Araştırma Makalesi
BibTex RIS Kaynak Göster

KÂGİR BLOK ÜRETİMİNDE FARKLI ORİJİNLİ İKİ POMZANIN PERFORMANSLARI ÜZERİNE KARŞILAŞTIRMALI BİR ANALİZ: TOMARZA VE TATVAN ÖRNEĞİ

Yıl 2022, Cilt: 25 Sayı: 4, 537 - 555, 03.12.2022
https://doi.org/10.17780/ksujes.1115902

Öz

Bu çalışmada, ince, orta ve iri boyut pomza agrega olarak 0/4 mm, 4/8 mm 8/12 mm ebatlarda pomza agregalı hafif beton (PAHB) numuneleri üretilmiştir. Pomza agregaları Bitlis-Tatvan (BT) ve Kayseri-Tomarza (KT) olmak üzere iki farklı pomza ocağından elde edilmiştir. PAHB tasarımlarında ağırlıkça 30:50:20, 30:30:40 ve 20:50:30 olarak üç ince:orta:iri agrega oranı kullanılmıştır. Her bir grup için karışımda sırasıyla 130, 170, 200 ve 240 kg/m3 dozajlarında çimento kullanılmıştır. Çalışmanın ikinci aşamasında, pomza agregalı kagir blok (PAKB), deneme küp numunelerinde kullanılan karışım oranları ile aynı şekilde tam ölçekli olarak üretilmiştir. Çalışma sonuçlarına göre, BT ve KT agregası ile hazırlanmış PAHB küp örneklerinde en yüksek dayanım değerleri 2.27 ve 3.18 MPa ile 240 kg/m3 çimento dozajına ve sırasıyla, 30:30:40 ve 30:50:20 agrega kullanım oranına sahip karışımlarda elde edilmiştir. Betonun yoğunluk seviyesi arttıkça kuruma büzülmesinin ve rutubet genleşmesinin arttığı ancak, agrega/çimento oranının artması ile azaldığı gözlemlenmiştir. Kagir bloklarda en düşük ısı iletkenlik katsayısına 0.120 W/mK ile BT pomza agregalı blok numunelerinde tespit edilmiştir.

Kaynakça

  • ACI, (1989). Guide for Use of Normal Weight and Heavyweight Aggregates in Concrete, ACI 221R-89, ACI Committee 221 Report, American Concrete Institute, Farmington Hills, MI.
  • Al-Jabri, K. S., Hago, A. W., Al-Nuaimi, A. S., & Al-Saidy, A. H. (2005). Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research, vol. 35, pp. 1472-1479.
  • Anonim. (2021). The Pantheon in Rome, The Temple of al Gods. https://www.italyguides.it/en/lazio/rome/ancient-rome/pantheon
  • Berge, O., (1983) Lätt isolerande konstruktrionsbeton med isländsk pimpsten som ballast, Västra Frölunda.
  • Bomhard, H., (1980). Lightweight concrete structures, potentialities, limits and realities, The Concrete Society, The Construction Press, Lancaster, London, New York, UK, pp.227-290.
  • Bremmer, T. W., & Holm, T. A., (1986). Elasticity, compatibility and the behavior of concrete. ACI Material Journal, vol. 83, no. 2, pp. 244-250.
  • Brown, B. J., & Skinner, M. (1990). Report On Concrete Mix Design For Lightweight Masonry Units Using Yali Pumice Coarse and Fine Aggregates. Report No: 89/3408D/2923, STATS Scotland Ltd., East Kilbride, Scotland, UK.
  • ESCSI, (1997). A Tehnical report on Rotary Kiln Produced Structural Lightweight Aggregate, Expanded Shale, Clay and Slate, England, pp.1-19.
  • Failla, A., Mancuso, P., Miraglia, N., & Ruisi, V. (1997). Experimental – Theoretical Study on Pumice Aggregate Lightweight Concrete”, Technical Report The Instuto di Scienza delle Costruzioni, Facolta di Ingegneria, Palermo; Published by Ministero della Publica Instuzione, Palermo, Italy, pp.3-22.
  • FIP, (1983). FIP Manual of Lightweight Aggregate Concrete, 2nd ed., Survey Univ. Press, London. Gündüz, L. (2005a). İnşaat Sektöründe Bimsblok, Süleyman Demirel Üniversitesi, Pomza Araştırma ve Uygulama Merkezi, Isparta.
  • Gündüz, L. (2005b). A technical report on lightweight aggregate masonry block manufacturing in Turkey, Suleyman Demirel University, Isparta, Turkey, pp 1-110, 2005.
  • Gündüz, L., & Uğur, İ. (2005). The effects of different fine and coarse pumice aggregate/cement ratios on the structural concrete properties without using any admixtures. Cement and Concrete Research, vol. 35, pp. 1859-1864.
  • Gündüz, L., (Ed.) (1998). Pomza Teknolojisi (Pomza Karakterizasyonu), Cilt I, Isparta, Türkiye, s285.
  • Hossain, K. M. A., (2004). Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, vol. 34, pp. 283-291.
  • Kostmatka, S. H., Kerkhoff, B., Panarese, W. C., Macleod, N. F., & McGrath, R. J., (2002). Design and control of concrete mixtures, 7th Canadian ed., Engineering Bulletin, vol. 101, Cement Association of Canada, Ottawa, Ontario.
  • LAVA, (1998). Maple Aggregates, LAVA pumice stone and its use, Printed in England by James Quentin Associates Limited, Brighton, England, pp.1-8.
  • Neville, A. M. (1996). Properties of Concrete, Fourth and Final Edition, Harlow, UK: Addison Wesley Longman Limited.
  • RILEM, (1978). Functional Classification of Lightweight Concretes, Recommendation, RILEM LC2, second edition.
  • Ünal, O., Uygunoğlu, T., & Yıldız, A. (2007). Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, vol. 42, no. 2, pp. 584-590.
  • Yang, C. C. & Huang, R. A. (1996). A two-phase model for predicting the compressive strength of concrete. Cement and Concrete Research, vol. 26, no. 10, pp. 1567-1577.
  • Yasar, E., Atis, C. D., Kılıç, A., & Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash, Materials Letters, vol. 57, pp. 2267-2270.

A COMPARATIVE ANALYSIS ON THE PERFORMANCES OF DIFFERENT ORIGINATED TWO PUMICE IN PRODUCTION OF MASONRY BLOCKS: TOMARZA AND TATVAN SAMPLE

Yıl 2022, Cilt: 25 Sayı: 4, 537 - 555, 03.12.2022
https://doi.org/10.17780/ksujes.1115902

Öz

Pumice aggregate lightweight concretes (PAHB) were produced with fine, medium and coarse pumice aggregates as 0/4 mm, 4/8 mm and 8/12 mm. The pumice aggregates were obtained from two different pumice quarries, namely Bitlis-Tatvan(BT) and Kayseri-Tomarza(KT). Three different fine:medium:coarse aggregate ratios by weight, 30:50:20, 30:30:40 and 20:50:30 were used. Also, four different cement dosages of 130, 170, 200 and 240 kg/m3 were used. In the second stage, pumice aggregate masonry block (PAKB) was produced in full scale with the same mixing ratios used in the cube samples. According to the results, the highest strength values in PAHB cube samples prepared with BT and KT aggregates were obtained as 2.27 and 3.18 MPa in mixtures with cement dosage of 240 kg/m3 and aggregate usage ratio of 30:30:40 and 30:50:20, respectively. As the density of concrete increased, the drying shrinkage and moisture expansion increased, but decreased with the increase of the aggregate/cement ratio. The lowest thermal conductivity coefficient in masonry blocks was found as 0.120 W/mK in BT aggregate block samples.

Kaynakça

  • ACI, (1989). Guide for Use of Normal Weight and Heavyweight Aggregates in Concrete, ACI 221R-89, ACI Committee 221 Report, American Concrete Institute, Farmington Hills, MI.
  • Al-Jabri, K. S., Hago, A. W., Al-Nuaimi, A. S., & Al-Saidy, A. H. (2005). Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research, vol. 35, pp. 1472-1479.
  • Anonim. (2021). The Pantheon in Rome, The Temple of al Gods. https://www.italyguides.it/en/lazio/rome/ancient-rome/pantheon
  • Berge, O., (1983) Lätt isolerande konstruktrionsbeton med isländsk pimpsten som ballast, Västra Frölunda.
  • Bomhard, H., (1980). Lightweight concrete structures, potentialities, limits and realities, The Concrete Society, The Construction Press, Lancaster, London, New York, UK, pp.227-290.
  • Bremmer, T. W., & Holm, T. A., (1986). Elasticity, compatibility and the behavior of concrete. ACI Material Journal, vol. 83, no. 2, pp. 244-250.
  • Brown, B. J., & Skinner, M. (1990). Report On Concrete Mix Design For Lightweight Masonry Units Using Yali Pumice Coarse and Fine Aggregates. Report No: 89/3408D/2923, STATS Scotland Ltd., East Kilbride, Scotland, UK.
  • ESCSI, (1997). A Tehnical report on Rotary Kiln Produced Structural Lightweight Aggregate, Expanded Shale, Clay and Slate, England, pp.1-19.
  • Failla, A., Mancuso, P., Miraglia, N., & Ruisi, V. (1997). Experimental – Theoretical Study on Pumice Aggregate Lightweight Concrete”, Technical Report The Instuto di Scienza delle Costruzioni, Facolta di Ingegneria, Palermo; Published by Ministero della Publica Instuzione, Palermo, Italy, pp.3-22.
  • FIP, (1983). FIP Manual of Lightweight Aggregate Concrete, 2nd ed., Survey Univ. Press, London. Gündüz, L. (2005a). İnşaat Sektöründe Bimsblok, Süleyman Demirel Üniversitesi, Pomza Araştırma ve Uygulama Merkezi, Isparta.
  • Gündüz, L. (2005b). A technical report on lightweight aggregate masonry block manufacturing in Turkey, Suleyman Demirel University, Isparta, Turkey, pp 1-110, 2005.
  • Gündüz, L., & Uğur, İ. (2005). The effects of different fine and coarse pumice aggregate/cement ratios on the structural concrete properties without using any admixtures. Cement and Concrete Research, vol. 35, pp. 1859-1864.
  • Gündüz, L., (Ed.) (1998). Pomza Teknolojisi (Pomza Karakterizasyonu), Cilt I, Isparta, Türkiye, s285.
  • Hossain, K. M. A., (2004). Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, vol. 34, pp. 283-291.
  • Kostmatka, S. H., Kerkhoff, B., Panarese, W. C., Macleod, N. F., & McGrath, R. J., (2002). Design and control of concrete mixtures, 7th Canadian ed., Engineering Bulletin, vol. 101, Cement Association of Canada, Ottawa, Ontario.
  • LAVA, (1998). Maple Aggregates, LAVA pumice stone and its use, Printed in England by James Quentin Associates Limited, Brighton, England, pp.1-8.
  • Neville, A. M. (1996). Properties of Concrete, Fourth and Final Edition, Harlow, UK: Addison Wesley Longman Limited.
  • RILEM, (1978). Functional Classification of Lightweight Concretes, Recommendation, RILEM LC2, second edition.
  • Ünal, O., Uygunoğlu, T., & Yıldız, A. (2007). Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, vol. 42, no. 2, pp. 584-590.
  • Yang, C. C. & Huang, R. A. (1996). A two-phase model for predicting the compressive strength of concrete. Cement and Concrete Research, vol. 26, no. 10, pp. 1567-1577.
  • Yasar, E., Atis, C. D., Kılıç, A., & Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash, Materials Letters, vol. 57, pp. 2267-2270.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Yayımlanma Tarihi 3 Aralık 2022
Gönderilme Tarihi 12 Mayıs 2022
Yayımlandığı Sayı Yıl 2022Cilt: 25 Sayı: 4

Kaynak Göster

APA Gündüz, L., & Kalkan, Ş. O. (2022). KÂGİR BLOK ÜRETİMİNDE FARKLI ORİJİNLİ İKİ POMZANIN PERFORMANSLARI ÜZERİNE KARŞILAŞTIRMALI BİR ANALİZ: TOMARZA VE TATVAN ÖRNEĞİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 537-555. https://doi.org/10.17780/ksujes.1115902