Araştırma Makalesi
BibTex RIS Kaynak Göster

A COMPACT FREQUENCY RECONFIGURABLE METASURFACE ANTENNA BASED ON ROTATIONAL TUNING FOR MILLIMETER-WAVE APPLICATIONS

Yıl 2025, Cilt: 28 Sayı: 3, 1613 - 1623, 03.09.2025
https://doi.org/10.17780/ksujes.1685162

Öz

This study presents a circular microstrip patch antenna design capable of frequency tuning within the 33–39 GHz band, integrated with a rotatable dielectric metasurface layer. By eliminating the air gap between the radiator and the metasurface, a compact and low-profile structure is achieved. Frequency tuning is achieved through the mechanical rotation of the metasurface, allowing the resonance frequency to vary according to the rotation angle. Simulations and measurements exhibit strong agreement, confirming the antenna's ability to achieve dynamic frequency tuning with high radiation efficiency. The antenna exhibits superior performance, featuring a peak gain of 7.16 dBi, a VSWR of less than 2 across all configurations, and a minimum reflection coefficient of –55 dB. This mechanical design, which does not require active components, offers an effective alternative to electronically controlled antennas and provides a suitable solution for advanced mm-wave applications such as 5G, satellite communications, and cognitive radio.

Proje Numarası

2024/8-20 M

Kaynakça

  • Ahmad, I., Dildar, H., Khan, W. U. R., Shah, S. A. A., Ullah, S., Ullah, S., Umar, S. M., Albreem, M. A., Alsharif, M. H., & Vasudevan, K. (2021). Design and Experimental Analysis of Multiband Compound Reconfigurable 5G Antenna for Sub‐6 GHz Wireless Applications. Wireless Communications and Mobile Computing, 2021(1), 5588105. https://doi.org/10.1155/2021/5588105.
  • Akdogan, V., Teksen, F. A., Haxha, S., & Karaaslan, M. (2024). A New Perspective for Early Detection of Bone Tumour: Metamaterial-Based Antenna Solution. Plasmonics, 1-10. https://doi.org/10.1007/s11468-024-02305-5
  • Alkurt, F. O., Unal, E., Palandoken, M., Abdulkarim, Y. I., Hasar, U. C., & Karaaslan, M. (2023). Radiation pattern reconfigurable cubical antenna array for 2.45 GHz wireless communication applications. Wireless Networks, 29(1), 235-246. https://doi.org/10.1007/s11276-022-03116-4
  • Alkurt, F. Ö., Ünal, E., Palandöken, M., Wang, Y., Wu, Y.-W., Althuwayb, A., & Karaaslan, M. (2025). Four-mode frequency reconfigurable antenna for 28 GHZ and 38 GHZ communication. Journal of Electromagnetic Waves and Applications, 39(1), 16-26. https://doi.org/10.1080/09205071.2024.2425697
  • Bai, H., Wang, G.-M., & Wu, T. (2019). High-gain wideband metasurface antenna with low profile. IEEE access, 7, 177266-177273. https://doi.org/10.1109/ACCESS.2019.2958050.
  • Bharadwaj, S. S., Sipal, D., Yadav, D., & Koul, S. K. (2020). A compact tri-band frequency reconfigurable antenna for LTE/Wi-Fi/ITS applications. Progress In Electromagnetics Research M, 91, 59-67. https://doi.org/10.2528/PIERM20011904
  • Cleetus, R. M. C., & Bala, G. J. (2019). Frequency reconfigurable antennas for cognitive radio applications: a review. International Journal of Electrical and Computer Engineering, 9(5), 3542. https://doi.org/10.11591/ijece.v9i5.pp3542-3549.
  • Dawar, P., & Abdalla, M. A. (2022). A wideband and directive metasurface FPC antenna with toroidal metal structure loading. International Journal of Microwave and Wireless Technologies, 14(8), 1069-1080. https://doi.org/10.1017/S1759078721001380.
  • Dong, J., Ding, C., & Mo, J. (2020). A low-profile wideband linear-to-circular polarization conversion slot antenna using metasurface. materials, 13(5), 1164. https://doi.org/10.3390/ma13051164.
  • Elwi, T. A., Taher, F., Virdee, B. S., Alibakhshikenari, M., Zuazola, I. G., Krasniqi, A., Kamel, A. S., Tokan, N. T., Khan, S., & Parchin, N. O. (2024). On the performance of a photonic reconfigurable electromagnetic band gap antenna array for 5G applications. IEEE access. https://doi.org/10.1109/ACCESS.2024.3392368.
  • Geyikoğlu, M. D. (2024). Investigation Of The Effects Of Different Feed Line Structures On Uwb Antenna Performance By Characteristic Mode Analysis. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1117-1127. https://doi.org/10.17780/ksujes.1313866.
  • Hamlbar Gerami, H., & Kazemi, R. (2024). Development of a compact metasurface antenna with reconfigurable pattern through mode combination technique for 5G mm‐wave applications. IET microwaves, antennas & propagation, 18(12), 885-897. https://doi.org/10.1049/mia2.12515.
  • Hussain, M., Ali, E. M., Awan, W. A., Hussain, N., Alibakhshikenari, M., Virdee, B. S., & Falcone, F. (2022). Electronically reconfigurable and conformal triband antenna for wireless communications systems and portable devices. Plos one, 17(12), e0276922. https://doi.org/10.1371/journal.pone.0276922.
  • Hussain, N., Ghaffar, A., Naqvi, S. I., Iftikhar, A., Anagnostou, D. E., & Tran, H. H. (2022). A conformal frequency reconfigurable antenna with multiband and wideband characteristics. Sensors, 22(7), 2601. https://doi.org/10.3390/s22072601.
  • Jakoby, R., Gaebler, A., & Weickhmann, C. (2020). Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals, 10(6), 514. https://doi.org/10.3390/cryst10060514.
  • Karaaslan, M., Ünal, E., Özer, Z., & Yılmaz, Ş. (2013). 2.45 Ghz De Yüksek Kazançlı Mikroşerit Anten Yama Anten Tasarımı ve Gerçekleştirimi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 15(2), 28-31. https://doi.org/10.17780/ksujes.32828.
  • Kumar, P. P., Sreelakshmi, K., Sangeetha, B., & Narayan, S. (2017). Metasurface based low profile reconfigurable antenna. 2017 International Conference on Communication and Signal Processing (ICCSP), 10.1109/ICCSP.2017.8286770.
  • Madi, M. A., Al-Husseini, M., & Kabalan, K. Y. (2018). Frequency tunable cedar-shaped antenna for wifi and wimax. https://doi.org/10.2528/PIERL17091505. https://doi.org/10.2528/PIERL17091505.
  • Maune, H., Jost, M., Reese, R., Polat, E., Nickel, M., & Jakoby, R. (2018). Microwave liquid crystal technology. Crystals, 8(9), 355. https://doi.org/10.3390/cryst8090355.
  • Rezvani, M., Nikmehr, S., & Pourziad, A. (2021). Reconfigurable polarization MIMO dielectric resonator antenna. Progress In Electromagnetics Research M, 106, 227-237. https://doi.org/10.2528/PIERM21100302.
  • Shereen, M. K., Khattak, M. I., & Al-Hasan, M. a. (2020). A frequency and radiation pattern combo-reconfigurable novel antenna for 5G applications and beyond. Electronics, 9(9), 1372. https://doi.org/10.3390/electronics9091372.
  • Singh, G., Kumar, S., Abrol, A., Kanaujia, B. K., Pandey, V. K., Marey, M., & Mostafa, H. (2023). Frequency reconfigurable quad-element MIMO antenna with improved isolation for 5G systems. Electronics, 12(4), 796. https://doi.org/10.3390/electronics12040796.
  • Sravani, K. G., Prathyusha, D., Prasad, G., Chand, C. G., Kumar, P. A., Guha, K., & Rao, K. S. (2020). Design of reconfigurable antenna by capacitive type RF MEMS switch for 5G applications. Microsystem Technologies, 1-9. https://doi.org/10.1007/s00542-020-04958-8.
  • Swain, R., Naik, D. K., & Panda, A. K. (2020). Low‐loss ultra‐wideband beam switching metasurface antenna in X‐band. IET microwaves, antennas & propagation, 14(11), 1216-1221. https://doi.org/10.1049/iet-map.2019.0994.
  • Tang, S.-C., Wang, X.-Y., & Chen, J.-X. (2021). Low-profile frequency-reconfigurable dielectric patch antenna and array based on new varactor-loading scheme. IEEE Transactions on Antennas and Propagation, 69(9), 5469-5478. https://doi.org/10.1109/TAP.2021.3060053.
  • Wang, H., Shlezinger, N., Jin, S., Eldar, Y. C., Yoo, I., Imani, M. F., & Smith, D. R. (2020). Dynamic metasurface antennas for bit-constrained MIMO-OFDM receivers. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), https://doi.org/10.1109/TCOMM.2020.3040761.
  • Yang, H., Xi, X., Hou, H., Zhao, Y., & Yuan, Y. (2018). Design of reconfigurable monopole antenna with switchable dual band-notches for UWB applications. International Journal of Microwave and Wireless Technologies, 10(9), 1065-1071. https://doi.org/10.1017/S175907871800096X.
  • Zhou, E., Cheng, Y., Chen, F., Luo, H., & Li, X. (2022). Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface. Prog. Electromagn. Res, 175, 91-104. https://doi.org/10.2528/PIER22062201.

MİLİMETRE DALGA UYGULAMALARI İÇİN DÖNER MEKANİZMALI KOMPAKT FREKANS YENİDEN YAPILANDIRILABİLİR METAYÜZEY ANTEN

Yıl 2025, Cilt: 28 Sayı: 3, 1613 - 1623, 03.09.2025
https://doi.org/10.17780/ksujes.1685162

Öz

Bu çalışma, 33–39 GHz bandında frekans ayarı yapabilen, döndürülebilir metayüzey dielektrik katmanı ile entegre edilmiş dairesel mikroşerit yama anten tasarımı sunmaktadır. Radyatör ile metayüzey arasındaki hava boşluğu kaldırılarak kompakt ve düşük profilli bir yapı elde edilmiştir. Frekans ayarı, metayüzeyin mekanik olarak döndürülmesiyle sağlanmakta ve dönme açısına bağlı olarak rezonans frekansı değiştirilebilmektedir. Simülasyon ve ölçümler yüksek uyum göstermiş, antenin yüksek radyasyon verimliliğiyle dinamik frekans ayarı yaptığı doğrulanmıştır. Anten 7.16 dBi tepe kazancı, 2’nin altında VSWR ve –55 dB’e ulaşan minimum yansıma katsayısı ile üstün performans sergilemektedir. Aktif bileşen gerektirmeyen bu mekanik tasarım, elektronik kontrollü antenlere etkili bir alternatif sunarak 5G, uydu haberleşmesi ve bilişsel radyo gibi gelişmiş mm-dalga uygulamaları için uygun bir çözüm oluşturmaktadır.

Etik Beyan

Bu çalışmada bilimsel ve etik kurallara uyulmuştur. Çalışmada etik kurul izni gerektiren bir durum bulunmamaktadır. Başkalarına ait tüm çalışmalar ve görüşler uygun şekilde kaynak gösterilmiştir. Çalışma daha önce başka bir yerde yayımlanmamış ya da yayımlanmak üzere gönderilmemiştir. Tüm yazarlar makalenin son halini görüp yayımlanmasına onay vermiştir. Çalışmada herhangi bir çıkar çatışması bulunmamaktadır.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi

Proje Numarası

2024/8-20 M

Teşekkür

Bu çalışma Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından finansal olarak desteklenmiştir. Proje numarası: 2024/8-20 M

Kaynakça

  • Ahmad, I., Dildar, H., Khan, W. U. R., Shah, S. A. A., Ullah, S., Ullah, S., Umar, S. M., Albreem, M. A., Alsharif, M. H., & Vasudevan, K. (2021). Design and Experimental Analysis of Multiband Compound Reconfigurable 5G Antenna for Sub‐6 GHz Wireless Applications. Wireless Communications and Mobile Computing, 2021(1), 5588105. https://doi.org/10.1155/2021/5588105.
  • Akdogan, V., Teksen, F. A., Haxha, S., & Karaaslan, M. (2024). A New Perspective for Early Detection of Bone Tumour: Metamaterial-Based Antenna Solution. Plasmonics, 1-10. https://doi.org/10.1007/s11468-024-02305-5
  • Alkurt, F. O., Unal, E., Palandoken, M., Abdulkarim, Y. I., Hasar, U. C., & Karaaslan, M. (2023). Radiation pattern reconfigurable cubical antenna array for 2.45 GHz wireless communication applications. Wireless Networks, 29(1), 235-246. https://doi.org/10.1007/s11276-022-03116-4
  • Alkurt, F. Ö., Ünal, E., Palandöken, M., Wang, Y., Wu, Y.-W., Althuwayb, A., & Karaaslan, M. (2025). Four-mode frequency reconfigurable antenna for 28 GHZ and 38 GHZ communication. Journal of Electromagnetic Waves and Applications, 39(1), 16-26. https://doi.org/10.1080/09205071.2024.2425697
  • Bai, H., Wang, G.-M., & Wu, T. (2019). High-gain wideband metasurface antenna with low profile. IEEE access, 7, 177266-177273. https://doi.org/10.1109/ACCESS.2019.2958050.
  • Bharadwaj, S. S., Sipal, D., Yadav, D., & Koul, S. K. (2020). A compact tri-band frequency reconfigurable antenna for LTE/Wi-Fi/ITS applications. Progress In Electromagnetics Research M, 91, 59-67. https://doi.org/10.2528/PIERM20011904
  • Cleetus, R. M. C., & Bala, G. J. (2019). Frequency reconfigurable antennas for cognitive radio applications: a review. International Journal of Electrical and Computer Engineering, 9(5), 3542. https://doi.org/10.11591/ijece.v9i5.pp3542-3549.
  • Dawar, P., & Abdalla, M. A. (2022). A wideband and directive metasurface FPC antenna with toroidal metal structure loading. International Journal of Microwave and Wireless Technologies, 14(8), 1069-1080. https://doi.org/10.1017/S1759078721001380.
  • Dong, J., Ding, C., & Mo, J. (2020). A low-profile wideband linear-to-circular polarization conversion slot antenna using metasurface. materials, 13(5), 1164. https://doi.org/10.3390/ma13051164.
  • Elwi, T. A., Taher, F., Virdee, B. S., Alibakhshikenari, M., Zuazola, I. G., Krasniqi, A., Kamel, A. S., Tokan, N. T., Khan, S., & Parchin, N. O. (2024). On the performance of a photonic reconfigurable electromagnetic band gap antenna array for 5G applications. IEEE access. https://doi.org/10.1109/ACCESS.2024.3392368.
  • Geyikoğlu, M. D. (2024). Investigation Of The Effects Of Different Feed Line Structures On Uwb Antenna Performance By Characteristic Mode Analysis. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1117-1127. https://doi.org/10.17780/ksujes.1313866.
  • Hamlbar Gerami, H., & Kazemi, R. (2024). Development of a compact metasurface antenna with reconfigurable pattern through mode combination technique for 5G mm‐wave applications. IET microwaves, antennas & propagation, 18(12), 885-897. https://doi.org/10.1049/mia2.12515.
  • Hussain, M., Ali, E. M., Awan, W. A., Hussain, N., Alibakhshikenari, M., Virdee, B. S., & Falcone, F. (2022). Electronically reconfigurable and conformal triband antenna for wireless communications systems and portable devices. Plos one, 17(12), e0276922. https://doi.org/10.1371/journal.pone.0276922.
  • Hussain, N., Ghaffar, A., Naqvi, S. I., Iftikhar, A., Anagnostou, D. E., & Tran, H. H. (2022). A conformal frequency reconfigurable antenna with multiband and wideband characteristics. Sensors, 22(7), 2601. https://doi.org/10.3390/s22072601.
  • Jakoby, R., Gaebler, A., & Weickhmann, C. (2020). Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals, 10(6), 514. https://doi.org/10.3390/cryst10060514.
  • Karaaslan, M., Ünal, E., Özer, Z., & Yılmaz, Ş. (2013). 2.45 Ghz De Yüksek Kazançlı Mikroşerit Anten Yama Anten Tasarımı ve Gerçekleştirimi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 15(2), 28-31. https://doi.org/10.17780/ksujes.32828.
  • Kumar, P. P., Sreelakshmi, K., Sangeetha, B., & Narayan, S. (2017). Metasurface based low profile reconfigurable antenna. 2017 International Conference on Communication and Signal Processing (ICCSP), 10.1109/ICCSP.2017.8286770.
  • Madi, M. A., Al-Husseini, M., & Kabalan, K. Y. (2018). Frequency tunable cedar-shaped antenna for wifi and wimax. https://doi.org/10.2528/PIERL17091505. https://doi.org/10.2528/PIERL17091505.
  • Maune, H., Jost, M., Reese, R., Polat, E., Nickel, M., & Jakoby, R. (2018). Microwave liquid crystal technology. Crystals, 8(9), 355. https://doi.org/10.3390/cryst8090355.
  • Rezvani, M., Nikmehr, S., & Pourziad, A. (2021). Reconfigurable polarization MIMO dielectric resonator antenna. Progress In Electromagnetics Research M, 106, 227-237. https://doi.org/10.2528/PIERM21100302.
  • Shereen, M. K., Khattak, M. I., & Al-Hasan, M. a. (2020). A frequency and radiation pattern combo-reconfigurable novel antenna for 5G applications and beyond. Electronics, 9(9), 1372. https://doi.org/10.3390/electronics9091372.
  • Singh, G., Kumar, S., Abrol, A., Kanaujia, B. K., Pandey, V. K., Marey, M., & Mostafa, H. (2023). Frequency reconfigurable quad-element MIMO antenna with improved isolation for 5G systems. Electronics, 12(4), 796. https://doi.org/10.3390/electronics12040796.
  • Sravani, K. G., Prathyusha, D., Prasad, G., Chand, C. G., Kumar, P. A., Guha, K., & Rao, K. S. (2020). Design of reconfigurable antenna by capacitive type RF MEMS switch for 5G applications. Microsystem Technologies, 1-9. https://doi.org/10.1007/s00542-020-04958-8.
  • Swain, R., Naik, D. K., & Panda, A. K. (2020). Low‐loss ultra‐wideband beam switching metasurface antenna in X‐band. IET microwaves, antennas & propagation, 14(11), 1216-1221. https://doi.org/10.1049/iet-map.2019.0994.
  • Tang, S.-C., Wang, X.-Y., & Chen, J.-X. (2021). Low-profile frequency-reconfigurable dielectric patch antenna and array based on new varactor-loading scheme. IEEE Transactions on Antennas and Propagation, 69(9), 5469-5478. https://doi.org/10.1109/TAP.2021.3060053.
  • Wang, H., Shlezinger, N., Jin, S., Eldar, Y. C., Yoo, I., Imani, M. F., & Smith, D. R. (2020). Dynamic metasurface antennas for bit-constrained MIMO-OFDM receivers. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), https://doi.org/10.1109/TCOMM.2020.3040761.
  • Yang, H., Xi, X., Hou, H., Zhao, Y., & Yuan, Y. (2018). Design of reconfigurable monopole antenna with switchable dual band-notches for UWB applications. International Journal of Microwave and Wireless Technologies, 10(9), 1065-1071. https://doi.org/10.1017/S175907871800096X.
  • Zhou, E., Cheng, Y., Chen, F., Luo, H., & Li, X. (2022). Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface. Prog. Electromagn. Res, 175, 91-104. https://doi.org/10.2528/PIER22062201.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Emine Ceren Gözek 0000-0002-3242-4612

Ahmet Serdar Yılmaz 0000-0002-5735-3857

Proje Numarası 2024/8-20 M
Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 28 Nisan 2025
Kabul Tarihi 2 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 3

Kaynak Göster

APA Gözek, E. C., & Yılmaz, A. S. (2025). A COMPACT FREQUENCY RECONFIGURABLE METASURFACE ANTENNA BASED ON ROTATIONAL TUNING FOR MILLIMETER-WAVE APPLICATIONS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 1613-1623. https://doi.org/10.17780/ksujes.1685162