Araştırma Makalesi
BibTex RIS Kaynak Göster

PORTAKAL İŞLEME ATIKLARININ BÜYÜKBAŞ HAYVAN GÜBRESİ İLE KO-FERMANTASYONU

Yıl 2019, Cilt: 22 - Özel Sayı, 109 - 117, 29.11.2019

Öz

Bu çalışmada,
büyükbaş hayvan gübresine portakal işleme atıklarının (kabuk ve posa) farklı
oranlarda (%25, %50, %75) eklenmesinin biyogaz verimine etkisi, HBT (Hohenheim
Batch Yield Test) yöntemi ile belirlenmiştir. Bu kapsamda, büyükbaş hayvan
gübresi çiftlikten, portakal işleme atıkları ise meyve suyu işleme
tesislerinden alınarak laboratuar ortamında kurutulup öğütülmüş ve beş materyal
(%100 portakal işleme atıkları, %100 büyükbaş hayvan gübresi, %25 portakal
işleme atıkları  + %75 büyükbaş hayvan gübresi, %50 portakal işleme
atıkları  + %50 büyükbaş hayvan gübresi, %75 portakal işleme
atıkları  + %25 büyükbaş hayvan gübresi) meydana getirilmiştir. Yapılan
araştırma sonucunda en yüksek, ham protein oranı (%12.06) ve ham yağ oranı (%2.30)
%100 portakal işleme atıkları materyalinden, kuru madde oranı (%90.75) %100
büyükbaş hayvan gübresi materyalinden, organik kuru madde oranı (%95.56) %100
portakal işleme atıkları materyalinden, ADF oranı (%60.20) %100 büyükbaş hayvan
gübresi materyalinden ve NDF oranı (%26.50) %25 portakal işleme atıkları + %75
büyükbaş hayvan gübresi materyalinden elde edilmiştir. Ele alınan materyallerde
en yüksek metan üretimi 25 ile 35 günler arasında gerçekleşmiştir. Karışım
materyallerinde en yüksek biyogaz (0.70 Nm3/kg OKM) ve metan (0.37
Nm3/kg OKM) üretim değerleri, %75 portakal işleme atıkları  +
%25 büyükbaş hayvan gübresi materyalinden oluşmuştur. Biyogazdaki metan oranı,
en yüksek (%53.77) %50 portakal işleme atıkları  + %50 büyükbaş hayvan
gübresi materyalinden elde edilmiştir. Çalışmada portakal işleme atıklarının
büyükbaş hayvan gübresi ile ko-fermantasyonu, metan ve biyogaz üretimini istatiksel
olarak önemli düzeyde (P≤0.05) arttırmıştır. 

Kaynakça

  • Abbasi, T, Tauseef, S. M., Abbasi, S. A., 2012. Biogas and Biogas Energy: An Introduction. Biogas Energy, 1-10.
  • Acaroğlu, M., 2007. Alternatif Enerji Kaynakları. Nobel Yayın No: 1253, , ISBN 978-605-395-047-9, 609 p, Ankara
  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L. 2007. Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118 (1-4): 173-182.
  • Angelidaki, I., Ahring, B. K., 1993. Thermophilic Anaerobic Digestion of Livestock Waste: the Effect of Ammonia. Applied Microbiology and Biotechnology, 38: 560-564.
  • AOAC, 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. US.
  • Aybek, A., Üçok, S., 2017. Determination and Evaluation of Biogas and Methane Productions of Vegetable and Fruit Wastes with HBT Method. International Journal of Agricultural and Biological Engineering, International Journal of Agricultural and Biological Engineering, 10 (4): 207-215.
  • Brown, R.C., 2003. Biorenewable resources : engineering new products from agriculture. Iowa State Press, Ames, Iowa, 286 p.
  • Cassidy, D. P., Hirl, P. J., Belia, E., 2008. Methane production for ethanol coproduction in anaerobic SBRS. Water Sci Technol., 58 (4): 789-93.
  • Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S., 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, 101 (10): 3780–3783. Çallı, B., 2012. Atıklardan Biyogaz Üretimi. Türkiye Kimya Derneği -Genç Kimyacılar Platformu, http://eng.marmara.edu.tr/enve
  • Demirbaş, A. H., Demirbaş, I., 2007. Importance of rural bioenergy for developing countries. Energy Convers Manage, 48 (8): 2386-2398.
  • Deublein, D., Steinhauser, A., 2008. Biogas from Waste and Renewable Resources, p.1-450.
  • Haggerty, A. P., 2010. Biomass crops: production, energy, and the environment. Nova Science Publisher's, Hauppauge, N.Y., 323 p.
  • Jimenez, S., Cartagena, M. C., Arce, A., 1990. Influence of lignin on the methanization of lignocellulosic wastes. Biomass, 21, 43–54
  • Klass, D., 1998. Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, USA, 651 p.
  • Mansourpoor, M., Shariati, A., 2012. Effect of mixture of alcohols on biodiesel properties which produced from waste cooking oils and compare combustion performance and emissions of biodiesels with petrodiesel. Adv Environ Sci, 4 (3): 153.
  • Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Okoh, A. I., Makaka, G., Simon, M., 2013. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int J Environ Res Public Health, 10 (9): 4390-417.
  • Matuszewska, A., Owczuk, ., M., Zamojska-Jaroszewicz, A., Jakubiak-Lasocka, J., Lasocki, J., Orlin´ ski, P., 2016. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Conversion and Management, 125: 309-319.
  • McGowan, T., 2009. Biomass and alternate fuel systems: an engineering and economic guide. John Wiley & Sons Hoboken, New York, 264 p.
  • Ogunleye, O. O., Aworanti, O. A., Agarry, S. E., Aremu, M. O., 2016. Enhancement of animal waste biomethanation using fruit waste as co-substrate and chicken rumen as inoculums. Energy Sources, Part A: Recov. Utiliz Environ Effects, 38(11): 1653-60.
  • Onurbaş Avcıoğlu, A., Türker, U., Demirel Atasoy, Z., Koçtürk, D., 2011. Tarımsal Kökenli Yenilenebilir Enerjiler-Biyoyakıtlar. Nobel Yayınları, Yayın No: 72, ISBN 978-605-5426-71-2, 493 s, Ankara.
  • Öztürk, H. H., 2011. Bitkisel üretimde enerji yönetimi. Hasad Yayıncılık Ltd. Şti., ISBN: 978-975-8377-78-7, 248s, Istanbul
  • Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of biogas to biomethane. Biomass Bioenergy, 35:1633–45.
  • Tiehm, K. N., Zellhorn, M., Neis, U., 2001. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res., 35 (8): 2003-9.URL, 2017. Biyogaz. http://biyogaz.entmakina.com/biyogaz-nedir/.
  • Üçgül, İ., Akgül, G., 2010. Biyokütle Teknolojisi. Journal of YEKARUM, 1(1): 3-11.
  • Xiao, W.,Yao, W., Zhu, J., Miller, C., 2010. Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol., 101: 4042-7.
  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber. neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci.. 74. 3583–3597.
  • VDI 4630, 2006. Fermentatıon of Organic Material, Characterisatıon of Substrate, Collectıon of Material Data, Fermentatıon Tests, VDI Gesellschaft Energietechnik.

CO-FERMENTATION OF PROCESSED ORANGE WASTES WITH CATTLE MANURE

Yıl 2019, Cilt: 22 - Özel Sayı, 109 - 117, 29.11.2019

Öz

In this study, effect
of cattle manure when it’s added into the different percentage of processed
orange wastes (25%, 50%, 75%) been analyzed by HBT. Cattle manure collected
from the farms and processed orange waste collected from the fruit base juice
companies then dried and ground in the standard laboratory conditions and
produced 5 materials (100% processed orange waste, 100% cattle manure; 25%
processed orange waste+ 75% cattle manure; 50% processed orange waste+50%
cattle manure; 75% processed orange waste+ 25% cattle manure) As a result of
this study, the highest percentage of raw protein (12.06%) and percentage of
raw fat( or raw oil) (2.30%) produced from 100% processed orange waste, dry
material percentage (90.75%) from 100% cattle manure, organic dry material
percentage (95.56%) from 100% processed orange waste, ADF percentage (60.20%)
100% cattle manure and NDF percentage (26.20%) 25% processed orange waste+75%
cattle manure. Within 5 materials, the highest amount of methane was produced
25 to 35 days. The highest amount of biogas (0.70 Nm3/kg ODM) and
methane (0.37 Nm3/kg ODM) produced with 75% processed orange waste+
25% cattle manure. The highest amount of methane (53.77%) in biogas produced
with 50% processed orange waste+50% cattle manure.  Based on this study, fermentation of processed
orange waste with cattle manure statistically increased the production of
methane and biogas in higher amount (P≤0.05).

Kaynakça

  • Abbasi, T, Tauseef, S. M., Abbasi, S. A., 2012. Biogas and Biogas Energy: An Introduction. Biogas Energy, 1-10.
  • Acaroğlu, M., 2007. Alternatif Enerji Kaynakları. Nobel Yayın No: 1253, , ISBN 978-605-395-047-9, 609 p, Ankara
  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L. 2007. Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118 (1-4): 173-182.
  • Angelidaki, I., Ahring, B. K., 1993. Thermophilic Anaerobic Digestion of Livestock Waste: the Effect of Ammonia. Applied Microbiology and Biotechnology, 38: 560-564.
  • AOAC, 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. US.
  • Aybek, A., Üçok, S., 2017. Determination and Evaluation of Biogas and Methane Productions of Vegetable and Fruit Wastes with HBT Method. International Journal of Agricultural and Biological Engineering, International Journal of Agricultural and Biological Engineering, 10 (4): 207-215.
  • Brown, R.C., 2003. Biorenewable resources : engineering new products from agriculture. Iowa State Press, Ames, Iowa, 286 p.
  • Cassidy, D. P., Hirl, P. J., Belia, E., 2008. Methane production for ethanol coproduction in anaerobic SBRS. Water Sci Technol., 58 (4): 789-93.
  • Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S., 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, 101 (10): 3780–3783. Çallı, B., 2012. Atıklardan Biyogaz Üretimi. Türkiye Kimya Derneği -Genç Kimyacılar Platformu, http://eng.marmara.edu.tr/enve
  • Demirbaş, A. H., Demirbaş, I., 2007. Importance of rural bioenergy for developing countries. Energy Convers Manage, 48 (8): 2386-2398.
  • Deublein, D., Steinhauser, A., 2008. Biogas from Waste and Renewable Resources, p.1-450.
  • Haggerty, A. P., 2010. Biomass crops: production, energy, and the environment. Nova Science Publisher's, Hauppauge, N.Y., 323 p.
  • Jimenez, S., Cartagena, M. C., Arce, A., 1990. Influence of lignin on the methanization of lignocellulosic wastes. Biomass, 21, 43–54
  • Klass, D., 1998. Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, USA, 651 p.
  • Mansourpoor, M., Shariati, A., 2012. Effect of mixture of alcohols on biodiesel properties which produced from waste cooking oils and compare combustion performance and emissions of biodiesels with petrodiesel. Adv Environ Sci, 4 (3): 153.
  • Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Okoh, A. I., Makaka, G., Simon, M., 2013. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int J Environ Res Public Health, 10 (9): 4390-417.
  • Matuszewska, A., Owczuk, ., M., Zamojska-Jaroszewicz, A., Jakubiak-Lasocka, J., Lasocki, J., Orlin´ ski, P., 2016. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Conversion and Management, 125: 309-319.
  • McGowan, T., 2009. Biomass and alternate fuel systems: an engineering and economic guide. John Wiley & Sons Hoboken, New York, 264 p.
  • Ogunleye, O. O., Aworanti, O. A., Agarry, S. E., Aremu, M. O., 2016. Enhancement of animal waste biomethanation using fruit waste as co-substrate and chicken rumen as inoculums. Energy Sources, Part A: Recov. Utiliz Environ Effects, 38(11): 1653-60.
  • Onurbaş Avcıoğlu, A., Türker, U., Demirel Atasoy, Z., Koçtürk, D., 2011. Tarımsal Kökenli Yenilenebilir Enerjiler-Biyoyakıtlar. Nobel Yayınları, Yayın No: 72, ISBN 978-605-5426-71-2, 493 s, Ankara.
  • Öztürk, H. H., 2011. Bitkisel üretimde enerji yönetimi. Hasad Yayıncılık Ltd. Şti., ISBN: 978-975-8377-78-7, 248s, Istanbul
  • Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of biogas to biomethane. Biomass Bioenergy, 35:1633–45.
  • Tiehm, K. N., Zellhorn, M., Neis, U., 2001. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res., 35 (8): 2003-9.URL, 2017. Biyogaz. http://biyogaz.entmakina.com/biyogaz-nedir/.
  • Üçgül, İ., Akgül, G., 2010. Biyokütle Teknolojisi. Journal of YEKARUM, 1(1): 3-11.
  • Xiao, W.,Yao, W., Zhu, J., Miller, C., 2010. Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol., 101: 4042-7.
  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber. neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci.. 74. 3583–3597.
  • VDI 4630, 2006. Fermentatıon of Organic Material, Characterisatıon of Substrate, Collectıon of Material Data, Fermentatıon Tests, VDI Gesellschaft Energietechnik.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ali Aybek 0000-0003-3036-8204

Levent Gürsel Albayram 0000-0002-6152-8138

Serdar Üçok 0000-0002-7158-669X

Yayımlanma Tarihi 29 Kasım 2019
Gönderilme Tarihi 1 Ağustos 2019
Yayımlandığı Sayı Yıl 2019Cilt: 22 - Özel Sayı

Kaynak Göster

APA Aybek, A., Albayram, L. G., & Üçok, S. (2019). CO-FERMENTATION OF PROCESSED ORANGE WASTES WITH CATTLE MANURE. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22, 109-117.