TULUM PEYNİRİNDEN Lactobacillus plantarum VE Lactobacillus paracasei İZOLASYONU, TANIMLANMASI VE ANTİBİYOTİK DİRENÇLİLİK ÖZELLİKLERİNİN BELİRLENMESİ
Yıl 2022,
Cilt: 25 Sayı: Özel Sayı, 28 - 35, 13.12.2022
Gül Küçükönder
Tuğba Erdem
,
Sermet Ayman
,
Yekta Gezginç
Öz
Laktik asit bakterileri (LAB); doğada fermentatif, fakültatif, anaerob ve aerotolerant özelliklere sahip geniş bir mikroorganizma grubudur. LAB’ların çeşitli fermentasyonlar açısından önemli bir yere sahip oldukları bilinmektedir. LAB’ lar antibiyotiklere maruz kalma durumlarında gıda tüketimi ile tüketicilerde antibiyotik direnç belirleyicilerin yayılımı açısından önem arz etmektedirler. Bu çalışmada Tulum peynirlerinden izole edilen ve Lactobacillus plantarum (9) ve Lactobacillus paracasei (6) olarak PCR yöntemi ile tanımlanan izolatların antibiyotik dirençlilikleri fenotipik yöntemlerle belirlenmiştir. LAB izolatlarının göstermiş olduğu en yüksek direncin (%100) kanamisin, streptomisin ve ampisilin antibiyotiklerine karşı olduğu tespit edilmiştir. Ayrıca eritromisin (% 86,6), rifampisin ve tetrasiklin (%73,3), gentamisin ve vankomisin (% 80), kloramfenikol (% 60), penisilin (% 53,3) antibiyotiklerine karşı da önemli oranlarda dirençlilik tespit edilmiştir.
Destekleyen Kurum
Kahramanmaraş Sütçü İmam Üniversitesi, Bilimsel Araştırma Projeleri Başkanlığı, Türkiye Bilimsel Araştırma Kurumu (TÜBİTAK) 2014/3
Proje Numarası
2016/6-24YLS
Kaynakça
- Akçay, D., & Gündoğan, N. (2019). Çiğ süt ve peynir örneklerinden izole edilen Lactobacillus tür’lerinin slime ve biyofilm oluşumları ile antibiyotik dirençliliklerinin incelenmesi. In 2019 3rd International Symposium on Innovative Approaches in Sciemtific Studies (ISAS) 4(1), (pp. 634-639). SETSCI.
- Ammor, M. S., Florez, A. B., & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology, 24, 559-570. https://doi.org/10.1016/j.fm.2006.11.001
- Ammor, M. S., Gueimonde, M., Danielsen, M., Zagorec, M., van Hoek, A. H. A. M., de los Reyes-Gavila’n, C. G., Baltasar, M. & Margolles, A. (2008). Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei rits 9. Applied and Environmental Microbiolgy, 74 (5), 1394-1401. https://doi.org/10.1128/AEM.01463-07
- Coeuret, V., Dubernet, S., Bernardeau, M., Gueguen, M., & Vernoux, J. P. (2003). Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. Le Lait, 83(4), 269-306. https://doi.org/10.1051/lait:2003019
- Courvalin, P., (2006). Antibiotic Resistance: The Pros and Cons of Probiotics. Digestive and Liver Disease, 38, 261-265. https://doi.org/10.1016/S1590-8658(07)60006-1
- Danielsen, M. (2002). Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid, 48, 98-103. https://doi.org/10.1016/S0147-619X(02)00118-X
- Dellaglio, F., Felis, G. E., Castioni, A., Torriani, S., & Germond, J. E. (2005). Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. International Journal of Systematic and Evolutionary Microbiology, 55(1), 401-404. https://doi.org/10.1099/ijs.0.63067-0
- Egervarn, M., Lindmark, H., Olsson, J., & Roos, S. (2010). Transferability of tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Antonie van Leeuwenhoek, 97, 189-200. https://doi.org/10.1007/s10482-009-9401-0
- Furet, J-P., Quenee, P., & Tailliez, P. (2004). Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. Journal of Food Microbiology, 97(2), 197-207. https://doi.org/10.1016/j.ijfoodmicro.2004.04.020
- Gevers, D., Huys, G., Devlieghere, F., Uyttendaele, M., Debevere, J., & Swings, J. (2000). Isolation and identification of tetracycline resistance lactic acid bacteria from pre-packed sliced meat products. Systematic and Applied Microbiology, 23, 279-284. https://doi.org/10.1016/S0723-2020(00)80015-6
- Gobbetti, M., Angelis, M., Corsetti, A., & Cagno, R. (2005). Biochemistry and physiology of sourdough lactic acid bacteria. Trends in Food Science & Technology, 16, 1-13. https://doi.org/10.1016/j.tifs.2004.02.013
- Herreos, M. A., Sandoval, H., Gonzalez, L., Castroj, J. M., Frenso, J. M., & Tornadijo, M. E. (2005). Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from armada cheese (a Spanish goats’ milk cheese) Spain. Food Microbiology, 22, 455-459. https://doi.org/10.1016/j.fm.2004.11.007
- Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15, 67- 68. https://doi.org/10.1016/j.tifs.2003.09.004
- Madhavan, H. N., & Sowmiya, M. (2011). Mechanisms of development of antibiotic resistance in bacteria among clinical specimens. Journal of Clinical and Biomedical Sciences, 1, 42-48.
- Özkan, E. R., Demirci, T., & Akın, N. (2021). In vitro assessment of probiotic and virulence potential of Enterococcus faecium strains derived from artisanal goatskin casing Tulum cheeses produced in central Taurus Mountains of Turkey. LWT, 141, 110908. https://doi.org/10.1016/j.lwt.2021.110908
- Sharma, P., Tomar, S. K., Goswami, P., Sangwan, V., & Singh, R. (2014). Antibiotic resistance among commercially available probiotics- A Review. Food Research International, 57, 176-195. https://doi.org/10.1016/j.foodres.2014.01.025
- Tabasco, R., Paarup, T., Janer, C., Peláez C., & Requena, T. (2007). Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. International Dairy Journal, 17(9), 1107–1114. https://doi.org/10.1016/j.idairyj.2007.01.010
- Tavşanlı, H., Mus, T. E., Cetinkaya, F., Aynaoglu, E., & Cibik, R. (2021). Isolation of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus from nature: Technological characterisation and antibiotic resistance. Czech Journal of Food Sciences, 39(4), 305-311. https://doi.org/10.17221/296/2020-CJFS
- Terkuran, M., Turhan, E. Ü., & Erginkaya, Z. (2019). The risk of vancomycin resistant enterococci infections from food industry. In A. Malik, Z. Erginkaya, & H. Erten, (Eds.). Health and Safety Aspects of Food Processing Technologies (pp. 513-535). Springer, Cham.
- Walter, J., Tannock, G. W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D. M., Munro, K., & Alatossava, T. (2000). Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Applied and Environmental Microbiology, 66(1), 297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
- Yalanca, İ. (2009). Geleneksel Et ürünlerinden izole edilen laktik asit bakterilerinin antibiyotik direncinin belirlenmesi. Yüksek Lisans Tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Ana Bilim Dalı, Adana.
- Yerlikaya, O., Gucer, L., Akan, E., Meric, S., Aydin, E., & Kinik, O. (2021). Benzoic acid formation and its relationship with microbial properties in traditional Turkish cheese varieties. Food Bioscience, 41, 101040. https://doi.org/10.1016/j.fbio.2021.101040
- Zapaśnik, A., Sokołowska, B., & Bryła, M. (2022). Role of lactic acid bacteria in food preservation and safety. Foods, 11(9), 1283. https://doi.org/10.3390/foods11091283