NUMERICAL INVESTIGATION OF TWO DIMENSIONAL TEMPERATURE DISTRIBUTION OF A COMPOSITE CYLINDER LINER
Yıl 2024,
Cilt: 27 Sayı: 1, 256 - 268, 03.03.2024
Ali Yıldırım
,
Durmuş Yarımpabuç
,
Kerimcan Çelebi
Öz
In this study, the steady-state two-dimensional temperature distribution in a composite cylinder liner consisting of aluminum and SiC, at the boundaries of which the temperature is thought to vary linearly, is examined using the pseudospectral Chebyshev method. The accuracy of the method has been demonstrated by comparing the numerical results obtained using the two-dimensional pseudospectral Chebyshev method under constant temperature boundary condition with the analytical solution. Two-dimensional and three-dimensional graphs of temperature distributions in the cylinder liner are given and discussed. The numerical results obtained show that the pseudospectral Chebyshev method can be used as an alternative in solving such problems.
Kaynakça
- Arpaci, V. S. (1966). Conduction Heat Transfer, Addison-Wesley, Reading, MA.
- Arslan, E., Mack, W., & Apatay, T. (2021), Thermo-mechanically loaded steel/aluminum fuctionally graded spherical containers and pressure vessels. Int. J. Press. Vessels Pip., 191, 104334. https://doi.org/10.1016/j.ijpvp.2021.104334
- Bazan, F.S.V. (2008). Chebyshev Pseudospectral Method for Computing Numerical Solution of Convection-Diffusion Equation. Applied Mathematics and Computation, 200(2), 537-546. https://doi.org/10.1016/j.amc.2007.11.026
- Bi, Y., Wang, P., Xiang, R., Wen, J., Lei, J., Shen, L., & Xin, Q. (2021). Numerical investigation on the operating characteristics of the cylinder liners of a turbocharged diesel engine. Sādhanā, 46, 1-14. https://doi.org/10.1007/s12046-021-01679-0
- Callister Jr, W. D., & Rethwisch, D. G. (2009). Material science and engineering an introduction (8th edition). John Wiley & Sons.
- Can, N., & Keles, I. (2023). A practical jointed approach to transient hyperbolic heat conduction of FGM cylinders and spheres. Journal of Mechanical Science and Technology, 37(3), 1223-1231. https://doi.org/10.1007/s12206-023-0209-z
- Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of Heat in Solids, (2nd edition). Oxford University Press, New York.
- Firoozabadi, M. D., Shahbakhti, M., Koch, C.R., & Jazayeri, S.A. (2013). Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine. Applied Energy, 110, 236–243. https://doi.org/10.1016/j.apenergy.2013.04.055
- Eker, M., Yarımpabuç, D., Yıldırım, A., & Celebi K. (2021). Elastic Solutions Based On The Mori–Tanaka Scheme For Pressurized Functionally Graded Cylinder. Journal of Applied Mathematics and Computational Mechanics 19(4), 24–37. https://doi.org/10.17512/jamcm.2020.4.05
- Ertek, C., & Civelek, F. (2020). Comparison of functionally graded and ungraded cylinder liners with finite element analysis. Cumhuriyet Science Journal, 41(2), 506–520. http://dx.doi.org/10.17776/csj.632197
- Gibson, R.F. (2016). Principles of composite material mechanics (Fourth Edition). CRC Press, Boca Raton,
Gottlieb, D. (1981). The Stability of Pseudospectral-Chebyshev Methods, Mathematics of Computation, 36(153), 107-118. ISSN 1088-6842 (online) ISSN 0025-5718 (print)
- Gustof, P., & Hornik, A. (2008). Determination of the temperature distribution in the wet cylinder sleeve in turbo Diesel engine. Journal of Achievements in Materials and Manufacturing Engineering, 27(2), 159-162. http://jamme.acmsse.h2.pl/papers_vol27_2/27211.pdf
- Halpin, J.C. (1969). Stiffness and expansion estimates for oriented short fiber composites. Journal of Composite Materials, 3(4), 732-734. https://doi.org/10.1177/002199836900300419
- Heywood, J.B. (2008). Internal combustion engine Fundamentals (Second Edition). McGraw-Hill International Editions, London.
- Halpin, J.C. (1992). Primer on Composite Materials Analysis Second Edition, Revised, CRC Press, Boca Raton, Florida. https://doi.org/10.1201/9780203742235
- Holger, P., Worret, R., & Spicher, U. (2001, July). Numerical analyses of the combustion process in spark ignition engine. In The fifth international symposium on diagnostics and modelling of combustion in internal combustion engines, Nagaya.
- Jacob, M. (1949). Heat Transfer, John Wiley and Sons, New York.
- Kraus, A.D., Aziz, A., & Welty, J.R. (2001). Extended Surface Heat Transfer. John 155 Wiley and Sons, New York.
- Lapuerta, M., Armas, O., & Bermúdez, V. (2000). Sensitivity of diesel engine thermodynamic cycle calculation to measurement errors and estimated parameters. Applied Thermal Engineering, 20(9), 843-861. https://doi.org/10.1016/S1359-4311(99)00069-1
- MAHLE GmbH, (2016.). Cylinder Components Properties, applications, materials (Second Edition). Springer, Stuttgart, Germany.
- Najibi, A., Alizadeh, P., & Ghazifard, P. (2021). Transient thermal stress analysis for a short thick hollow FGM cylinder with nonlinear temperature-dependent material properties. Journal of Thermal Analysis and Calorimetry, 1-12. https://doi.org/10.1007/s10973-020-10442-2
- Rakopoulos, C. D., & Mavropoulos, G. C. (1998). Components heat transfer studies in a low heat rejection DI diesel engine using a hybrid thermostructural finite element model. Applied thermal engineering, 18(5), 301-316. https://doi.org/10.1016/S1359-4311(97)00055-0
- Roy, S., Ganesh, N., Kumarasamy, A., & Viswanathan, P. (2020). Thermomechanical Analysis of a Cylindrical Liner. In Advances in Engineering Design and Simulation: Select Proceedings of NIRC 2018 (pp. 33-40). Springer Singapore. https://doi.org/10.1007/978-981-13-8468-4_3
- Richardson, D. E. (2000). Review of power cylinder friction for diesel engines. J. Eng. Gas Turbines Power, 122(4), 506-519. https://doi.org/10.1115/1.1290592
- Shariyat, M. (2012). Nonlinear transient stress and wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermoelasticity theory, International Journal of Mechanical Sciences, 65(1), 57–68. https://doi.org/10.1016/j.ijmecsci.2012.09.001
- Shojaeefard, M. H., & Najibi, A. (2014a). Nonlinear transient heat conduction analysis of hollow thick temperature-dependent 2D-FGM cylinders with finite length using numerical method. Journal of Mechanical Science and Technology, 28, 3825-3835. https://doi.org/10.1007/s12206-014-0846-3
- Shojaeefard, M. H., & Najibi, A. (2014b). Nonlinear transient heat conduction analysis for a thick hollow 2D-FGM cylinder with finite length. Arabian Journal for Science and Engineering, 39, 9001-9014. https://doi.org/10.1007/s13369-014-1403-1
- Timoshenko, S.P., & Goodier, J.N. (1970) Theory of Elasticity. McGraw-Hili, New York.
Trefethen, L.N. (2000). Spectral Methods in Matlab. SIAM, Philadelphia, PA.
- Trung, K. N. (2021a). The temperature distribution of the wet cylinder liner of V-12 engine according to calculation and experiment. Journal of Thermal Engineering, 7(Supp 14), 1872-1884. https://doi.org/10.18186/thermal.1051265
- Trung, K. N. (2021b). Effect of heat transfer correlation on wet cylinder liner temperature distribution when converting an old engine into a turbocharged engine. Archives of Thermodynamics, 42(3). https://doi.org/10.24425/ather.2021.138114
- Trung, K. N., & Trong, Q. N. (2022). The Cylinder Liner Temperature Distribution Evaluation of a Diesel Engine Operating with M10, E10, and B10 Fuels. International Journal of Heat & Technology, 40(1). https://doi.org/10.18280/ijht.400133
- Yamagata, H. (2005). The science and technology of materials in automotive engines. Elsevier.
- Vignoli, L. L., Savi, M. A., Pacheco, P. M., & Kalamkarov, A. L. (2019). Comparative analysis of micromechanical models for the elastic composite laminae. Composites Part B: Engineering, 174, 106961. https://doi.org/10.1016/j.compositesb.2019.106961
- Wang, G. X., Chen, H. B., Yuan, Z. C., & Lu, W. (2012). Numerical Study on Three-Dimensional Steady-State Temperature Field of a Gasoline Engine. Advanced Materials Research, 569, 610-614. https://doi.org/10.4028/www.scientific.net/AMR.569.610
- Wang, X., & Stone, C. R. (2008). A study of combustion, instantaneous heat transfer, and emissions in a spark ignition engine during warm-up. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(4), 607-618. https://doi.org/10.1243/09544070JAUTO610
KOMPOZİT BİR SİLİNDİR GÖMLEĞİNDE İKİ BOYUTLU SICAKLIK DAĞILIMIN SAYISAL İNCELENMESİ
Yıl 2024,
Cilt: 27 Sayı: 1, 256 - 268, 03.03.2024
Ali Yıldırım
,
Durmuş Yarımpabuç
,
Kerimcan Çelebi
Öz
Bu çalışmada sınırlarında sıcaklığın lineer değiştiği düşünülen alüminyum ve SiC’den oluşan kompozit bir silindir gömleğinde kararlı durumdaki iki boyutlu sıcaklık dağılımı pseudospektral Chebyshev yöntemi kullanılarak incelenmiştir. Sabit sıcaklık sınır koşulu altında iki boyutlu pseudospektral Chebyshev yöntemi kullanılarak elde edilen sayısal sonuçlar analitik çözümle karşılaştırılarak yöntemin doğruluğu gösterilmiştir. Silindir gömleğindeki sıcaklık dağılımlarının iki boyutlu ve üç boyutlu grafikleri verilmiş ve tartışılmıştır. Elde edilen sayısal sonuçlar, pseudospektral Chebyshev yönteminin bu tür problemlerin çözümlerinde alternatif olarak kullanılabileceği gösterilmiştir.
Kaynakça
- Arpaci, V. S. (1966). Conduction Heat Transfer, Addison-Wesley, Reading, MA.
- Arslan, E., Mack, W., & Apatay, T. (2021), Thermo-mechanically loaded steel/aluminum fuctionally graded spherical containers and pressure vessels. Int. J. Press. Vessels Pip., 191, 104334. https://doi.org/10.1016/j.ijpvp.2021.104334
- Bazan, F.S.V. (2008). Chebyshev Pseudospectral Method for Computing Numerical Solution of Convection-Diffusion Equation. Applied Mathematics and Computation, 200(2), 537-546. https://doi.org/10.1016/j.amc.2007.11.026
- Bi, Y., Wang, P., Xiang, R., Wen, J., Lei, J., Shen, L., & Xin, Q. (2021). Numerical investigation on the operating characteristics of the cylinder liners of a turbocharged diesel engine. Sādhanā, 46, 1-14. https://doi.org/10.1007/s12046-021-01679-0
- Callister Jr, W. D., & Rethwisch, D. G. (2009). Material science and engineering an introduction (8th edition). John Wiley & Sons.
- Can, N., & Keles, I. (2023). A practical jointed approach to transient hyperbolic heat conduction of FGM cylinders and spheres. Journal of Mechanical Science and Technology, 37(3), 1223-1231. https://doi.org/10.1007/s12206-023-0209-z
- Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of Heat in Solids, (2nd edition). Oxford University Press, New York.
- Firoozabadi, M. D., Shahbakhti, M., Koch, C.R., & Jazayeri, S.A. (2013). Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine. Applied Energy, 110, 236–243. https://doi.org/10.1016/j.apenergy.2013.04.055
- Eker, M., Yarımpabuç, D., Yıldırım, A., & Celebi K. (2021). Elastic Solutions Based On The Mori–Tanaka Scheme For Pressurized Functionally Graded Cylinder. Journal of Applied Mathematics and Computational Mechanics 19(4), 24–37. https://doi.org/10.17512/jamcm.2020.4.05
- Ertek, C., & Civelek, F. (2020). Comparison of functionally graded and ungraded cylinder liners with finite element analysis. Cumhuriyet Science Journal, 41(2), 506–520. http://dx.doi.org/10.17776/csj.632197
- Gibson, R.F. (2016). Principles of composite material mechanics (Fourth Edition). CRC Press, Boca Raton,
Gottlieb, D. (1981). The Stability of Pseudospectral-Chebyshev Methods, Mathematics of Computation, 36(153), 107-118. ISSN 1088-6842 (online) ISSN 0025-5718 (print)
- Gustof, P., & Hornik, A. (2008). Determination of the temperature distribution in the wet cylinder sleeve in turbo Diesel engine. Journal of Achievements in Materials and Manufacturing Engineering, 27(2), 159-162. http://jamme.acmsse.h2.pl/papers_vol27_2/27211.pdf
- Halpin, J.C. (1969). Stiffness and expansion estimates for oriented short fiber composites. Journal of Composite Materials, 3(4), 732-734. https://doi.org/10.1177/002199836900300419
- Heywood, J.B. (2008). Internal combustion engine Fundamentals (Second Edition). McGraw-Hill International Editions, London.
- Halpin, J.C. (1992). Primer on Composite Materials Analysis Second Edition, Revised, CRC Press, Boca Raton, Florida. https://doi.org/10.1201/9780203742235
- Holger, P., Worret, R., & Spicher, U. (2001, July). Numerical analyses of the combustion process in spark ignition engine. In The fifth international symposium on diagnostics and modelling of combustion in internal combustion engines, Nagaya.
- Jacob, M. (1949). Heat Transfer, John Wiley and Sons, New York.
- Kraus, A.D., Aziz, A., & Welty, J.R. (2001). Extended Surface Heat Transfer. John 155 Wiley and Sons, New York.
- Lapuerta, M., Armas, O., & Bermúdez, V. (2000). Sensitivity of diesel engine thermodynamic cycle calculation to measurement errors and estimated parameters. Applied Thermal Engineering, 20(9), 843-861. https://doi.org/10.1016/S1359-4311(99)00069-1
- MAHLE GmbH, (2016.). Cylinder Components Properties, applications, materials (Second Edition). Springer, Stuttgart, Germany.
- Najibi, A., Alizadeh, P., & Ghazifard, P. (2021). Transient thermal stress analysis for a short thick hollow FGM cylinder with nonlinear temperature-dependent material properties. Journal of Thermal Analysis and Calorimetry, 1-12. https://doi.org/10.1007/s10973-020-10442-2
- Rakopoulos, C. D., & Mavropoulos, G. C. (1998). Components heat transfer studies in a low heat rejection DI diesel engine using a hybrid thermostructural finite element model. Applied thermal engineering, 18(5), 301-316. https://doi.org/10.1016/S1359-4311(97)00055-0
- Roy, S., Ganesh, N., Kumarasamy, A., & Viswanathan, P. (2020). Thermomechanical Analysis of a Cylindrical Liner. In Advances in Engineering Design and Simulation: Select Proceedings of NIRC 2018 (pp. 33-40). Springer Singapore. https://doi.org/10.1007/978-981-13-8468-4_3
- Richardson, D. E. (2000). Review of power cylinder friction for diesel engines. J. Eng. Gas Turbines Power, 122(4), 506-519. https://doi.org/10.1115/1.1290592
- Shariyat, M. (2012). Nonlinear transient stress and wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermoelasticity theory, International Journal of Mechanical Sciences, 65(1), 57–68. https://doi.org/10.1016/j.ijmecsci.2012.09.001
- Shojaeefard, M. H., & Najibi, A. (2014a). Nonlinear transient heat conduction analysis of hollow thick temperature-dependent 2D-FGM cylinders with finite length using numerical method. Journal of Mechanical Science and Technology, 28, 3825-3835. https://doi.org/10.1007/s12206-014-0846-3
- Shojaeefard, M. H., & Najibi, A. (2014b). Nonlinear transient heat conduction analysis for a thick hollow 2D-FGM cylinder with finite length. Arabian Journal for Science and Engineering, 39, 9001-9014. https://doi.org/10.1007/s13369-014-1403-1
- Timoshenko, S.P., & Goodier, J.N. (1970) Theory of Elasticity. McGraw-Hili, New York.
Trefethen, L.N. (2000). Spectral Methods in Matlab. SIAM, Philadelphia, PA.
- Trung, K. N. (2021a). The temperature distribution of the wet cylinder liner of V-12 engine according to calculation and experiment. Journal of Thermal Engineering, 7(Supp 14), 1872-1884. https://doi.org/10.18186/thermal.1051265
- Trung, K. N. (2021b). Effect of heat transfer correlation on wet cylinder liner temperature distribution when converting an old engine into a turbocharged engine. Archives of Thermodynamics, 42(3). https://doi.org/10.24425/ather.2021.138114
- Trung, K. N., & Trong, Q. N. (2022). The Cylinder Liner Temperature Distribution Evaluation of a Diesel Engine Operating with M10, E10, and B10 Fuels. International Journal of Heat & Technology, 40(1). https://doi.org/10.18280/ijht.400133
- Yamagata, H. (2005). The science and technology of materials in automotive engines. Elsevier.
- Vignoli, L. L., Savi, M. A., Pacheco, P. M., & Kalamkarov, A. L. (2019). Comparative analysis of micromechanical models for the elastic composite laminae. Composites Part B: Engineering, 174, 106961. https://doi.org/10.1016/j.compositesb.2019.106961
- Wang, G. X., Chen, H. B., Yuan, Z. C., & Lu, W. (2012). Numerical Study on Three-Dimensional Steady-State Temperature Field of a Gasoline Engine. Advanced Materials Research, 569, 610-614. https://doi.org/10.4028/www.scientific.net/AMR.569.610
- Wang, X., & Stone, C. R. (2008). A study of combustion, instantaneous heat transfer, and emissions in a spark ignition engine during warm-up. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(4), 607-618. https://doi.org/10.1243/09544070JAUTO610