Araştırma Makalesi
BibTex RIS Kaynak Göster

TÜRKİYE’DE YOL GÜVENLİĞİ PERFORMANSININ ÇOK KRİTERLİ DEĞERLENDİRİLMESİ: BÜTÜNLEŞİK CENTROIDOUS-RAM YAKLAŞIMI

Yıl 2025, Cilt: 28 Sayı: 4, 1928 - 1948, 03.12.2025

Öz

Yol güvenliği çok sayıda etkene bağlı olup, olası en küçük bir hata dahi ciddi yaralanmalara ve ölümlere neden olabilmektedir. Bu nedenle telafisi mümkün olmayan sonuçlarıyla trafik kazaları hem halk sağlığını hem de ülke ekonomilerini tehdit eden önemli bir sorun hâline gelmiştir. Bu çalışmada, Türkiye’nin 81 ili yol güvenliği açısından Çok Kriterli Karar Verme (ÇKKV) yaklaşımı kullanılarak analiz edilmiştir. Çalışma, Türkiye İstatistik Kurumu verilerine dayanmakta olup dört aşamalı bir yöntem izlenmiştir. İlk aşamada Centroidous yöntemiyle kriter ağırlıkları belirlenmiş; en yüksek ağırlık bir milyon nüfusta trafik kaza sayısı kriterine, en düşük ağırlık ise sürücü belgesi olan kişi sayısı kriterine atanmıştır. İkinci aşamada RAM yöntemi ile iller yol güvenlik performansına göre sıralanmış; İstanbul en yüksek, Muğla ise en düşük performans gösteren iller olarak belirlenmiştir. Üçüncü aşamada, sıralama sonuçlarının kriter ağırlıklarındaki değişimlere duyarlılığını incelemek üzere beş farklı senaryo altında analiz yapılmıştır. Son aşamada ise COPRAS, MABAC, TOPSIS ve WASPAS yöntemleriyle karşılaştırmalı analiz yapılmış; önerilen yöntemin geçerliliği %91’in üzerinde korelasyon değerleriyle ile doğrulanmıştır.

Kaynakça

  • Ahmadpur, M., & Gokasar, I. (2021). Spatial analysis and evaluation of road traffic safety performance indexes across the provinces of Turkey from 2015 to 2019. International Journal of Injury Control and Safety Promotion, 28(3), 309-324. https://doi.org/10.1080/17457300.2021.1925923
  • Ahmadpur, M., & Gokasar, I. (2024). Evaluation and comparison of administrative division-level road traffic safety indices of Egypt, England, Turkey, and the United States. Journal of Safety Research, 89, 251-261. https://doi.org/10.1016/j.jsr.2024.04.007
  • Alrashdi, I., Ali, A. M., Sallam, K. M., & Abdel-Basset, M. (2025). Intelligent decision support framework for assessment of alternative vehicle technologies in transportation system: A sustainable approach toward environmental remedy. Sustainable Futures, 9(June 2025), 100472. https://doi.org/10.1016/j.sftr.2025.100472
  • Amador, L., & Willis, C. J. (2014). Demonstrating a correlation between the maturity of road safety practices and road safety incidents. Traffic Injury Prevention, 15(6), 591-597. https://doi.org/10.1080/15389588.2013.845753
  • Arıkan Öztürk, E. (2016). Traffic risk index of cities in Turkey. Pamukkale University Journal of Engineering Sciences, 22(6), 405-412. https://doi.org/10.5505/pajes.2015.93446
  • Aydın, U. (2024). Türkiye’deki illerin karayolları trafik risk durumunun entegre IDDWS-EDAS yaklaşımıyla değerlendirilmesi. Trafik ve Ulaşım Araştırmaları Dergisi, 7(2), 120-143. https://doi.org/10.38002/tuad.1351802
  • Azık, D., Solmazer, G., Ersan, Ö., Kaçan, B., Fındık, G., Üzümcüoğlu, Y., Özkan, T., Lajunen, T., Öz, B., Pashkevich, A., Pashkevich, M., Danelli-Mylona, V., Georgogianni, D., Berisha Krasniqi, E., Krasniqi, M., Makris, E., Shubenkova, K., & Xheladini, G. (2021). Road users’ evaluations and perceptions of road infrastructure, trip characteristics, and daily trip experiences across countries. Transportation Research Interdisciplinary Perspectives, 11, 100412. https://doi.org/10.1016/j.trip.2021.100412
  • Badi, I., Stević, Ž., Radović, D., Ristić, B., Cakić, A., & Sremac, S. (2023). A new methodology for treating problems in the field of traffic safety: case study of Libyan cities. Transport, 38(4), 190-203. https://doi.org/10.3846/transport.2023.20609
  • Bao, Q., Ruan, D., Shen, Y., Hermans, E., & Janssens, D. (2012). Improved hierarchical fuzzy TOPSIS for road safety performance evaluation. Knowledge-Based Systems, 32, 84-90. https://doi.org/10.1016/j.knosys.2011.08.014
  • Cetin, V. R., Yilmaz, H. H., & Erkan, V. (2018). The impact of increasing speed limit in Turkey: The case of Ankara-Sivrihisar road section. Case Studies on Transport Policy, 6(1), 72-80. https://doi.org/10.1016/j.cstp.2017.11.004
  • Chen, F., Li, Y., Feng, Q., Dong, Z., Qian, Y., Yan, Y., Ho, M. S., Ma, Q., Zhang, D., & Jin, Y. (2023). Road safety performance rating through PSI-PRIDIT: A planning tool for designing policies and identifying best practices for EAS countries. Socio-Economic Planning Sciences, 85, 101438. https://doi.org/10.1016/j.seps.2022.101438
  • Elvik, R. (2024). The development of a road safety policy index and its application in evaluating the effects of road safety policy. Accident Analysis & Prevention, 202, 107612. https://doi.org/10.1016/j.aap.2024.107612
  • Emniyet Genel Müdürlüğü (EGM). (2024). Aralık 2024 Trafik İstatistik Bülteni: Ülke Geneli. https://trafik.gov.tr/istatistikler37. Erişim Tarihi: 26.04.2025.
  • Erdogan, S. (2009). Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. Journal of Safety Research, 40(5), 341-351. https://doi.org/10.1016/j.jsr.2009.07.006
  • Fancello, G., Carta, M., & Fadda, P. (2019). Road intersections ranking for road safety improvement: Comparative analysis of multi-criteria decision making methods. Transport Policy, 80, 188-196. https://doi.org/10.1016/j.tranpol.2018.04.007
  • Hareru, H. E., Negassa, B., Kassa Abebe, R., Ashenafi, E., Zenebe, G. A., Debela, B. G., Ashuro, Z., & Eshete Soboksa, N. (2022). The epidemiology of road traffic accidents and associated factors among drivers in Dilla Town, Southern Ethiopia. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1007308
  • Hezam, I. M., Ali, A. M., Sallam, K., Hameed, I. A., Foul, A., & Abdel-Basset, M. (2024). An extension of root assessment method (RAM) under spherical fuzzy framework for optimal selection of electricity production technologies toward sustainability: a case study. International Journal of Energy Research, 2024(1), 7985867. https://doi.org/10.1155/2024/7985867
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-48318-9
  • Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., & Vitale, A. (2023). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural Computing and Applications, 35(6), 4549-4567. https://doi.org/10.1007/s00521-022-07929-4
  • Kanuganti, S., Agarwala, R., Dutta, B., Bhanegaonkar, P. N., Singh, A. P., & Sarkar, A. K. (2017). Road safety analysis using multi criteria approach: A case study in India. Transportation Research Procedia, 25, 4649-4661. https://doi.org/10.1016/j.trpro.2017.05.299
  • Komasi, H., Nemati, A., Hashemkhani Zolfani, S., & Mehtari Taheri, H. (2024). Road safety evaluation in inner-city roads and suburban roads based on a novel-hybrid MCDM model. Ain Shams Engineering Journal, 15(8), 102796. https://doi.org/10.1016/j.asej.2024.102796
  • Komasi, H., Nemati, A., Zolfani, S. H., Williams, N. L., & Šaparauskas, J. (2024). Comparative analysis of economic development indicators among South American countries based on a novel MCDM model. Journal of Competitiveness, 16(3), 97-121. https://doi.org/10.7441/joc.2024.03.05
  • Martins, M. A., & Garcez, T. V. (2021). A multidimensional and multi-period analysis of safety on roads. Accident Analysis & Prevention, 162, 106401. https://doi.org/10.1016/j.aap.2021.106401
  • Mohamed, M., Abdelmouty, A. M., Mohamed, K., & Smarandache, F. (2025). SuperHyperSoft-driven evaluation of smart transportation in Centroidous-Moosra: Real-world insights for the UAV era. Neutrosophic Sets and Systems, 78(1), 149-163.
  • Na, Z., Stević, Ž., Subotić, M., Kumar Das, D., Kou, G., & Moslem, S. (2024). A novel interval rough model for optimizing road network performance and safety. Expert Systems with Applications, 255, 124844. https://doi.org/10.1016/j.eswa.2024.124844
  • Özen, M., & Zorlu, F. (2018). Türkiye’de devlet karayollarında kaza oranlarının ve kaza örüntüsünün analizi. Teknik Dergi, 29(5), 8589-8604. https://doi.org/10.18400/tekderg.308318
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • Sayadinia, S., & Beheshtinia, M. A. (2021). Proposing a new hybrid multi-criteria decision-making approach for road maintenance prioritization. International Journal of Quality & Reliability Management, 38(8), 1661-1679. https://doi.org/10.1108/IJQRM-01-2020-0020
  • Sotoudeh-Anvari, A. (2023). Root Assessment Method (RAM): A novel multi-criteria decision making method and its applications in sustainability challenges. Journal of Cleaner Production, 423, 138695. https://doi.org/10.1016/j.jclepro.2023.138695
  • Şimşekoğlu, Ö., Nordfjærn, T., & Rundmo, T. (2012). Traffic risk perception, road safety attitudes, and behaviors among road users: a comparison of Turkey and Norway. Journal of Risk Research, 15(7), 787-800. https://doi.org/10.1080/13669877.2012.657221
  • Tripathi, P., & Mittal, Y. K. (2024). Risk assessment and ranking methodology for occupational hazards in construction: a case of Indian high-rise projects. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-06-2024-0219
  • Trivedi, P., & Shah, J. (2022). Identification of road crash severity ranking by integrating the multi-criteria decision-making approach. Journal of Road Safety, 33(2), 33-44. https://doi.org/10.33492/JRS-D-21-00055
  • Trivedi, P., Shah, J., Čep, R., Abualigah, L., & Kalita, K. (2024). A hybrid best-worst method (BWM)—technique for order of preference by similarity to ıdeal solution (TOPSIS) approach for prioritizing road safety improvements. IEEE Access, 12, 30054-30065. https://doi.org/10.1109/ACCESS.2024.3368395
  • Trivedi, P., Shah, J., Esztergár-Kiss, D., & Duleba, S. (2024). Phase-wise injury integrated severity modeling of road accidents: a two-stage hybrid multi-criteria decision-making model. Evolving Systems, 15(4), 1275-1295. https://doi.org/10.1007/s12530-023-09563-4
  • Trivedi, P., Shah, J., Moslem, S., & Pilla, F. (2023). An application of the hybrid AHP-PROMETHEE approach to evaluate the severity of the factors influencing road accidents. Heliyon, 9(11), e21187. https://doi.org/10.1016/j.heliyon.2023.e21187
  • Trung, D. D., Dudić, B., Van Duc, D., Hoai Son, N., & Mittelman, A. (2024). Building a ranking system for lecturers based on student evaluations in teaching a specific course: a case study at a university in Vietnam. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2), 335-350. https://doi.org/10.23947/2334-8496-2024-12-2-335-350
  • Trung, D. D., Giang, N. T. P., Duc, D. Van, Dua, T. Van, & Thinh, H. X. (2024). The use of SAW, RAM and PIV decision methods in determining the optimal choice of materials for the manufacture of screw gearbox acceleration boxes. International Journal of Mechanical Engineering and Robotics Research, 13(3), 338-347. https://doi.org/10.18178/ijmerr.13.3.338-347
  • Türkiye İstatistik Kurumu (TÜİK). (2025a). Karayolu trafik kaza istatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1. Erişim Tarihi: 24.05.2025.
  • Türkiye İstatistik Kurumu (TÜİK). (2025b). Motorlu kara taşıtları istatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1. Erişim Tarihi: 10.07.2025.
  • Türkiye İstatistik Kurumu (TÜİK). (2025c). Adrese dayalı nüfus kayıt sistemi sonuçları, 2024. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2024-53783. Erişim Tarihi: 08.07.2025.
  • Türkiye Sigorta Birliği (TSB). (2024). Mali tablolar ve istatistikler. https://www.tsb.org.tr/tr/istatistik/motorlu-tasitlar-istatistikleri Erişim Tarihi: 26.04.2025.
  • Uğur Özçelik, M., Gökçen, H., & Dağdeviren, M. (2013). Ankara şehir içi otobüs kazalarının analizi ve bölge risklerinin belirlenmesi için birçok ölçütlü karar modeli. Journal of Science and Technology of Dumlupınar University, 030, 33-55. https://dergipark.org.tr/en/pub/dpufbed/issue/35927/432947
  • Ulu, M., Sait Türkan, Y., & Mengüç, K. (2022). Trafik kazalarını etkileyen faktörlerin ağırlıklarının BWM ve SWARA yöntemleri ile belirlenmesi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 5(2), 227-238. https://doi.org/10.51513/jitsa.1084833
  • Üzümcüoğlu, Y., & Özkan, T. (2019). Traffic climate and driver behaviors: Explicit and implicit measures. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 805-818. https://doi.org/10.1016/j.trf.2019.03.016
  • Vecino-Ortiz, A. I., Bishai, D., Chandran, A., Bhalla, K., Bachani, A. M., Gupta, S., Slyunkina, E., & Hyder, A. A. (2014). Seatbelt wearing rates in middle income countries: A cross-country analysis. Accident Analysis & Prevention, 71, 115-119. https://doi.org/10.1016/j.aap.2014.04.020
  • Vinogradova-Zinkevič, I. (2024). Centroidous method for determining objective weights. Mathematics, 12(14), 2269. https://doi.org/10.3390/math12142269
  • Wong, S. C., & Sze, N. N. (2010). Is the effect of quantified road safety targets sustainable? Safety Science, 48(9), 1182-1188. https://doi.org/10.1016/j.ssci.2009.12.020
  • Wong, S. C., Sze, N. N., Yip, H. F., Loo, B. P. Y., Hung, W. T., & Lo, H. K. (2006). Association between setting quantified road safety targets and road fatality reduction. Accident Analysis & Prevention, 38(5), 997-1005. https://doi.org/10.1016/j.aap.2006.04.003
  • World Health Organization (WHO). (2023). Global status report on road safety 2023.
  • Xie, Z., & Chen, F. (2024). Auditing road safety achievement using MEREC–ARAS–QBKM model: an empirical study for APEC member economies. Scientific Reports, 14(1), 23049. https://doi.org/10.1038/s41598-024-73069-5
  • Yıldız, M. C., & Karaca, M. (2005). Otomobil sürücülerinin trafik ve yol güvenliği konusundaki görüşlerine sosyolojik bakış. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 12. https://dergipark.org.tr/en/pub/dpusbe/issue/4754/65302
  • Zagorskas, J., & Turskis, Z. (2020). Location preferences of new pedestrian bridges based on multi-criteria decision-making and GIS-based estimation. The Baltic Journal of Road and Bridge Engineering, 15(2), 158-181. https://doi.org/10.7250/bjrbe.2020-15.478
  • Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1, 131–139.
  • Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2012). Optimization of Weighted Aggregated Sum Product Assessment. Electronics and Electrical Engineering, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
  • Zhou, Z., Zhang, Y., Zhang, Y., Hou, B., Mei, Y., Wu, P., Chen, Y., Zhou, W., Wu, H., & Chen, F. (2024). Advanced CRITIC–GRA–GMM model with multiple restart simulation for assuaging decision uncertainty: An application to transport safety engineering for OECD members. Advanced Engineering Informatics, 60, 102373. https://doi.org/10.1016/j.aei.2024.102373
  • Zu, J., Peng, Z., & Chen, F. (2022). Overseeing road safety progress using CV-PROMETHEE Ⅱ-JSS: A case study in the EU context. Expert Systems with Applications, 195, 116623. https://doi.org/10.1016/j.eswa.2022.116623

MULTI-CRITERIA EVALUATION OF ROAD SAFETY PERFORMANCE IN TÜRKİYE: AN INTEGRATED CENTROIDOUS-RAM APPROACH

Yıl 2025, Cilt: 28 Sayı: 4, 1928 - 1948, 03.12.2025

Öz

Road safety depends on numerous factors, and even the smallest error can result in severe injuries or fatalities.Therefore, with their irreversible consequences, traffic accidents have become a critical problem that threatens both public health and national economies. This study evaluates road safety in Türkiye’s 81 provinces through a Multi-Criteria Decision Making (MCDM) framework using official data from the Turkish Statistical Institute. The analysis follows a four-stage methodology. First, criterion weights were determined using the Centroidous method, the highest weight was assigned to the criterion of the number of traffic accidents per million population, while the lowest weight was assigned to the criterion of the number of licensed drivers. Second, provinces were ranked based on their road safety performance using the RAM method. As a result, Istanbul was identified as the best-performing province, whereas Muğla was identified as the lowest-performing province. Third, a sensitivity analysis was conducted under five different scenarios to analyze the effect of the changes in the criteria weights on the ranking results. Finally, a comparative analysis was carried out using the COPRAS, MABAC, TOPSIS, and WASPAS methods, and the validity of the proposed approach was verified with a correlation exceeding 91%.

Kaynakça

  • Ahmadpur, M., & Gokasar, I. (2021). Spatial analysis and evaluation of road traffic safety performance indexes across the provinces of Turkey from 2015 to 2019. International Journal of Injury Control and Safety Promotion, 28(3), 309-324. https://doi.org/10.1080/17457300.2021.1925923
  • Ahmadpur, M., & Gokasar, I. (2024). Evaluation and comparison of administrative division-level road traffic safety indices of Egypt, England, Turkey, and the United States. Journal of Safety Research, 89, 251-261. https://doi.org/10.1016/j.jsr.2024.04.007
  • Alrashdi, I., Ali, A. M., Sallam, K. M., & Abdel-Basset, M. (2025). Intelligent decision support framework for assessment of alternative vehicle technologies in transportation system: A sustainable approach toward environmental remedy. Sustainable Futures, 9(June 2025), 100472. https://doi.org/10.1016/j.sftr.2025.100472
  • Amador, L., & Willis, C. J. (2014). Demonstrating a correlation between the maturity of road safety practices and road safety incidents. Traffic Injury Prevention, 15(6), 591-597. https://doi.org/10.1080/15389588.2013.845753
  • Arıkan Öztürk, E. (2016). Traffic risk index of cities in Turkey. Pamukkale University Journal of Engineering Sciences, 22(6), 405-412. https://doi.org/10.5505/pajes.2015.93446
  • Aydın, U. (2024). Türkiye’deki illerin karayolları trafik risk durumunun entegre IDDWS-EDAS yaklaşımıyla değerlendirilmesi. Trafik ve Ulaşım Araştırmaları Dergisi, 7(2), 120-143. https://doi.org/10.38002/tuad.1351802
  • Azık, D., Solmazer, G., Ersan, Ö., Kaçan, B., Fındık, G., Üzümcüoğlu, Y., Özkan, T., Lajunen, T., Öz, B., Pashkevich, A., Pashkevich, M., Danelli-Mylona, V., Georgogianni, D., Berisha Krasniqi, E., Krasniqi, M., Makris, E., Shubenkova, K., & Xheladini, G. (2021). Road users’ evaluations and perceptions of road infrastructure, trip characteristics, and daily trip experiences across countries. Transportation Research Interdisciplinary Perspectives, 11, 100412. https://doi.org/10.1016/j.trip.2021.100412
  • Badi, I., Stević, Ž., Radović, D., Ristić, B., Cakić, A., & Sremac, S. (2023). A new methodology for treating problems in the field of traffic safety: case study of Libyan cities. Transport, 38(4), 190-203. https://doi.org/10.3846/transport.2023.20609
  • Bao, Q., Ruan, D., Shen, Y., Hermans, E., & Janssens, D. (2012). Improved hierarchical fuzzy TOPSIS for road safety performance evaluation. Knowledge-Based Systems, 32, 84-90. https://doi.org/10.1016/j.knosys.2011.08.014
  • Cetin, V. R., Yilmaz, H. H., & Erkan, V. (2018). The impact of increasing speed limit in Turkey: The case of Ankara-Sivrihisar road section. Case Studies on Transport Policy, 6(1), 72-80. https://doi.org/10.1016/j.cstp.2017.11.004
  • Chen, F., Li, Y., Feng, Q., Dong, Z., Qian, Y., Yan, Y., Ho, M. S., Ma, Q., Zhang, D., & Jin, Y. (2023). Road safety performance rating through PSI-PRIDIT: A planning tool for designing policies and identifying best practices for EAS countries. Socio-Economic Planning Sciences, 85, 101438. https://doi.org/10.1016/j.seps.2022.101438
  • Elvik, R. (2024). The development of a road safety policy index and its application in evaluating the effects of road safety policy. Accident Analysis & Prevention, 202, 107612. https://doi.org/10.1016/j.aap.2024.107612
  • Emniyet Genel Müdürlüğü (EGM). (2024). Aralık 2024 Trafik İstatistik Bülteni: Ülke Geneli. https://trafik.gov.tr/istatistikler37. Erişim Tarihi: 26.04.2025.
  • Erdogan, S. (2009). Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. Journal of Safety Research, 40(5), 341-351. https://doi.org/10.1016/j.jsr.2009.07.006
  • Fancello, G., Carta, M., & Fadda, P. (2019). Road intersections ranking for road safety improvement: Comparative analysis of multi-criteria decision making methods. Transport Policy, 80, 188-196. https://doi.org/10.1016/j.tranpol.2018.04.007
  • Hareru, H. E., Negassa, B., Kassa Abebe, R., Ashenafi, E., Zenebe, G. A., Debela, B. G., Ashuro, Z., & Eshete Soboksa, N. (2022). The epidemiology of road traffic accidents and associated factors among drivers in Dilla Town, Southern Ethiopia. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1007308
  • Hezam, I. M., Ali, A. M., Sallam, K., Hameed, I. A., Foul, A., & Abdel-Basset, M. (2024). An extension of root assessment method (RAM) under spherical fuzzy framework for optimal selection of electricity production technologies toward sustainability: a case study. International Journal of Energy Research, 2024(1), 7985867. https://doi.org/10.1155/2024/7985867
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-48318-9
  • Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., & Vitale, A. (2023). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural Computing and Applications, 35(6), 4549-4567. https://doi.org/10.1007/s00521-022-07929-4
  • Kanuganti, S., Agarwala, R., Dutta, B., Bhanegaonkar, P. N., Singh, A. P., & Sarkar, A. K. (2017). Road safety analysis using multi criteria approach: A case study in India. Transportation Research Procedia, 25, 4649-4661. https://doi.org/10.1016/j.trpro.2017.05.299
  • Komasi, H., Nemati, A., Hashemkhani Zolfani, S., & Mehtari Taheri, H. (2024). Road safety evaluation in inner-city roads and suburban roads based on a novel-hybrid MCDM model. Ain Shams Engineering Journal, 15(8), 102796. https://doi.org/10.1016/j.asej.2024.102796
  • Komasi, H., Nemati, A., Zolfani, S. H., Williams, N. L., & Šaparauskas, J. (2024). Comparative analysis of economic development indicators among South American countries based on a novel MCDM model. Journal of Competitiveness, 16(3), 97-121. https://doi.org/10.7441/joc.2024.03.05
  • Martins, M. A., & Garcez, T. V. (2021). A multidimensional and multi-period analysis of safety on roads. Accident Analysis & Prevention, 162, 106401. https://doi.org/10.1016/j.aap.2021.106401
  • Mohamed, M., Abdelmouty, A. M., Mohamed, K., & Smarandache, F. (2025). SuperHyperSoft-driven evaluation of smart transportation in Centroidous-Moosra: Real-world insights for the UAV era. Neutrosophic Sets and Systems, 78(1), 149-163.
  • Na, Z., Stević, Ž., Subotić, M., Kumar Das, D., Kou, G., & Moslem, S. (2024). A novel interval rough model for optimizing road network performance and safety. Expert Systems with Applications, 255, 124844. https://doi.org/10.1016/j.eswa.2024.124844
  • Özen, M., & Zorlu, F. (2018). Türkiye’de devlet karayollarında kaza oranlarının ve kaza örüntüsünün analizi. Teknik Dergi, 29(5), 8589-8604. https://doi.org/10.18400/tekderg.308318
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • Sayadinia, S., & Beheshtinia, M. A. (2021). Proposing a new hybrid multi-criteria decision-making approach for road maintenance prioritization. International Journal of Quality & Reliability Management, 38(8), 1661-1679. https://doi.org/10.1108/IJQRM-01-2020-0020
  • Sotoudeh-Anvari, A. (2023). Root Assessment Method (RAM): A novel multi-criteria decision making method and its applications in sustainability challenges. Journal of Cleaner Production, 423, 138695. https://doi.org/10.1016/j.jclepro.2023.138695
  • Şimşekoğlu, Ö., Nordfjærn, T., & Rundmo, T. (2012). Traffic risk perception, road safety attitudes, and behaviors among road users: a comparison of Turkey and Norway. Journal of Risk Research, 15(7), 787-800. https://doi.org/10.1080/13669877.2012.657221
  • Tripathi, P., & Mittal, Y. K. (2024). Risk assessment and ranking methodology for occupational hazards in construction: a case of Indian high-rise projects. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-06-2024-0219
  • Trivedi, P., & Shah, J. (2022). Identification of road crash severity ranking by integrating the multi-criteria decision-making approach. Journal of Road Safety, 33(2), 33-44. https://doi.org/10.33492/JRS-D-21-00055
  • Trivedi, P., Shah, J., Čep, R., Abualigah, L., & Kalita, K. (2024). A hybrid best-worst method (BWM)—technique for order of preference by similarity to ıdeal solution (TOPSIS) approach for prioritizing road safety improvements. IEEE Access, 12, 30054-30065. https://doi.org/10.1109/ACCESS.2024.3368395
  • Trivedi, P., Shah, J., Esztergár-Kiss, D., & Duleba, S. (2024). Phase-wise injury integrated severity modeling of road accidents: a two-stage hybrid multi-criteria decision-making model. Evolving Systems, 15(4), 1275-1295. https://doi.org/10.1007/s12530-023-09563-4
  • Trivedi, P., Shah, J., Moslem, S., & Pilla, F. (2023). An application of the hybrid AHP-PROMETHEE approach to evaluate the severity of the factors influencing road accidents. Heliyon, 9(11), e21187. https://doi.org/10.1016/j.heliyon.2023.e21187
  • Trung, D. D., Dudić, B., Van Duc, D., Hoai Son, N., & Mittelman, A. (2024). Building a ranking system for lecturers based on student evaluations in teaching a specific course: a case study at a university in Vietnam. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2), 335-350. https://doi.org/10.23947/2334-8496-2024-12-2-335-350
  • Trung, D. D., Giang, N. T. P., Duc, D. Van, Dua, T. Van, & Thinh, H. X. (2024). The use of SAW, RAM and PIV decision methods in determining the optimal choice of materials for the manufacture of screw gearbox acceleration boxes. International Journal of Mechanical Engineering and Robotics Research, 13(3), 338-347. https://doi.org/10.18178/ijmerr.13.3.338-347
  • Türkiye İstatistik Kurumu (TÜİK). (2025a). Karayolu trafik kaza istatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1. Erişim Tarihi: 24.05.2025.
  • Türkiye İstatistik Kurumu (TÜİK). (2025b). Motorlu kara taşıtları istatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1. Erişim Tarihi: 10.07.2025.
  • Türkiye İstatistik Kurumu (TÜİK). (2025c). Adrese dayalı nüfus kayıt sistemi sonuçları, 2024. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2024-53783. Erişim Tarihi: 08.07.2025.
  • Türkiye Sigorta Birliği (TSB). (2024). Mali tablolar ve istatistikler. https://www.tsb.org.tr/tr/istatistik/motorlu-tasitlar-istatistikleri Erişim Tarihi: 26.04.2025.
  • Uğur Özçelik, M., Gökçen, H., & Dağdeviren, M. (2013). Ankara şehir içi otobüs kazalarının analizi ve bölge risklerinin belirlenmesi için birçok ölçütlü karar modeli. Journal of Science and Technology of Dumlupınar University, 030, 33-55. https://dergipark.org.tr/en/pub/dpufbed/issue/35927/432947
  • Ulu, M., Sait Türkan, Y., & Mengüç, K. (2022). Trafik kazalarını etkileyen faktörlerin ağırlıklarının BWM ve SWARA yöntemleri ile belirlenmesi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 5(2), 227-238. https://doi.org/10.51513/jitsa.1084833
  • Üzümcüoğlu, Y., & Özkan, T. (2019). Traffic climate and driver behaviors: Explicit and implicit measures. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 805-818. https://doi.org/10.1016/j.trf.2019.03.016
  • Vecino-Ortiz, A. I., Bishai, D., Chandran, A., Bhalla, K., Bachani, A. M., Gupta, S., Slyunkina, E., & Hyder, A. A. (2014). Seatbelt wearing rates in middle income countries: A cross-country analysis. Accident Analysis & Prevention, 71, 115-119. https://doi.org/10.1016/j.aap.2014.04.020
  • Vinogradova-Zinkevič, I. (2024). Centroidous method for determining objective weights. Mathematics, 12(14), 2269. https://doi.org/10.3390/math12142269
  • Wong, S. C., & Sze, N. N. (2010). Is the effect of quantified road safety targets sustainable? Safety Science, 48(9), 1182-1188. https://doi.org/10.1016/j.ssci.2009.12.020
  • Wong, S. C., Sze, N. N., Yip, H. F., Loo, B. P. Y., Hung, W. T., & Lo, H. K. (2006). Association between setting quantified road safety targets and road fatality reduction. Accident Analysis & Prevention, 38(5), 997-1005. https://doi.org/10.1016/j.aap.2006.04.003
  • World Health Organization (WHO). (2023). Global status report on road safety 2023.
  • Xie, Z., & Chen, F. (2024). Auditing road safety achievement using MEREC–ARAS–QBKM model: an empirical study for APEC member economies. Scientific Reports, 14(1), 23049. https://doi.org/10.1038/s41598-024-73069-5
  • Yıldız, M. C., & Karaca, M. (2005). Otomobil sürücülerinin trafik ve yol güvenliği konusundaki görüşlerine sosyolojik bakış. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 12. https://dergipark.org.tr/en/pub/dpusbe/issue/4754/65302
  • Zagorskas, J., & Turskis, Z. (2020). Location preferences of new pedestrian bridges based on multi-criteria decision-making and GIS-based estimation. The Baltic Journal of Road and Bridge Engineering, 15(2), 158-181. https://doi.org/10.7250/bjrbe.2020-15.478
  • Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1, 131–139.
  • Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2012). Optimization of Weighted Aggregated Sum Product Assessment. Electronics and Electrical Engineering, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
  • Zhou, Z., Zhang, Y., Zhang, Y., Hou, B., Mei, Y., Wu, P., Chen, Y., Zhou, W., Wu, H., & Chen, F. (2024). Advanced CRITIC–GRA–GMM model with multiple restart simulation for assuaging decision uncertainty: An application to transport safety engineering for OECD members. Advanced Engineering Informatics, 60, 102373. https://doi.org/10.1016/j.aei.2024.102373
  • Zu, J., Peng, Z., & Chen, F. (2022). Overseeing road safety progress using CV-PROMETHEE Ⅱ-JSS: A case study in the EU context. Expert Systems with Applications, 195, 116623. https://doi.org/10.1016/j.eswa.2022.116623
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çok Ölçütlü Karar Verme
Bölüm Araştırma Makalesi
Yazarlar

Tayfun Öztaş 0000-0001-8224-5092

Yayımlanma Tarihi 3 Aralık 2025
Gönderilme Tarihi 21 Temmuz 2025
Kabul Tarihi 17 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 4

Kaynak Göster

APA Öztaş, T. (2025). TÜRKİYE’DE YOL GÜVENLİĞİ PERFORMANSININ ÇOK KRİTERLİ DEĞERLENDİRİLMESİ: BÜTÜNLEŞİK CENTROIDOUS-RAM YAKLAŞIMI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1928-1948.