlerin üretilmesi sırasında birçok parametre yer almaktadır. Bu parametrelerin değiştirilmesi ile üretim maliyetleri ve üretim süresi azaltılabilirken, üretilen ürünlerin mekanik özelliklerinde de değişimler yaşanmaktadır. Bu nedenle 3 boyutlu yazıcı ile üretilen ürünlerin çeşitli parametrelere göre mekanik özelliklerinin tespit edilmesi, bu ürünlerin kullanılacakları yerlere göre üretim parametrelerinin seçilebilmesi açısından önem kazanmaktadır. Bu çalışmada; Ultimaker 2 Extended 3 boyutu yazıcıda ABS ve PLA malzeme ile farklı tabla ve nozul sıcaklıkları kullanılarak çekme test numuneleri üretilmiştir. Tabla ve nozul sıcaklıklarının mekanik özellikler üzerindeki etkileri araştırılmıştır. Üretilen numunelerin kütleleri, sertlikleri, yüzey pürüzlülükleri ölçülmüş ve üretilen numunelere çekme testi yapılmıştır. 3 boyutlu yazıcı ile üretilen çekme numunelerinin boyutlandırılmasında ASTM D638-14 standardı kullanılmıştır. Yapılan testler sonucunda ABS ve PLA malzemelerin her ikisinde de farklı tabla sıcaklıklarının kütle, sertlik, yüzey pürüzlülüğü, çekme dayanımı ve uzama bakımından çok fazla bir etkisinin olmadığı belirlenmiştir. Ayrıca ABS ve PLA malzemelerle üretilen çekme numunelerinde nozul sıcaklığının düşmesiyle kütle, üst yüzey sertlik ve çekme dayanımı değerlerinin azaldığı, aritmetik ortalama pürüzlülük değerlerinin arttığı, alt yüzey sertlik ve uzama değerlerinde ise kayda değer bir değişimin olmadığı tespit edilmiştir.

Destekleyen Kurum

İnönü Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2020-2351

Teşekkür

Bu çalışma; İnönü Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-2020-2351 nolu proje ile desteklenmiştir.

Kaynakça

  • Andó, M., Birosz, M., & Jeganmohan, S. (2021). Surface bonding of additive manufactured parts from multi-colored PLA materials. Measurement: Journal of the International Measurement Confederation, 169, 108583. https://doi.org/10.1016/j.measurement.2020.108583
  • Aslan, B., & Yildiz, A.R. (2020). Optimum design of automobile components using lattice structures for additive manufacturing. Materials Testing, 62(6), 633-639. https://doi.org/10.3139/120.111527
  • ASTM D638-14. (2014). Standard test method for tensile properties of plastics. ASTM International. West Conshohocken. PA. https://doi.org/10.1520/D0638-14
  • Aydin, M., Yildirim, F., & Canti, E. (2019). Investigation of the processing performance of PLA filament in different printing parameters. International Journal of 3D Printing Technologies and Digital Industry, 3(2), 102-115.
  • Dilberoglu, U. M., Simsek, S., & Yaman, U. (2019). Shrinkage compensation approach proposed for ABS material in FDM process. Materials and Manufacturing Processes, 34(9), 993–998. https://doi.org/10.1080/10426914.2019.1594252
  • Gupta, P., Kumari, S., Gupta, A., Sinha, A.K., & Jindal, P. (2021). Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts, Materials Testing, 63(1), 73-78. https://doi.org/10.1515/mt-2020-0010
  • Roj, R., Nurnberg, J., Theiss, R., & Dultgen, P. (2020). Comparison of FDM-printed and compression molded tensile samples, Materials Testing, 62(10), 985-992. https://doi.org/10.3139/120.111575
  • Schirmeister, C. G., Hees, T., Licht, E. H., & Mülhaupt, R. (2019). 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 28(April), 152–159. https://doi.org/10.1016/j.addma.2019.05.003
  • Solmaz, M. Y., & Çelik, E. (2018). Investigation of Compression Test Performances of Honeycomb Sandwich Composites Produced by 3D Printing Method. Science and Engineering Journal of Firat University, 30(1), 277–286.
  • The Ultimaker 2 Extended specifications. (2020). https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications/ Accessed 06.02.2021.
  • The Ultimaker 2 Extended user manual. (2020). https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual/ Accessed 06.02.2021.
  • Torun, A.R., Dike, A.S., Yıldız, E.C., Saglam, İ., & Choupani, N. (2021). Fracture characterization and modeling of Gyroid filled 3D printed PLA structures, Materials Testing, 63(5), 397-401. https://doi.org/10.1515/mt-2020-0068
  • Ultimaker ABS SDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360011962900-Ultimaker-ABS-SDS/ Accessed 15.02.2021.
  • Ultimaker ABS TDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360012759139-Ultimaker-ABS-TDS/ Accessed 15.02.2021.
  • Ultimaker PLA SDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS/ Accessed 15.02.2021.
  • Ultimaker PLA TDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS/ Accessed 15.02.2021.
  • Uzun, M., & Erdogdu, Y. E. (2020). Investigation of the Effect of Using Unreinforced and Reinforced PLA in Production by Fused Deposition Modeling on Mechanical Properties. Igdir University Journal of the Institute of Science and Technology, 10(4), 2800–2808. https://doi.org/10.21597/jist.799230
  • Uzun, M., Gür, Y., & Usca, Ü. A. (2018). Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing. Journal of Balıkesir Unıversity Institute of Science and Technology, 20(1), 1–9. https://doi.org/10.25092/baunfbed.398462
  • Yaman, U. (2018). Shrinkage compensation of holes via shrinkage of interior structure in FDM process. International Journal of Advanced Manufacturing Technology, 94(5–8), 2187–2197. https://doi.org/10.1007/s00170-017-1018-2
  • Yaman, U. (2019). Topoloji Optimizasyonu Yapılmış Parçaların 3B Yazıcılar ile Doğrudan Üretilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(1), 236–244. https://doi.org/10.29109/gujsc.491244
  • Yaman, U., Butt, N., Sacks, E., & Hoffmann, C. (2016). Slice coherence in a query-based architecture for 3D heterogeneous printing. CAD Computer Aided Design, 75–76, 27–38. https://doi.org/10.1016/j.cad.2016.02.005
  • Yaman, U., Dolen, M., & Hoffmann, C. (2019). Generation of patterned indentations for additive manufacturing technologies. IISE Transactions, 51(2), 209–217. https://doi.org/10.1080/24725854.2018.1491076

INVESTIGATION OF THE MECHANICAL PROPERTIES OF TENSILE TEST SAMPLES PRODUCED WITH A 3D PRINTER USING DIFFERENT BED AND NOZZLE TEMPERATURES WITH ABS AND PLA FILAMENTS

Yıl 2021, , 341 - 358, 03.12.2021
https://doi.org/10.17780/ksujes.997195

Öz

Many parameters are involved in the production of various products with a 3D printer. By changing these parameters, production costs and production time can be reduced, while changes are experienced in the mechanical properties of the products produced. For this reason, it gains importance to determine, the mechanical properties of the products produced with 3D printers according to various parameters, in terms of choosing the production parameters according to the places where these products will be used. In this study; tensile test specimens have been produced on the Ultimaker 2 Extended 3 dimension printer with ABS and PLA material using different bed and nozzle temperatures. The effects of bed and nozzle temperatures on mechanical properties have been investigated. Masses, hardness, surface roughness of the produced samples have been measured and tensile test has been performed on the produced samples. The ASTM D638-14 standard has been used for sizing the tensile specimens produced with a 3D printer. As a result of the tests, it has been determined that different bed temperatures did not have much effect in terms of mass, hardness, surface roughness, tensile strength and elongation in both ABS and PLA materials. In addition, it has been determined that the mass, upper surface hardness and tensile strength values decreased, the arithmetic average roughness values increased, and there was no significant change in the lower surface hardness and elongation values with the decrease of nozzle temperature in the tensile samples produced with ABS and PLA materials.

Proje Numarası

FDK-2020-2351

Kaynakça

  • Andó, M., Birosz, M., & Jeganmohan, S. (2021). Surface bonding of additive manufactured parts from multi-colored PLA materials. Measurement: Journal of the International Measurement Confederation, 169, 108583. https://doi.org/10.1016/j.measurement.2020.108583
  • Aslan, B., & Yildiz, A.R. (2020). Optimum design of automobile components using lattice structures for additive manufacturing. Materials Testing, 62(6), 633-639. https://doi.org/10.3139/120.111527
  • ASTM D638-14. (2014). Standard test method for tensile properties of plastics. ASTM International. West Conshohocken. PA. https://doi.org/10.1520/D0638-14
  • Aydin, M., Yildirim, F., & Canti, E. (2019). Investigation of the processing performance of PLA filament in different printing parameters. International Journal of 3D Printing Technologies and Digital Industry, 3(2), 102-115.
  • Dilberoglu, U. M., Simsek, S., & Yaman, U. (2019). Shrinkage compensation approach proposed for ABS material in FDM process. Materials and Manufacturing Processes, 34(9), 993–998. https://doi.org/10.1080/10426914.2019.1594252
  • Gupta, P., Kumari, S., Gupta, A., Sinha, A.K., & Jindal, P. (2021). Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts, Materials Testing, 63(1), 73-78. https://doi.org/10.1515/mt-2020-0010
  • Roj, R., Nurnberg, J., Theiss, R., & Dultgen, P. (2020). Comparison of FDM-printed and compression molded tensile samples, Materials Testing, 62(10), 985-992. https://doi.org/10.3139/120.111575
  • Schirmeister, C. G., Hees, T., Licht, E. H., & Mülhaupt, R. (2019). 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 28(April), 152–159. https://doi.org/10.1016/j.addma.2019.05.003
  • Solmaz, M. Y., & Çelik, E. (2018). Investigation of Compression Test Performances of Honeycomb Sandwich Composites Produced by 3D Printing Method. Science and Engineering Journal of Firat University, 30(1), 277–286.
  • The Ultimaker 2 Extended specifications. (2020). https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications/ Accessed 06.02.2021.
  • The Ultimaker 2 Extended user manual. (2020). https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual/ Accessed 06.02.2021.
  • Torun, A.R., Dike, A.S., Yıldız, E.C., Saglam, İ., & Choupani, N. (2021). Fracture characterization and modeling of Gyroid filled 3D printed PLA structures, Materials Testing, 63(5), 397-401. https://doi.org/10.1515/mt-2020-0068
  • Ultimaker ABS SDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360011962900-Ultimaker-ABS-SDS/ Accessed 15.02.2021.
  • Ultimaker ABS TDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360012759139-Ultimaker-ABS-TDS/ Accessed 15.02.2021.
  • Ultimaker PLA SDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS/ Accessed 15.02.2021.
  • Ultimaker PLA TDS. (2020). https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS/ Accessed 15.02.2021.
  • Uzun, M., & Erdogdu, Y. E. (2020). Investigation of the Effect of Using Unreinforced and Reinforced PLA in Production by Fused Deposition Modeling on Mechanical Properties. Igdir University Journal of the Institute of Science and Technology, 10(4), 2800–2808. https://doi.org/10.21597/jist.799230
  • Uzun, M., Gür, Y., & Usca, Ü. A. (2018). Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing. Journal of Balıkesir Unıversity Institute of Science and Technology, 20(1), 1–9. https://doi.org/10.25092/baunfbed.398462
  • Yaman, U. (2018). Shrinkage compensation of holes via shrinkage of interior structure in FDM process. International Journal of Advanced Manufacturing Technology, 94(5–8), 2187–2197. https://doi.org/10.1007/s00170-017-1018-2
  • Yaman, U. (2019). Topoloji Optimizasyonu Yapılmış Parçaların 3B Yazıcılar ile Doğrudan Üretilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(1), 236–244. https://doi.org/10.29109/gujsc.491244
  • Yaman, U., Butt, N., Sacks, E., & Hoffmann, C. (2016). Slice coherence in a query-based architecture for 3D heterogeneous printing. CAD Computer Aided Design, 75–76, 27–38. https://doi.org/10.1016/j.cad.2016.02.005
  • Yaman, U., Dolen, M., & Hoffmann, C. (2019). Generation of patterned indentations for additive manufacturing technologies. IISE Transactions, 51(2), 209–217. https://doi.org/10.1080/24725854.2018.1491076
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Muhammed Safa Kamer 0000-0003-3852-1031

Şemsettin Temiz 0000-0002-6737-3720

Proje Numarası FDK-2020-2351
Yayımlanma Tarihi 3 Aralık 2021
Gönderilme Tarihi 18 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kamer, M. S., & Temiz, Ş. (2021). 3 BOYUTLU YAZICIDA ABS VE PLA FİLAMENTLER İLE FARKLI TABLA VE NOZUL SICAKLIKLARI KULLANILARAK ÜRETİLEN ÇEKME TEST NUMUNELERİNİN MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 341-358. https://doi.org/10.17780/ksujes.997195