Araştırma Makalesi
BibTex RIS Kaynak Göster

HİJYENİK PEDLERİN CİLT TABAKASINA UYGUN DOKUSUZ YÜZEYLERİN KONFOR BİLEŞENLERİNİN İNCELENMESİ

Yıl 2023, Cilt: 26 Sayı: 4, 922 - 931, 03.12.2023
https://doi.org/10.17780/ksujes.1325467

Öz

Bu çalışmada, rejenere selüloz esaslı ürünlerin, hijyenik pedlerin cilde temas eden üst tabakasında kullanılabilirliğine yönelik karakterizasyon çalışmaları rapor edilmiştir. Bu amaçla %100 viskoz, viskoz/poliester karışımı ve %100 Tencel içerikli, su jeti ile birleştirilmiş apertürsüz beş farklı dokusuz yüzey seçilmiştir. Seçilen dokusuz yüzeylerin metrekare ağırlıkları 42 -72 g/m2 aralığında değişmektedir. Numunelerin hava geçirgenliği ve su buharı geçirgenliği özellikleri sırasıyla 856-2079 mm/s ve su buharı geçirgenliği 724-767 g/m2/gün aralığındadır. Gerçekleştirilen kuruma süresi testine göre %100 viskoz içeren dokusuz yüzeylerin iki saatin sonunda ilk ağırlığına ulaştığı belirlenmiştir. Çok çeşitli tekstil yüzeylerinin dokunsal konforunun analizi amacıyla geliştirilen yeni bir ölçüm cihazı olan Tactile Sensation Analyzer ile dokusuz yüzeylerin yüzey yapısı ve düşük yük mekanik özellikleri değerlendirilmiştir. Viskoz/poliester (50/50) karışımlı dokusuz yüzeyin en düşük rijitliğe sahip örnek olduğu saptanmıştır. Dokusuz yüzeylerin mikro ve makro yüzey varyasyonu değerleri arasında ise anlamlı bir fark gözlemlenmemiştir. Mevcut araştırmanın çıktıları göz önüne alındığında, düşük birim alan kütlesi ve kalınlıkta üretilen viskoz ve viskoz/poliester karışımlı dokusuz yüzeylerin hijyenik pedlerin üst tabaka uygulamalarında daha yüksek konfor sağlayabileceği sonucuna varılmıştır.

Teşekkür

Yazarlar, bu çalışmadaki iş birliği için EMTEC Electronic GmbH'ye teşekkür eder.

Kaynakça

  • Ajmeri, J. R. & Ajmeri, C. J. (2011). Nonwoven materials and technologies for medical applications. In V. T. Bartels (Ed). Handbook of Medical Textiles (pp. 106-131). Woodhead Publishing.
  • Atasağun, H. G., & Kara, S. (2022). Investigation of moisture management and frictional characteristics of top layers used in disposable absorbent hygiene products. Fibers and Polymers, 23(9), 2577-2585. https://doi.org/10.1007/s12221-022-0032-7
  • Avcıoğlu Kalebek, N., & Babaarslan, O. (2009). Evaluation of friction and stiffness behaviour of nonwovens produced with spunbond and spunlace methods. Textile and Apparel, 19(2), 145-150. Retrieved from https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/23634/251718
  • Avcıoğlu Kalebek, N., & Babaarslan, O. (2016). Fiber selection for the production of nonwovens. In H. Y. Jean (Ed.), Non-woven Fabrics (pp. 1-32), InTech Open, 2016. https://dx.doi.org/10.57722/61977
  • Bhuiyan, M. R., Wang, L., Shaid, A., Jahan, I., & Shanks, R. A. (2020). Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort. Journal of Materials Science, 55, 2405-2418. https://doi.org/10.1007/s10853-019-04203-2
  • Cho, J. S., Tanabe, S. I., & Cho, G. (1997). thermal comfort properties of cotton and nonwoven surgical gowns with dual flunctional finish. Applied Human Science, 16(3), 87-95. https://doi.org/10.2114/jpa.16.87
  • Cımıllı Duru, S. & Candan, C. (2016). Wicking and drying behaviors of knitted fabrics produced with different poliamide yarns. Textile and Apparel, 26(3), 280-286.
  • Das, B., Das, A., Kothari, V. K., Fanguiero, R., & De Araújo, M. (2008). Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics. Fibers and Polymers, 9, 225-231. https://doi.org/10.1007/s12221-008-0036-y
  • Deng, C., Seidi, F., Yong, Q., Jin, X., Li, C., Zhang, X., Han, J., Liu, Y., Huang, Y., Wang, Y., Yuan, Z. & Xiao, H. (2022). Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. Journal of Hazardous Materials, 424, 127391. https://doi.org/10.1016/j.jhazmat.2021.127391
  • Eryuruk, S. H., Kayaoglu, B. K., & Altay, P. (2018). Thermal comfort properties of nonwoven fabrics used in surgical gowns. IOP Conference Series: Materials Science and Engineering, 459(1), 012039. https://doi.org/ 10.2114/jpa.16.87
  • Getu, A., & Sahu, O. (2014). Technical fabric as health care material. Biomedical Science and Engineering, 2(2), 35-39. https://doi.org/10.12691/bse-2-2-1
  • Gurudatt, K., Nadkarni, V. M., & Khilar, K. C. (2010). A study on drying of textile substrates and a new concept for the enhancement of drying rate. The Journal of The Textile Institute, 101(7), 635-644. https://doi.org/10.1080/00405000902732776
  • Hong, K. H., Kim, S. C., Kang, T. J., & Oh, K. W. (2005). Effect of abrasion and absorbed water on the handle of nonwovens for disposable diapers. Textile Research Journal, 75(7), 544-550. https://doi.org/10.1177/0040517505053856
  • Liu, M., Ma, C., Zhou, D., Chen, S., Zou, L., Wang, H., & Wu, J. (2022). Hydrophobic, breathable cellulose nonwoven fabrics for disposable hygiene applications. Carbohydrate Polymers, 288, 119367. https://doi.org/10.1016/j.carbpol.2022.119367
  • Jain, R. K., Sinha, S. K., & Das, A. (2018). Structural investigation of spunlace nonwoven. Research Journal of Textile and Apparel, 22(3), 158-179. https://doi.org/10.1108/RJTA-07-2017-0038
  • Pause, B. (2003). Nonwoven protective garments with thermo-regulating properties. Journal of Industrial Textiles, 33(2), 93-99. https://doi.org/10.1177/152808303038859
  • Kara S. (2019, Kasım) A comparative study on the permeability and sensorial comfort related mechanical properties of sanitary napkin layers. In 2019 17th National 3rd International the Recent Progress Symposium on Textile Technology and Chemistry, Bursa, Türkiye.
  • Kawabata, S., Niwa, M., & Wang, F. (1994). Objective hand measurement of nonwoven fabrics: Part I: Development of the equations. Textile Research Journal, 64(10), 597-610. https://doi.org/10.1177/004051759406401008
  • Rahma, T., Soumaya, S., Naima, H., & Mohamed, B. H. (2018). Decision support tool for hygienic product company: Industrial tactile sensory panel analysis implementation. Textile and Apparel, 28(4), 294-303. https://doi.org/10.32710/tekstilvekonfeksiyon.493093
  • Shimomura, T. & Namba, T. (1994) Preparation and application of high-performance superabsorbent polymers. In F. L. Buchholz & N. A. Peppas (Eds.), Super Absorbent Polymers Science and Technology (pp. 112-127). American Chemical Society Publications. https://doi.org/10.1021/bk-1994-0573.ch009
  • Türkoğlu, G. C., Sarıışık, A. M., & Karavana, S. Y. (2021). Development of textile-based sodium alginate and chitosan hydrogel dressings. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(13), 916-925. https://doi.org/10.1080/00914037.2020.1765364
  • Woeller, K.E., & Hochwalt, A.E., (2015). Safety assessment of sanitary pads with a polymeric foam absorbent core. Regulatory Toxicology and Pharmacology, 73(1), 419-424. https://doi.org/10.1016/j.yrtph.2015.07.028

INVESTIGATING COMFORT COMPONENTS OF NON-WOVEN SURFACES SUITABLE FOR THE SKIN LAYER OF SANITARY PADS

Yıl 2023, Cilt: 26 Sayı: 4, 922 - 931, 03.12.2023
https://doi.org/10.17780/ksujes.1325467

Öz

In this study, characterization studies on the usability of regenerated cellulose-based products on the skin-contacting top layer of sanitary pads were reported. For this purpose, five different spunlace nonwovens with 100% viscose, viscose/polyester blend and 100% Tencel content, having no aperture, were selected. The square meter weights of the selected nonwovens vary between 42 -72 g/m2. The air permeability and water vapor permeability properties of the samples range between 856-2079 mm/s and 724-767 g/m2/day, respectively. According to the drying time test performed, it was determined that the nonwovens containing 100% viscose reached their initial weight after two hours. Surface structure and low-stress mechanical properties of nonwovens were evaluated with Tactile Sensation Analyzer which is a novel instrument developed to analyze tactile comfort of various textiles. It was detected that the viscose/polyester (50/50) blended sample has the lowest rigidity. No significant difference was observed between micro and macro surface variations of nonwovens. Considering the outputs of the current research, it was concluded that viscose and viscose/polyester blend nonwovens produced with low mass per unit area and thickness could provide higher comfort in top layer applications of sanitary pads.

Kaynakça

  • Ajmeri, J. R. & Ajmeri, C. J. (2011). Nonwoven materials and technologies for medical applications. In V. T. Bartels (Ed). Handbook of Medical Textiles (pp. 106-131). Woodhead Publishing.
  • Atasağun, H. G., & Kara, S. (2022). Investigation of moisture management and frictional characteristics of top layers used in disposable absorbent hygiene products. Fibers and Polymers, 23(9), 2577-2585. https://doi.org/10.1007/s12221-022-0032-7
  • Avcıoğlu Kalebek, N., & Babaarslan, O. (2009). Evaluation of friction and stiffness behaviour of nonwovens produced with spunbond and spunlace methods. Textile and Apparel, 19(2), 145-150. Retrieved from https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/23634/251718
  • Avcıoğlu Kalebek, N., & Babaarslan, O. (2016). Fiber selection for the production of nonwovens. In H. Y. Jean (Ed.), Non-woven Fabrics (pp. 1-32), InTech Open, 2016. https://dx.doi.org/10.57722/61977
  • Bhuiyan, M. R., Wang, L., Shaid, A., Jahan, I., & Shanks, R. A. (2020). Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort. Journal of Materials Science, 55, 2405-2418. https://doi.org/10.1007/s10853-019-04203-2
  • Cho, J. S., Tanabe, S. I., & Cho, G. (1997). thermal comfort properties of cotton and nonwoven surgical gowns with dual flunctional finish. Applied Human Science, 16(3), 87-95. https://doi.org/10.2114/jpa.16.87
  • Cımıllı Duru, S. & Candan, C. (2016). Wicking and drying behaviors of knitted fabrics produced with different poliamide yarns. Textile and Apparel, 26(3), 280-286.
  • Das, B., Das, A., Kothari, V. K., Fanguiero, R., & De Araújo, M. (2008). Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics. Fibers and Polymers, 9, 225-231. https://doi.org/10.1007/s12221-008-0036-y
  • Deng, C., Seidi, F., Yong, Q., Jin, X., Li, C., Zhang, X., Han, J., Liu, Y., Huang, Y., Wang, Y., Yuan, Z. & Xiao, H. (2022). Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. Journal of Hazardous Materials, 424, 127391. https://doi.org/10.1016/j.jhazmat.2021.127391
  • Eryuruk, S. H., Kayaoglu, B. K., & Altay, P. (2018). Thermal comfort properties of nonwoven fabrics used in surgical gowns. IOP Conference Series: Materials Science and Engineering, 459(1), 012039. https://doi.org/ 10.2114/jpa.16.87
  • Getu, A., & Sahu, O. (2014). Technical fabric as health care material. Biomedical Science and Engineering, 2(2), 35-39. https://doi.org/10.12691/bse-2-2-1
  • Gurudatt, K., Nadkarni, V. M., & Khilar, K. C. (2010). A study on drying of textile substrates and a new concept for the enhancement of drying rate. The Journal of The Textile Institute, 101(7), 635-644. https://doi.org/10.1080/00405000902732776
  • Hong, K. H., Kim, S. C., Kang, T. J., & Oh, K. W. (2005). Effect of abrasion and absorbed water on the handle of nonwovens for disposable diapers. Textile Research Journal, 75(7), 544-550. https://doi.org/10.1177/0040517505053856
  • Liu, M., Ma, C., Zhou, D., Chen, S., Zou, L., Wang, H., & Wu, J. (2022). Hydrophobic, breathable cellulose nonwoven fabrics for disposable hygiene applications. Carbohydrate Polymers, 288, 119367. https://doi.org/10.1016/j.carbpol.2022.119367
  • Jain, R. K., Sinha, S. K., & Das, A. (2018). Structural investigation of spunlace nonwoven. Research Journal of Textile and Apparel, 22(3), 158-179. https://doi.org/10.1108/RJTA-07-2017-0038
  • Pause, B. (2003). Nonwoven protective garments with thermo-regulating properties. Journal of Industrial Textiles, 33(2), 93-99. https://doi.org/10.1177/152808303038859
  • Kara S. (2019, Kasım) A comparative study on the permeability and sensorial comfort related mechanical properties of sanitary napkin layers. In 2019 17th National 3rd International the Recent Progress Symposium on Textile Technology and Chemistry, Bursa, Türkiye.
  • Kawabata, S., Niwa, M., & Wang, F. (1994). Objective hand measurement of nonwoven fabrics: Part I: Development of the equations. Textile Research Journal, 64(10), 597-610. https://doi.org/10.1177/004051759406401008
  • Rahma, T., Soumaya, S., Naima, H., & Mohamed, B. H. (2018). Decision support tool for hygienic product company: Industrial tactile sensory panel analysis implementation. Textile and Apparel, 28(4), 294-303. https://doi.org/10.32710/tekstilvekonfeksiyon.493093
  • Shimomura, T. & Namba, T. (1994) Preparation and application of high-performance superabsorbent polymers. In F. L. Buchholz & N. A. Peppas (Eds.), Super Absorbent Polymers Science and Technology (pp. 112-127). American Chemical Society Publications. https://doi.org/10.1021/bk-1994-0573.ch009
  • Türkoğlu, G. C., Sarıışık, A. M., & Karavana, S. Y. (2021). Development of textile-based sodium alginate and chitosan hydrogel dressings. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(13), 916-925. https://doi.org/10.1080/00914037.2020.1765364
  • Woeller, K.E., & Hochwalt, A.E., (2015). Safety assessment of sanitary pads with a polymeric foam absorbent core. Regulatory Toxicology and Pharmacology, 73(1), 419-424. https://doi.org/10.1016/j.yrtph.2015.07.028
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tekstil Kalite Kontrolü
Bölüm Tekstil Mühendisliği
Yazarlar

Gizem Ceylan Türkoğlu 0000-0001-5809-0916

Nazlı Üren 0000-0003-4487-7800

Yayımlanma Tarihi 3 Aralık 2023
Gönderilme Tarihi 11 Temmuz 2023
Yayımlandığı Sayı Yıl 2023Cilt: 26 Sayı: 4

Kaynak Göster

APA Türkoğlu, G. C., & Üren, N. (2023). HİJYENİK PEDLERİN CİLT TABAKASINA UYGUN DOKUSUZ YÜZEYLERİN KONFOR BİLEŞENLERİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 922-931. https://doi.org/10.17780/ksujes.1325467