Araştırma Makalesi
BibTex RIS Kaynak Göster

HARDOX 450, ALUMİNYUM BALPETEĞİ VE ARAMİD/EPOKSİ TABAKALI HİBRİT ZIRH PLAKALARININ BALİSTİK DAVRANIŞININ İNCELENMESİ

Yıl 2024, Cilt: 27 Sayı: 4, 1621 - 1632, 03.12.2024
https://doi.org/10.17780/ksujes.1489410

Öz

Bu çalışmada, Hardox 450 çeliği, Aramid /epoksi laminat kompozit ve Alüminyum bal peteği malzemelerinden oluşan tekli ve çoklu hibrit zırh yapılarının balistik performansı araştırılmıştır. Test levhalarına 833 ± 15 m/s namlu çıkış hızına sahip 7.62 tam metal kaplama mermi ile deneysel balistik testler gerçekleştirilmiştir. Balistik test uygulanacak levhalar 250×250 mm boyutlarına sahip olup kalınlıkları ise malzeme konfigürasyonuna göre farklılık göstermiştir. Test levhaları dört kenarından sabitlenmiştir. Balistik darbe levhanın vurma yüzeyine dik gelecek şekilde atış yapılarak gerçekleştirilmiştir. Deneysel çalışmalarda, vurma yüzeyine göre sırasıyla 4 mm Hardox 450, 24 kat Aramid /epoksi laminat kompozit ve 10 mm Alüminyum bal peteğinden oluşan hibrit zırh yapısı darbe enerjisine balistik direnç gösterememiştir. Öte yandan tekli yapı olarak kullanılan 6 mm Hardox 450 zırh plakası darbe enerjisine balistik direnç sergilemiştir. Sonlu elemanlar analizi LS-Dyna programında açık zaman entegrasyonu yöntemi ile yapılmış; arka yüzey çöküntü miktarı ve sönümlenen enerji miktarları karşılaştırmalı olarak verilmiştir.

Kaynakça

  • Abdullah, S., Abdullah, M., & Jamil, W. M. (2020). Ballistic performance of the steel-aluminium metal laminate panel for armoured vehicle. Journal of Mechanical Engineering Sciences, 14(1), 6452-6460. doi:https://doi.org/10.15282/jmes.14.1.2020.20.0505
  • Arslan, K., Gunes, R., Apalak, M. K., & Reddy, J. N. (2017). Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates. Journal of Composite Materials, 51(29), 4009-4028. doi: https://doi.org/10.1177/0021998317695423
  • Bekci, M. L., Canpolat, B. H., Usta, E., Güler, M. S., & Cora, Ö. N. (2021). Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations. Engineering Science Technology, an International Journal, 24(4), 990-995. doi:https://doi.org/10.1016/j.jestch.2021.01.001
  • Børvik, T., Dey, S., & Clausen, A. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36(7), 948-964. doi:https://doi.org/10.1016/j.ijimpeng.2008.12.003
  • Gunes, R., Arslan, K., Apalak, M. K., & Reddy, J. N. (2019). Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates. Journal of Sandwich Structures & Materials, 21(1), 211-229. doi: https://doi.org/10.1177/109963621668946
  • Hazell, P. J. (2022). Armour: materials, theory, and design: CRC press.
  • Hub, J., & Kneys, P. (2013). 3D Simulation Analysis of Aircraft of Aircreft Protection Material Impacting by 7.62 mm Ammunition. University Review, 7(3).
  • Hub, J., & Komenda, J. (2009). Ballistic's Resistance of Steel Plate Hardox upon Impact of Non Penetrating Projectiles. Advances in Military Technology, 4(2), 79-91.
  • Kartikeya, K., Chouhan, H., Ram, K., Prasad, S., & Bhatnagar, N. (2022). Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles. International Journal of Impact Engineering, 164, 104211. doi:https://doi.org/10.1016/j.ijimpeng.2022.104211
  • Khaire, N., Tiwari, G., Patel, V., & Iqbal, M. A. (2023). Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact. Defence Technology, 28, 56-73. doi: https://doi.org/10.1016/j.dt.2022.12.018
  • Kraus, A., Kraus, E., & Shabalin, I. (2019). Modelling of the processes of impact of a projectile with elements of individual defence. Paper presented at the EPJ Web of Conferences.
  • Lenihan, D., Ronan, W., O'Donoghue, P. E., & Leen, S. B. (2019). A review of the integrity of metallic vehicle armour to projectile attack. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design Applications, 233(1), 73-94. doi:https://doi.org/10.1177/1464420718759704
  • Mohotti, D., Ngo, T., & Mendis, P. (2011). Numerical simulation of impact and penetration of ogvial shaped projectiles through steel plate structures.
  • Palta, E., Gutowski, M., & Fang, H. (2018). A numerical study of steel and hybrid armor plates under ballistic impacts. International Journal of Solids Structures, 136, 279-294. doi:https://doi.org/10.1016/j.ijsolstr.2017.12.021
  • Peng, L., Tan, M., Zhang, X., Han, G., Xiong, W., Al Teneiji, M., & Guan, Z. (2022). Investigations of the ballistic response of hybrid composite laminated structures. Composite Structures, 282, 115019. doi:https://doi.org/10.1016/j.compstruct.2021.115019
  • Popławski, A., Kędzierski, P., & Morka, A. (2020). Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials Design, 190, 108536. doi:https://doi.org/10.1016/j.matdes.2020.108536
  • Rathod, S., Khaire, N., & Tiwari, G. (2022). A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich strcutures. Composite Structures, 299, 116048. doi: https://doi.org/10.1016/j.compstruct.2022.116048
  • Senthil, K., & Iqbal, M. A. (2021). Prediction of superior target layer configuration of armour steel, mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile. Paper presented at the Structures. https://doi.org/10.1016/j.istruc.2020.06.010
  • SSAB. (2024). https://www.ssab.com/api/sitecore/Datasheet/Get? key=e95fe73946d64960a9c462504235f6bd_tr-tr / Accessed 24.05.24.
  • Stewart, J. K. (1985). Ballistic resistant protective materials—NIJ standard 0108.01. Washington: National Institute of Justice.
  • Tepeduzu, B., & Karakuzu, R. (2019). Ballistic performance of ceramic/composite structures. Ceramics International, 45(2), 1651-1660. doi: https://doi.org/10.1016/j.ceramint.2018.10.042
  • Zhang, Q. N., Zhang, X. W., Lu, G. X., & Ruan, D. (2018). Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: An experimental study. Journal of Sandwich Structures & Materials, 20(7), 861-884. doi: https://doi.org/10.1177/1099636216682166

INVESTIGATION OF BALLISTIC BEHAVIOR OF HARDOX 450, ALUMINIUM HONEYCOMB AND ARAMID/EPOXY LAYER HYBRID ARMOUR PLATES

Yıl 2024, Cilt: 27 Sayı: 4, 1621 - 1632, 03.12.2024
https://doi.org/10.17780/ksujes.1489410

Öz

In this research, the ballistic performance of single and multiple hybrid armour systems made of Hardox 450 steel, Aramid/epoxy laminate composite, and aluminium honeycomb materials was studied. Ballistic testing was conducted on test plates using 7.62 full metal jacket bullets at a muzzle velocity of 833 ± 15 m/s. The sheets for ballistic testing are 250×250 mm and vary in thickness based on material configuration. Test plates have been fixed on four sides. The ballistic impact was achieved by firing perpendicular to the plate's striking surface. In experimental experiments, the hybrid armour design consisting of 4 mm Hardox 450, 24 layers of Aramid/epoxy laminate composite, and 10 mm Aluminium honeycomb, depending on the impacting surface, could not demonstrate ballistic resistance to impact energy. On the other hand, the 6 mm Hardox 450 armour plate used in a single structure showed ballistic resistance to impact energy. Finite element analysis was carried out using the open-time integration method in LS-Dyna software; the amount of back face signature and absorbed energy values were compared.

Kaynakça

  • Abdullah, S., Abdullah, M., & Jamil, W. M. (2020). Ballistic performance of the steel-aluminium metal laminate panel for armoured vehicle. Journal of Mechanical Engineering Sciences, 14(1), 6452-6460. doi:https://doi.org/10.15282/jmes.14.1.2020.20.0505
  • Arslan, K., Gunes, R., Apalak, M. K., & Reddy, J. N. (2017). Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates. Journal of Composite Materials, 51(29), 4009-4028. doi: https://doi.org/10.1177/0021998317695423
  • Bekci, M. L., Canpolat, B. H., Usta, E., Güler, M. S., & Cora, Ö. N. (2021). Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations. Engineering Science Technology, an International Journal, 24(4), 990-995. doi:https://doi.org/10.1016/j.jestch.2021.01.001
  • Børvik, T., Dey, S., & Clausen, A. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36(7), 948-964. doi:https://doi.org/10.1016/j.ijimpeng.2008.12.003
  • Gunes, R., Arslan, K., Apalak, M. K., & Reddy, J. N. (2019). Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates. Journal of Sandwich Structures & Materials, 21(1), 211-229. doi: https://doi.org/10.1177/109963621668946
  • Hazell, P. J. (2022). Armour: materials, theory, and design: CRC press.
  • Hub, J., & Kneys, P. (2013). 3D Simulation Analysis of Aircraft of Aircreft Protection Material Impacting by 7.62 mm Ammunition. University Review, 7(3).
  • Hub, J., & Komenda, J. (2009). Ballistic's Resistance of Steel Plate Hardox upon Impact of Non Penetrating Projectiles. Advances in Military Technology, 4(2), 79-91.
  • Kartikeya, K., Chouhan, H., Ram, K., Prasad, S., & Bhatnagar, N. (2022). Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles. International Journal of Impact Engineering, 164, 104211. doi:https://doi.org/10.1016/j.ijimpeng.2022.104211
  • Khaire, N., Tiwari, G., Patel, V., & Iqbal, M. A. (2023). Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact. Defence Technology, 28, 56-73. doi: https://doi.org/10.1016/j.dt.2022.12.018
  • Kraus, A., Kraus, E., & Shabalin, I. (2019). Modelling of the processes of impact of a projectile with elements of individual defence. Paper presented at the EPJ Web of Conferences.
  • Lenihan, D., Ronan, W., O'Donoghue, P. E., & Leen, S. B. (2019). A review of the integrity of metallic vehicle armour to projectile attack. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design Applications, 233(1), 73-94. doi:https://doi.org/10.1177/1464420718759704
  • Mohotti, D., Ngo, T., & Mendis, P. (2011). Numerical simulation of impact and penetration of ogvial shaped projectiles through steel plate structures.
  • Palta, E., Gutowski, M., & Fang, H. (2018). A numerical study of steel and hybrid armor plates under ballistic impacts. International Journal of Solids Structures, 136, 279-294. doi:https://doi.org/10.1016/j.ijsolstr.2017.12.021
  • Peng, L., Tan, M., Zhang, X., Han, G., Xiong, W., Al Teneiji, M., & Guan, Z. (2022). Investigations of the ballistic response of hybrid composite laminated structures. Composite Structures, 282, 115019. doi:https://doi.org/10.1016/j.compstruct.2021.115019
  • Popławski, A., Kędzierski, P., & Morka, A. (2020). Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials Design, 190, 108536. doi:https://doi.org/10.1016/j.matdes.2020.108536
  • Rathod, S., Khaire, N., & Tiwari, G. (2022). A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich strcutures. Composite Structures, 299, 116048. doi: https://doi.org/10.1016/j.compstruct.2022.116048
  • Senthil, K., & Iqbal, M. A. (2021). Prediction of superior target layer configuration of armour steel, mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile. Paper presented at the Structures. https://doi.org/10.1016/j.istruc.2020.06.010
  • SSAB. (2024). https://www.ssab.com/api/sitecore/Datasheet/Get? key=e95fe73946d64960a9c462504235f6bd_tr-tr / Accessed 24.05.24.
  • Stewart, J. K. (1985). Ballistic resistant protective materials—NIJ standard 0108.01. Washington: National Institute of Justice.
  • Tepeduzu, B., & Karakuzu, R. (2019). Ballistic performance of ceramic/composite structures. Ceramics International, 45(2), 1651-1660. doi: https://doi.org/10.1016/j.ceramint.2018.10.042
  • Zhang, Q. N., Zhang, X. W., Lu, G. X., & Ruan, D. (2018). Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: An experimental study. Journal of Sandwich Structures & Materials, 20(7), 861-884. doi: https://doi.org/10.1177/1099636216682166
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Balistik Sistemleri
Bölüm Makine Mühendisliği
Yazarlar

Mehmet Özer 0000-0002-6212-1217

Kaan Ferikel 0009-0006-1616-0174

İbrahim Kutay Yılmazçoban 0000-0002-9886-5533

Tayfur Kerem Demircioğlu 0000-0002-0518-0739

Fatih Balikoglu 0000-0003-3836-5569

Can Çivi 0000-0002-5302-9072

Yayımlanma Tarihi 3 Aralık 2024
Gönderilme Tarihi 24 Mayıs 2024
Kabul Tarihi 1 Ağustos 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 4

Kaynak Göster

APA Özer, M., Ferikel, K., Yılmazçoban, İ. K., Demircioğlu, T. K., vd. (2024). HARDOX 450, ALUMİNYUM BALPETEĞİ VE ARAMİD/EPOKSİ TABAKALI HİBRİT ZIRH PLAKALARININ BALİSTİK DAVRANIŞININ İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1621-1632. https://doi.org/10.17780/ksujes.1489410