Derleme
BibTex RIS Kaynak Göster

Hidrojen: Sürdürülebilir enerji için çok yönlü çözüm

Yıl 2025, Cilt: 28 Sayı: 1, 536 - 550, 03.03.2025

Öz

Fosil yakıtların büyük ölçüde tükenmesi, atmosferdeki karbondioksit seviyesinin artması ve buna bağlı olarak gelişen çevresel tehlikeler insanlık için giderek artan bir endişe kaynağıdır. Bu nedenle son yıllarda hidrojen ekosisteminin kurulmasına yönelik önemli çabalar sarf edilmektedir. Hidrojen, sıfır veya sıfıra yakın emisyona yol açabilen, yüksek verimle enerji dönüşümü sağlayabilen bir enerji taşıyıcısıdır. Öte yandan, ulaşım, ısınma ve enerji üretimi gibi farklı alanlarda çok yönlü olarak kullanılabilme potansiyeline sahiptir. Hidrojen, mavi, yeşil, gri gibi farklı üretim yöntemleriyle elde edilmektedir. Yeşil hidrojen, yenilenebilir enerji kaynaklarından üretildiğinden çevre dostu bir seçenek sunmaktadır. Ancak, mevcut durumda hidrojen ekonomisinin gelişimi ve yaygın kullanımıyla ilgili birtakım zorluklarla karşılaşılmaktadır. Bu zorluklar arasında üretim maliyetleri, depolama ve taşıma teknolojilerinin geliştirilmesi, altyapı entegrasyonu ve güvenlik önlemleri gibi konular yer almaktadır. Bu bağlamda, Dünya genelinde birçok ülke hidrojenin enerji dönüşümündeki rolünü değerlendirerek kendi yol haritalarını oluşturmuşlardır. Bu yol haritalarıyla ülkeler, ulusal enerji bağımsızlığını, çevresel sürdürebilirliği ve ekonomik büyümeyi desteklemeyi amaçlamaktadır. Bu mini derleme kapsamında da sürdürülebilir bir enerji geleceği için hidrojenin rolü ele alınmaktadır.

Etik Beyan

Yazarlar, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel izin gerektirmediğini beyan etmektedir.

Kaynakça

  • Abad, A. V., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenge. Energy Policy, 138, 111300. https://doi.org/10.1016/j.enpol.2020.111300
  • Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602-627. https://doi.org/10.1016/j.enconman.2018.03.088
  • Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835-849. https://doi.org/10.1016/j.jclepro.2019.02.046
  • Ajanovic, A., Sayer, M., Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47, 5, 24136-24154. https://doi.org/10.1016/j.ijhydene.2022.02.094
  • Al-Qahtani, A., Parkinson, B., Hellgardt, K., Shah, N., & Guillen-Gosalbez, G. (2021). Uncovering the true cost of hydrogen production routes using life cycle monetisation. Applied Energy, 281, 115958. https://doi.org/10.1016/j.apenergy.2020.115958
  • Benghanem, M., Mellit, A., Almohamadi, H., Haddad, S., Chettibi, N., Alanazi, A. M., Dasalla, D., & Alzahrani, A. (2023). Hydrogen Production Methods Based on Solar and Wind Energy: A Review. Energies, 16(2), 757. https://doi.org/10.3390/en16020757
  • BloombergNEF. (2020). Hydrogen Economy Outlook. Key messages March 30. https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf Available online:19/11/2023.
  • Capurso, T., Stefanizzi, M., Torresi, M., & Camporeale, S.M. (2022). Perspective of the role of hydrogen in the 21st century energy transition. Energy Conversion and Management, 251, 114898. https://doi.org/10.1016/j.enconman.2021.114898
  • Coleman, D., Kopp, M., Wagner, T., & Scheppat B. (2020). The value chain of green hydrogen for fuel cell buses – a case study for the Rhine-Main area in Germany. International Journal of Hydrogen Energy, 45(8), 5122-5133. https://doi.org/10.1016/j.ijhydene.2019.06.163
  • Das, E., Gürsel, S.A., & Yurtcan, A. B. (2021). Simultaneously deposited Pt-alloy nanoparticles over graphene nanoplatelets via supercritical carbon dioxide deposition for PEM fuel cells. Journal of Alloys and Compounds, 874, 159919. https://doi.org/10.1016/j.jallcom.2021.159919
  • Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies, 16, 1141. https://doi.org/10.3390/en16031141
  • Dawood, F., Anda, M., & Shafiullah, G. M. (2023). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45, 3847-3869. https://doi.org/10.1016/j.ijhydene.2019.12.059
  • Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848. https://doi.org/10.1016/j.ijhydene.2022.05.299
  • Du, L., Yang, Y., Bai, X., Xu, S., Lin, L., & Liu, M. (2024). Water scarcity footprint and water saving potential for large-scale green hydrogen generation: Evidence from coal-to-hydrogen substitution in China. Science of The Total Environment, 940, 173589. https://doi.org/10.1016/j.scitotenv.2024.173589.
  • El-Emam, R., & Özcan, H. (2019). Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. Journal of Cleaner Production, 220, 593-609. https://doi.org/10.1016/j.jclepro.2019.01.309
  • Elshafei, A. M., & Mansour, R. (2023). Green hydrogen as a potential solution for reducing carbon emission: A review. Journal of Energy Research and Reviews, 13(2), 1-10. https://doi.org/10.9734/jenrr/2023/v13i2257
  • ETKB. (2023). Türkiye hidrojen teknolojileri stratejisi ve yol haritası. T.C. Enerji ve Tabii Kaynakları Bakanlığı. https://enerji.gov.tr/Media/Dizin/SGB/tr/Kurumsal_Politikalar/HSP/ETKB_Hidrojen_Stratejik_Plan2023.pdf
  • European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A hydrogen strategy for a climate-neutral Europe 2020.
  • Farrell, N. (2023). Policy design for green hydrogen. Renewable and Sustainable Energy Reviews, 178, 113216. https://doi.org/10.1016/j.rser.2023.113216.
  • Han W-B et al (2021). Directly sputtered nickel electrodes for alkaline water electrolysis. Electrochimica Acta, 386, 138458. https://doi.org/10.1016/j.electacta.2021.138458
  • Hanusch, F., & Schad, M. (2021). Hydrogen research: Technology first, society second? GAIA-Ecological Perspectives for Science and Society, 30, 82. Erişim tarihi: 19/11/2023
  • Howaniec, N., & Smoliński, A. (2014). Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442-450. https://doi.org/10.1016/j.fuel.2014.03.036
  • Huang, Y., Zhou, Y., Zhong, R., Wei, C., & Zhu, B. (2024). Hydrogen energy development in China: Potential assessment and policy implications. International Journal of Hydrogen Energy, 49, 659-669. https://doi.org/10.1016/j.ijhydene.2023.10.176
  • Hydrogen Insights 2022: An updated perspective on hydrogen market development and actions required to unlock hydrogen at scale, Hydrogen Council and McKinsey & Company, 2022. Erişim tarihi: 19/11/2023
  • IEA. (2022a). Opportunities for Hydrogen Production with CCUS in China. International Energy Agency, Paris. Erişim tarihi: 19/11/2023
  • IEA. (2022b). Global Hydrogen Review, IEA, Paris. Erişim tarihi: 19/11/2023
  • Irena. (2019). Hydrogen: a renewable energy perspective. Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf
  • Ishaq, H., & Dincer, I. (2020). The role of hydrogen in the global transition to 100% renewable energy. In Accelerating the Transition to a 100% Renewable Energy Era (pp. 275-307). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-40738-4_13
  • Ishaq, H., & Dincer, I. (2021). Comparative assessment of renewable energy-based hydrogen production methods. Renewable and Sustainable Energy Reviews, 135, 110192. https://doi.org/10.1016/j.rser.2020.110192
  • Ishaq, H., Dincer, I., & Crawford, C. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238-26264. https://doi.org/10.1016/j.ijhydene.2021.11.149
  • Jayachandran, M., Gatla, R. K., Flah, A., A., Milyani, A. H., Milyani, H. M., Blazek, V., ... Kraiem, H. (2024). Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review. IEEE Access, 12, 23363-23388. https://doi.org/10.1109/access.2024.3363869
  • Kumar, R., Singh, R., & Dutta, S. (2024). Review and Outlook of Hydrogen Production through Catalytic Processes. Energy Fuels, 34 (4), 2601-2629. https://doi.org/10.1021/acs.energyfuels.3c04026.
  • Kumar, S. S., & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127
  • Li, H., Cao, X., Liu, Y., Shao, Y., Nan, Z., Teng, L., Peng, W., & Bian, J. (2022). Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges. Energy Reports, 8, 6258-6269. https://doi.org/10.1016/j.egyr.2022.04.067
  • Liu, B., Liu, S., Guo, S., & Zhang, S. (2020). Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. International Journal of Hydrogen Energy, 45(3), 1385-1398. https://doi.org/10.1016/j.ijhydene.2019.11.056
  • Megia, P. J., Vizcaino, A. J., Calles, J. A., & Carrero, A. (2021). Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels, 35, 16403-16415. https://doi.org/10.1021/acs.energyfuels.1c02501
  • Mosca, L., Jimenez, J. A. M., Wassie, S. A., Gallucci, F., Palo, E., Colozzi, M., Taraschi, S., & Galdieri, G. (2020). Process design for green hydrogen production. International Journal of Hydrogen Energy, 45(12), 7266-7277. https://doi.org/10.1016/j.ijhydene.2019.08.206
  • Newborough, M., & Cooley, G. (2020). Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020, 16–22. https://doi.org/10.1016/S1464-2859(20)30546-0
  • Nicita, A., Maggio, G., Andaloro, A. P. F., & Squadrito, G. (2020). Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, 45(20), 11395-11408. https://doi.org/10.1016/j.ijhydene.2020.02.062
  • Noussan, M., Raimondi, P.P., Scita, R., & Hafner, M. (2021). The Role of Green and Blue Hydrogen in the Energy Transition: A Technological and Geopolitical Perspective. Sustainability, 13, 298. https://doi.org/10.3390/su13010298
  • Osman, A.I., Mehta, N., Elgarahy, A. M., Hefny, M., Hinai, A. A., Muhtaseb A. A., & Roney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20, 153–188. https://doi.org/10.1007/s10311-021-01322-8
  • Öner, E. T., & Yurtcan, A. B. (2023). Clean and Efficient Transportation with Hydrogen Fuel Cell Electric Vehicles. In Hydrogen Fuel Cell Technology for Mobile Applications (pp. 32-58). IGI Global.
  • Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317. https://doi.org/10.1016/j.pnucene.2020.103317
  • Q. Hassan, I.S. Abdulrahman, H.M. Salman, O.T. Olapade, & M. Jaszczur. (2023). Techno-economic assessment of green hydrogen production by an off-grid photovoltaic energy system. Energies, 16(2), 744. https://doi.org/10.3390/en16020744
  • Sadeq, A. M., Homod, R. Z., Hussein, A. K., Togun, H., Mahmoodi, A., Isleem, H. F., ... & Moghaddam, A. H. (2024). Hydrogen energy systems: Technologies, trends, and future prospects. Science of The Total Environment, 173622. https://doi.org/10.1016/j.scitotenv.2024.173622
  • Sarker, A.K., Azad, A.K., Rasul, M.G., & Doppalapudi, A.T. (2023). Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies, 16, 1556. https://doi.org/10.3390/en16031556
  • Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. Chemical and Biological Engineering Reviews, 7, 150–158. https://doi.org/10.1002/cben.202000014 Song, C., Liu, Q., Ji, N., Kansha, Y., & Tsutsumi, A. (2015). Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Applied energy, 154, 392-401. https://doi.org/10.1016/j.apenergy.2015.05.038
  • Sukpancharoen, S., & Phetyim, N. (2021). Green hydrogen and electrical power production through the integration of CO2 capturing from biogas: Process optimization and dynamic control. Energy Reports, 7(Supplement 3), 293-307. https://doi.org/10.1016/j.egyr.2021.06.048
  • Suwidji, P., Chung, H. Y., & Ng, Y. H. (2020). Progress in practical hydrogen production and utilization in East Asia. The Hong Kong Institution of Engineers, 28(2), 88-101. https://doi.org/10.33430/V28N2THIE-2020-0047
  • Vallejos-Romero, A., Cordoves-Sanchez, M., Cisternas, C., Saez-Ardura, F., Rodriguez, I., Aledo, A., Boso, A., Prades, J., & Alvarez, B. (2022). Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges. Sustainability, 15(1), 303. https://doi.org/10.3390/su15010303
  • Vidas, L., & Castro, R. (2021). Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Applied Sciences, 11, 11363. https://doi.org/10.3390/app112311363
  • Wu, N., Lan, K., & Yao, Y. (2023). An Integrated Techno-Economic and Environmental Assessment for Carbon Capture in Hydrogen Production by Biomass Gasification. Resources, Conservation and Recycling, 188, 106693. https://doi.org/10.1016/j.resconrec.2022.106693
  • Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273. https://doi.org/10.1016/j.ijhydene.2021.04.016
  • Zhang, L., Jia, C., Bai, F., Wang, W., An, S., Zhao, K., ... & Sun, H. (2024). A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel, 355, 129455. https://doi.org/10.1016/j.fuel.2023.129455
  • Zhiznin, S.Z., Timokhov, V.M., & Gusev, A.L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45, 31353–31366. https://doi.org/10.1016/j.ijhydene.2020.08.260
  • Zohuri, B. (2016). Hydrogen Energy: Challenges and Solutions for a Cleaner Future. Springer Book. https://doi.org/10.1007/978-3-319-93461-7.

HYDROGEN: A VERSATILE SOLUTION FOR SUSTAINABLE ENERGY

Yıl 2025, Cilt: 28 Sayı: 1, 536 - 550, 03.03.2025

Öz

The massive depletion of fossil fuels, increasing level of carbon dioxide in the atmosphere and the associated environmental hazards are a growing concern for humanity. That is why significant efforts have been made in the last few decades to buils a hydrogen ecosystem. Hydrogen is a highly efficient energy carrier that can lead to zero or near-zero emissions. On the other hand, it has the potential to be used versatile in different areas such as transportation, heating and energy generation. Hydrogen is obtained through different production methods such as blue, green and grey. Green hydrogen offers an environmetally friendly option when produced from renewable energy sources. However, there are currently a number of challenges to the development and widespread use of the hydrogen economy. These challenges include production costs, development of storage and transportation technologies, infrastructure integration and security measures. In this context, many copuntries around the world have created their own readmaps by assessing the role of hydrogen in the energy transation. With these roadmaps, countries aim to promote national energy independence, environmental sustainability and economic growth. This mini-review covers the role of hydrogen for a sustainable energy future

Kaynakça

  • Abad, A. V., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenge. Energy Policy, 138, 111300. https://doi.org/10.1016/j.enpol.2020.111300
  • Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602-627. https://doi.org/10.1016/j.enconman.2018.03.088
  • Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835-849. https://doi.org/10.1016/j.jclepro.2019.02.046
  • Ajanovic, A., Sayer, M., Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47, 5, 24136-24154. https://doi.org/10.1016/j.ijhydene.2022.02.094
  • Al-Qahtani, A., Parkinson, B., Hellgardt, K., Shah, N., & Guillen-Gosalbez, G. (2021). Uncovering the true cost of hydrogen production routes using life cycle monetisation. Applied Energy, 281, 115958. https://doi.org/10.1016/j.apenergy.2020.115958
  • Benghanem, M., Mellit, A., Almohamadi, H., Haddad, S., Chettibi, N., Alanazi, A. M., Dasalla, D., & Alzahrani, A. (2023). Hydrogen Production Methods Based on Solar and Wind Energy: A Review. Energies, 16(2), 757. https://doi.org/10.3390/en16020757
  • BloombergNEF. (2020). Hydrogen Economy Outlook. Key messages March 30. https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf Available online:19/11/2023.
  • Capurso, T., Stefanizzi, M., Torresi, M., & Camporeale, S.M. (2022). Perspective of the role of hydrogen in the 21st century energy transition. Energy Conversion and Management, 251, 114898. https://doi.org/10.1016/j.enconman.2021.114898
  • Coleman, D., Kopp, M., Wagner, T., & Scheppat B. (2020). The value chain of green hydrogen for fuel cell buses – a case study for the Rhine-Main area in Germany. International Journal of Hydrogen Energy, 45(8), 5122-5133. https://doi.org/10.1016/j.ijhydene.2019.06.163
  • Das, E., Gürsel, S.A., & Yurtcan, A. B. (2021). Simultaneously deposited Pt-alloy nanoparticles over graphene nanoplatelets via supercritical carbon dioxide deposition for PEM fuel cells. Journal of Alloys and Compounds, 874, 159919. https://doi.org/10.1016/j.jallcom.2021.159919
  • Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies, 16, 1141. https://doi.org/10.3390/en16031141
  • Dawood, F., Anda, M., & Shafiullah, G. M. (2023). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45, 3847-3869. https://doi.org/10.1016/j.ijhydene.2019.12.059
  • Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848. https://doi.org/10.1016/j.ijhydene.2022.05.299
  • Du, L., Yang, Y., Bai, X., Xu, S., Lin, L., & Liu, M. (2024). Water scarcity footprint and water saving potential for large-scale green hydrogen generation: Evidence from coal-to-hydrogen substitution in China. Science of The Total Environment, 940, 173589. https://doi.org/10.1016/j.scitotenv.2024.173589.
  • El-Emam, R., & Özcan, H. (2019). Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. Journal of Cleaner Production, 220, 593-609. https://doi.org/10.1016/j.jclepro.2019.01.309
  • Elshafei, A. M., & Mansour, R. (2023). Green hydrogen as a potential solution for reducing carbon emission: A review. Journal of Energy Research and Reviews, 13(2), 1-10. https://doi.org/10.9734/jenrr/2023/v13i2257
  • ETKB. (2023). Türkiye hidrojen teknolojileri stratejisi ve yol haritası. T.C. Enerji ve Tabii Kaynakları Bakanlığı. https://enerji.gov.tr/Media/Dizin/SGB/tr/Kurumsal_Politikalar/HSP/ETKB_Hidrojen_Stratejik_Plan2023.pdf
  • European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A hydrogen strategy for a climate-neutral Europe 2020.
  • Farrell, N. (2023). Policy design for green hydrogen. Renewable and Sustainable Energy Reviews, 178, 113216. https://doi.org/10.1016/j.rser.2023.113216.
  • Han W-B et al (2021). Directly sputtered nickel electrodes for alkaline water electrolysis. Electrochimica Acta, 386, 138458. https://doi.org/10.1016/j.electacta.2021.138458
  • Hanusch, F., & Schad, M. (2021). Hydrogen research: Technology first, society second? GAIA-Ecological Perspectives for Science and Society, 30, 82. Erişim tarihi: 19/11/2023
  • Howaniec, N., & Smoliński, A. (2014). Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442-450. https://doi.org/10.1016/j.fuel.2014.03.036
  • Huang, Y., Zhou, Y., Zhong, R., Wei, C., & Zhu, B. (2024). Hydrogen energy development in China: Potential assessment and policy implications. International Journal of Hydrogen Energy, 49, 659-669. https://doi.org/10.1016/j.ijhydene.2023.10.176
  • Hydrogen Insights 2022: An updated perspective on hydrogen market development and actions required to unlock hydrogen at scale, Hydrogen Council and McKinsey & Company, 2022. Erişim tarihi: 19/11/2023
  • IEA. (2022a). Opportunities for Hydrogen Production with CCUS in China. International Energy Agency, Paris. Erişim tarihi: 19/11/2023
  • IEA. (2022b). Global Hydrogen Review, IEA, Paris. Erişim tarihi: 19/11/2023
  • Irena. (2019). Hydrogen: a renewable energy perspective. Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf
  • Ishaq, H., & Dincer, I. (2020). The role of hydrogen in the global transition to 100% renewable energy. In Accelerating the Transition to a 100% Renewable Energy Era (pp. 275-307). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-40738-4_13
  • Ishaq, H., & Dincer, I. (2021). Comparative assessment of renewable energy-based hydrogen production methods. Renewable and Sustainable Energy Reviews, 135, 110192. https://doi.org/10.1016/j.rser.2020.110192
  • Ishaq, H., Dincer, I., & Crawford, C. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238-26264. https://doi.org/10.1016/j.ijhydene.2021.11.149
  • Jayachandran, M., Gatla, R. K., Flah, A., A., Milyani, A. H., Milyani, H. M., Blazek, V., ... Kraiem, H. (2024). Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review. IEEE Access, 12, 23363-23388. https://doi.org/10.1109/access.2024.3363869
  • Kumar, R., Singh, R., & Dutta, S. (2024). Review and Outlook of Hydrogen Production through Catalytic Processes. Energy Fuels, 34 (4), 2601-2629. https://doi.org/10.1021/acs.energyfuels.3c04026.
  • Kumar, S. S., & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127
  • Li, H., Cao, X., Liu, Y., Shao, Y., Nan, Z., Teng, L., Peng, W., & Bian, J. (2022). Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges. Energy Reports, 8, 6258-6269. https://doi.org/10.1016/j.egyr.2022.04.067
  • Liu, B., Liu, S., Guo, S., & Zhang, S. (2020). Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. International Journal of Hydrogen Energy, 45(3), 1385-1398. https://doi.org/10.1016/j.ijhydene.2019.11.056
  • Megia, P. J., Vizcaino, A. J., Calles, J. A., & Carrero, A. (2021). Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels, 35, 16403-16415. https://doi.org/10.1021/acs.energyfuels.1c02501
  • Mosca, L., Jimenez, J. A. M., Wassie, S. A., Gallucci, F., Palo, E., Colozzi, M., Taraschi, S., & Galdieri, G. (2020). Process design for green hydrogen production. International Journal of Hydrogen Energy, 45(12), 7266-7277. https://doi.org/10.1016/j.ijhydene.2019.08.206
  • Newborough, M., & Cooley, G. (2020). Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020, 16–22. https://doi.org/10.1016/S1464-2859(20)30546-0
  • Nicita, A., Maggio, G., Andaloro, A. P. F., & Squadrito, G. (2020). Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, 45(20), 11395-11408. https://doi.org/10.1016/j.ijhydene.2020.02.062
  • Noussan, M., Raimondi, P.P., Scita, R., & Hafner, M. (2021). The Role of Green and Blue Hydrogen in the Energy Transition: A Technological and Geopolitical Perspective. Sustainability, 13, 298. https://doi.org/10.3390/su13010298
  • Osman, A.I., Mehta, N., Elgarahy, A. M., Hefny, M., Hinai, A. A., Muhtaseb A. A., & Roney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20, 153–188. https://doi.org/10.1007/s10311-021-01322-8
  • Öner, E. T., & Yurtcan, A. B. (2023). Clean and Efficient Transportation with Hydrogen Fuel Cell Electric Vehicles. In Hydrogen Fuel Cell Technology for Mobile Applications (pp. 32-58). IGI Global.
  • Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317. https://doi.org/10.1016/j.pnucene.2020.103317
  • Q. Hassan, I.S. Abdulrahman, H.M. Salman, O.T. Olapade, & M. Jaszczur. (2023). Techno-economic assessment of green hydrogen production by an off-grid photovoltaic energy system. Energies, 16(2), 744. https://doi.org/10.3390/en16020744
  • Sadeq, A. M., Homod, R. Z., Hussein, A. K., Togun, H., Mahmoodi, A., Isleem, H. F., ... & Moghaddam, A. H. (2024). Hydrogen energy systems: Technologies, trends, and future prospects. Science of The Total Environment, 173622. https://doi.org/10.1016/j.scitotenv.2024.173622
  • Sarker, A.K., Azad, A.K., Rasul, M.G., & Doppalapudi, A.T. (2023). Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies, 16, 1556. https://doi.org/10.3390/en16031556
  • Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. Chemical and Biological Engineering Reviews, 7, 150–158. https://doi.org/10.1002/cben.202000014 Song, C., Liu, Q., Ji, N., Kansha, Y., & Tsutsumi, A. (2015). Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Applied energy, 154, 392-401. https://doi.org/10.1016/j.apenergy.2015.05.038
  • Sukpancharoen, S., & Phetyim, N. (2021). Green hydrogen and electrical power production through the integration of CO2 capturing from biogas: Process optimization and dynamic control. Energy Reports, 7(Supplement 3), 293-307. https://doi.org/10.1016/j.egyr.2021.06.048
  • Suwidji, P., Chung, H. Y., & Ng, Y. H. (2020). Progress in practical hydrogen production and utilization in East Asia. The Hong Kong Institution of Engineers, 28(2), 88-101. https://doi.org/10.33430/V28N2THIE-2020-0047
  • Vallejos-Romero, A., Cordoves-Sanchez, M., Cisternas, C., Saez-Ardura, F., Rodriguez, I., Aledo, A., Boso, A., Prades, J., & Alvarez, B. (2022). Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges. Sustainability, 15(1), 303. https://doi.org/10.3390/su15010303
  • Vidas, L., & Castro, R. (2021). Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Applied Sciences, 11, 11363. https://doi.org/10.3390/app112311363
  • Wu, N., Lan, K., & Yao, Y. (2023). An Integrated Techno-Economic and Environmental Assessment for Carbon Capture in Hydrogen Production by Biomass Gasification. Resources, Conservation and Recycling, 188, 106693. https://doi.org/10.1016/j.resconrec.2022.106693
  • Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273. https://doi.org/10.1016/j.ijhydene.2021.04.016
  • Zhang, L., Jia, C., Bai, F., Wang, W., An, S., Zhao, K., ... & Sun, H. (2024). A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel, 355, 129455. https://doi.org/10.1016/j.fuel.2023.129455
  • Zhiznin, S.Z., Timokhov, V.M., & Gusev, A.L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45, 31353–31366. https://doi.org/10.1016/j.ijhydene.2020.08.260
  • Zohuri, B. (2016). Hydrogen Energy: Challenges and Solutions for a Cleaner Future. Springer Book. https://doi.org/10.1007/978-3-319-93461-7.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel ve Sürdürülebilir Süreçler
Bölüm Derleme
Yazarlar

Elif Daş 0000-0002-3149-6016

Emine Teke Öner 0000-0003-3365-7378

Yayımlanma Tarihi 3 Mart 2025
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 17 Kasım 2024
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 1

Kaynak Göster

APA Daş, E., & Teke Öner, E. (2025). Hidrojen: Sürdürülebilir enerji için çok yönlü çözüm. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 536-550.