Chatterjea, S. K., (1972). Fixed point theorems. C. R. Acad. Bulg. Sci. 25, 727-730.
Zamfirescu T., (1972). Fixed point theorems in metric spaces, Arch. Math. (Basel) 23, 292-298.
Hardy G. E., Rogers, T.D., (1973). A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16, 201-206.
Alber, Ya. I., Guerre-Delabriere, S., (1997). Principles of weakly contractive maps in Hilbert Spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advences and Appl., 7-22, 98.
Rhoades, B. E., (2001). Some theorems on weakly contractive maps, Nonlinear Anal. 47, (4), 2683-2693.
Dutta, P. N., Choudhury, B. S., (2008). A generalization of contraction principle in metric spaces. Fixed point Theory and Applications Article, I. D., 8, 406368.
Popescu, O., (2011). Fixed points for ψ,φ- weak contractions. Appl. Math. Lett. , 1-4, 24.
Berinde, V., (2008). General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpathian J., 24, no. 2, 10-19.
Berinde, V., (2003). On the approximatation of weak contractive mappings. Carpathian J. Math. 19, (1), 7-22.
Berinde, V., (2007). Approximatating of fixed points. Springer- Verlag. Berlin-Heidelberg.
Berinde, V., (2004). Approximatating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9, (1), 43-57.
Mustafa, Z., Sims, B., (2006). A new approach to a generalized metric spaces. J. Nonlinear Convex Anal., 7 (2), 289-297.
Jungck, G., Rhoades, B. E., (1998). Fixed Point for Set Valued Functionons without Continuity, Indian J., Pure Applied Math., 29 (3), 227-238.
Abbas, M. Babu G.V.R. and Alemayehu, G.N. (2011). On common fixed points of weakly compatible mappings satisfying generalized condition, Filomat., 25, 9-19.
Sushil Sharma , Bhavana Deshpande , and Alok Pandey, (2011). Common fixed point theorem for a pair of weakly compatible mappings on Banach spaces, East Asian Math. J. 27, (5), 573-583.
Suzuki, T. (2007). Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Internat. J. Math. Math. Sci., Article ID 39281, 6 pages, MR2285999 (2007k:54049).
Vetro, C. (2010). On Branciari’s theorem for weakly compatible mappings. Appl. Math. Lett., MR2609801 (2011 d: 47136)., 23, (6), 700–705.
G-Metrik Uzayda Zayıf Uyumlu Dönüşümler İçin Bazı Sabit Nokta Teoremleri
Chatterjea, S. K., (1972). Fixed point theorems. C. R. Acad. Bulg. Sci. 25, 727-730.
Zamfirescu T., (1972). Fixed point theorems in metric spaces, Arch. Math. (Basel) 23, 292-298.
Hardy G. E., Rogers, T.D., (1973). A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16, 201-206.
Alber, Ya. I., Guerre-Delabriere, S., (1997). Principles of weakly contractive maps in Hilbert Spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advences and Appl., 7-22, 98.
Rhoades, B. E., (2001). Some theorems on weakly contractive maps, Nonlinear Anal. 47, (4), 2683-2693.
Dutta, P. N., Choudhury, B. S., (2008). A generalization of contraction principle in metric spaces. Fixed point Theory and Applications Article, I. D., 8, 406368.
Popescu, O., (2011). Fixed points for ψ,φ- weak contractions. Appl. Math. Lett. , 1-4, 24.
Berinde, V., (2008). General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpathian J., 24, no. 2, 10-19.
Berinde, V., (2003). On the approximatation of weak contractive mappings. Carpathian J. Math. 19, (1), 7-22.
Berinde, V., (2007). Approximatating of fixed points. Springer- Verlag. Berlin-Heidelberg.
Berinde, V., (2004). Approximatating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9, (1), 43-57.
Mustafa, Z., Sims, B., (2006). A new approach to a generalized metric spaces. J. Nonlinear Convex Anal., 7 (2), 289-297.
Jungck, G., Rhoades, B. E., (1998). Fixed Point for Set Valued Functionons without Continuity, Indian J., Pure Applied Math., 29 (3), 227-238.
Abbas, M. Babu G.V.R. and Alemayehu, G.N. (2011). On common fixed points of weakly compatible mappings satisfying generalized condition, Filomat., 25, 9-19.
Sushil Sharma , Bhavana Deshpande , and Alok Pandey, (2011). Common fixed point theorem for a pair of weakly compatible mappings on Banach spaces, East Asian Math. J. 27, (5), 573-583.
Suzuki, T. (2007). Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Internat. J. Math. Math. Sci., Article ID 39281, 6 pages, MR2285999 (2007k:54049).
Vetro, C. (2010). On Branciari’s theorem for weakly compatible mappings. Appl. Math. Lett., MR2609801 (2011 d: 47136)., 23, (6), 700–705.
Aydın, C., & Sepet, S. S. (2017). G-Metrik Uzayda Zayıf Uyumlu Dönüşümler İçin Bazı Sabit Nokta Teoremleri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(2), 16-28. https://doi.org/10.17780/ksujes.322349