Araştırma Makalesi
BibTex RIS Kaynak Göster

ALÇI ESASLI KARIŞIMLARDA MİKRONİZE CAM KÜRECİKLERİNİN DEĞERLENDİRİLMESİ

Yıl 2022, , 591 - 601, 03.12.2022
https://doi.org/10.17780/ksujes.1142101

Öz

Bu çalışmada mikronize cam küreciklerinin alçı esaslı karışımların mühendislik özelliklerine etkileri incelenmiştir. Bu kapsamda mikronize cam kürecikleri alçı yerine ağırlıkça %10, %20 ve %30 oranında kullanılmıştır. 40x40x160 mm boyutunda prizmatik örnekler üretilerek, üretilen örneklerin sertleşmiş birim hacim ağırlık, ultrasonik ses geçiş hızı, su emme, kılcal su emme ve görünen porozite değerleri ölçülmüştür. Aynı zamanda 140x160x20 mm boyutlarına sahip örnekler üretilerek hazırlanan alçı esaslı karışımların ısıl iletim katsayıları ölçülmüştür. Mekanik özellikler kapsamında tek eksenli basınç dayanımı ve üç noktalı eğilme dayanımı testleri uygulanmıştır. Alçı esaslı karışımlarda mikronize cam küreciklerinin kullanımı birim hacim ağırlığı değerlerini yükseltmiştir. Ultrasonik ses geçiş hızı değerleri ise düşmüştür. Görünür porozite değeri de cam küreciklerinin kullanımı ile azalmıştır. Buna bağlı olarak su emme ve kılcal su emme değerlerinde de azalmalar gözlenmiştir. Isıl iletim katsayısı değerleri cam küreciklerin kullanımı ile referans alçı örneğinden daha iyi sonuçlar vermiştir. Cam kürecik kullanımı alçı esaslı karışımların mekanik özelliklerinde de bir miktar düşüşe neden olmuştur. Ancak bu azalmanın çok ciddi düzeylerde olmadığı gözlemlenmiştir. Elde edilen sonuçlar alçı esaslı karışımlarda mikronize cam küreciklerinin değerlendirilmesiyle su emme direnci daha yüksek, kabul edilebilir mekanik özelliklere sahip ve ısı yalıtım özellikleri geliştirilmiş yeni alçı esaslı ürünler üretilebileceğini göstermektedir.

Kaynakça

  • Adesina, A., & Das, S. (2020). Influence of glass powder on the durability properties of engineered cementitious composites. Construction and Building Materials, 242, 118199. https://doi.org/10.1016/j.conbuildmat.2020.118199
  • Aktürk, B., Dayı, M., & Aruntaş, H. Y. (2020). Genleştirilmiş Cam Küre Agrega Katkılı Harçların Bazı Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. https://doi.org/10.29130/dubited.729582
  • Arivalagan, S., & Sethuraman, V. . (2021). Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach. Materials Today: Proceedings, 45, 6035–6041. https://doi.org/10.1016/j.matpr.2020.09.722
  • Belayachi, N., Hoxha, D., & Slaimia, M. (2016). Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Construction and Building Materials, 125, 912–918. https://doi.org/10.1016/j.conbuildmat.2016.08.120
  • Binici, H., & Aksogan, O. (2017). Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum. Materials Today Communications, 10(112), 14–24. https://doi.org/10.1016/j.mtcomm.2016.09.004
  • Braiek, A., Karkri, M., Adili, A., Ibos, L., & Ben Nasrallah, S. (2017). Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy and Buildings, 140, 268–279. https://doi.org/10.1016/j.enbuild.2017.02.001
  • Carsana, M., Frassoni, M., & Bertolini, L. (2014). Comparison of ground waste glass with other supplementary cementitious materials. Cement and Concrete Composites, 45, 39–45. https://doi.org/10.1016/j.cemconcomp.2013.09.005
  • Cerulli, T., Pistolesi, C., Maltese, C., & Salvioni, D. (2003). Durability of traditional plasters with respect to blast furnace slag-based plaster. Cement and Concrete Research, 33(9), 1375–1383. https://doi.org/10.1016/S0008-8846(03)00072-3
  • Chu, S. H., Li, L., Shen, P. L., Lu, J. X., & Poon, C. S. (2022). Recycling of waste glass powder as paste replacement in green UHPFRC. Construction and Building Materials, 316, 125719. https://doi.org/10.1016/j.conbuildmat.2021.125719
  • Chung, D. D. L., & Zheng, Q. J. (1989). Electronic properties of carbon fiber reinforced gypsum plaster. Composites Science and Technology, 36(1), 1–6. https://doi.org/10.1016/0266-3538(89)90012-2
  • Concu, G., & Trulli, N. (2018). Concrete Defects Sizing by Means of Ultrasonic Velocity Maps. Buildings, 8(12), 176. https://doi.org/10.3390/buildings8120176
  • Davraz, M., Gökçe, Y., Koru, M., & Akdağ, A. E. (2020). Çimento Esaslı Köpük Sıvanın Fiziksel, Mekanik ve Termal Özellikleri. Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 42–53. https://doi.org/10.21923/jesd.567408
  • Du, Y., Yang, W., Ge, Y., Wang, S., & Liu, P. (2021). Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. Journal of Cleaner Production, 287, 125018. https://doi.org/10.1016/j.jclepro.2020.125018
  • Durgun, M. Y. (2020). Effect of wetting-drying cycles on gypsum plasters containing ground basaltic pumice and polypropylene fibers. Journal of Building Engineering, 32, 101801. https://doi.org/10.1016/j.jobe.2020.101801
  • Durgun, M. Y. (2021). Experimental research on gypsum-based mixtures containing recycled roofing tile powder at ambient and high temperatures. Construction and Building Materials, 285, 122956. https://doi.org/10.1016/j.conbuildmat.2021.122956
  • Durgun, M. Y., & Sevinç, A. H. (2019). High temperature resistance of concretes with GGBFS, waste glass powder, and colemanite ore wastes after different cooling conditions. Construction and Building Materials, 196. https://doi.org/10.1016/j.conbuildmat.2018.11.087
  • Fındık, S. B. (2007). Yüksek Sıcaklık Eetkisinde Kalan Mineral Katkılı ve Genleşmiş Perlit Agregalı Harçların Bazı Özellikleri. Atatürk Üniversitesi.
  • Gencel, O., Del Coz Diaz, J. J., Sutcu, M., Koksal, F., Álvarez Rabanal, F. P., & Martínez-Barrera, G. (2016). A novel lightweight gypsum composite with diatomite and polypropylene fibers. Construction and Building Materials, 113, 732–740. https://doi.org/10.1016/j.conbuildmat.2016.03.125
  • Gencel, O., Del Coz Diaz, J. J., Sutcu, M., Koksal, F., Alvarez Rabanal, F. P., Martinez-Barrera, G., & Brostow, W. (2014). Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy and Buildings, 70, 135–144. https://doi.org/10.1016/j.enbuild.2013.11.047
  • Iucolano, F., Caputo, D., Leboffe, F., & Liguori, B. (2015). Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials, 99, 184–191. https://doi.org/10.1016/j.conbuildmat.2015.09.020
  • Iucolano, F., Liguori, B., Aprea, P., & Caputo, D. (2018). Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Construction and Building Materials, 185, 256–263. https://doi.org/10.1016/j.conbuildmat.2018.07.036
  • Jiang, X., Xiao, R., Bai, Y., Huang, B., & Ma, Y. (2022). Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Cleaner Production, 340, 130778. https://doi.org/10.1016/j.jclepro.2022.130778
  • Karaipekli, A., & Sari, A. (2016). Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 149, 19–28. https://doi.org/10.1016/j.solmat.2015.12.034
  • Karni, J., & Karni, E. (1995). Gypsum in construction: origin and properties. Materials and Structures, 28(2), 92–100. https://doi.org/10.1007/BF02473176
  • Kittel, C. (1949). Interpretation of the Thermal Conductivity of Glasses. Physical Review, 75(6), 972–974. https://doi.org/10.1103/PhysRev.75.972
  • Kummer, P. E. (1990). Fillers, Glass Beads, Handbook of Plastic Materials and Technology.
  • Li, G., Yu, Y., Zhao, Z., Li, J., & Li, C. (2003). Properties study of cotton stalk fiber/gypsum composite. Cement and Concrete Research, 33(1), 43–46. https://doi.org/10.1016/S0008-8846(02)00915-8
  • Liang, G., Li, H., Zhu, H., Liu, T., Chen, Q., & Guo, H. (2021). Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure. Resources, Conservation and Recycling, 173, 105721. https://doi.org/10.1016/j.resconrec.2021.105721
  • Lushnikova, N., & Dvorkin, L. (2016). Sustainability of gypsum products as a construction material. In Sustainability of Construction Materials (pp. 643–681). Elsevier. https://doi.org/10.1016/B978-0-08-100370-1.00025-1
  • Nguyen, H., Kinnunen, P., Carvelli, V., Mastali, M., & Illikainen, M. (2019). Strain hardening polypropylene fiber reinforced composite from hydrated ladle slag and gypsum. Composites Part B: Engineering, 158, 328–338. https://doi.org/10.1016/j.compositesb.2018.09.056
  • Pan, Z., Tao, Z., Murphy, T., & Wuhrer, R. (2017). High temperature performance of mortars containing fine glass powders. Journal of Cleaner Production, 162, 16–26. https://doi.org/10.1016/j.jclepro.2017.06.003
  • Salama, S. N., Salman, S. M., & Gharib, S. (1987). Thermal conductivity of some silicate glasses and their respective crystalline products. Journal of Non-Crystalline Solids, 93(1), 203–214. https://doi.org/10.1016/S0022-3093(87)80039-X
  • Skibinski, J., Cwieka, K., Haj Ibrahim, S., & Wejrzanowski, T. (2019). Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams. Materials, 12(12), 2017. https://doi.org/10.3390/ma12122017
  • United States Environmental Protection Agency. (2018). Waste and Recycling Report.
  • Westgate, P., Paine, K., & Ball, R. J. (2018). Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Construction and Building Materials, 158, 472–480. https://doi.org/10.1016/j.conbuildmat.2017.09.177
  • Zak, P., Ashour, T., Korjenic, A., Korjenic, S., & Wu, W. (2016). The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials. Construction and Building Materials, 106, 179–188. https://doi.org/10.1016/j.conbuildmat.2015.12.031
  • Zhao, F. Q., Liu, H. J., Hao, L. X., & Li, Q. (2012). Water resistant block from desulfurization gypsum. Construction and Building Materials, 27(1), 531–533. https://doi.org/10.1016/j.conbuildmat.2011.07.011

EVALUATION OF GLASS MICROSPHERES IN GYPSUM-BASED MIXTURES

Yıl 2022, , 591 - 601, 03.12.2022
https://doi.org/10.17780/ksujes.1142101

Öz

In this study, the effects of glass microspheres on the engineering properties of gypsum-based mixtures were investigated. In this context, glass microspheres were used at the rate of 10%, 20%, and 30% by weight instead of gypsum. By producing 40x40x160 mm prismatic samples, the hardened unit weight, ultrasonic pulse velocity, water absorption, capillary water absorption, and apparent porosity values of the produced samples were measured. At the same time, the thermal conductivity coefficients of the gypsum-based mixtures were measured by producing samples with dimensions of 140x160x20 mm. Within the scope of mechanical properties, uniaxial compressive strength and three-point bending strength tests were applied. The use of glass microspheres in gypsum-based mixtures increased the unit volume weight values. On the other hand, ultrasonic pulse velocity values decreased. The apparent porosity value was also reduced with the use of glass microspheres. Accordingly, decreases were observed in water absorption and capillary water absorption values. The thermal conductivity coefficient values gave better results with the use of glass microspheres than the reference plaster sample. The use of glass microspheres also caused a slight decrease in the mechanical properties of gypsum-based mixtures. However, it has been observed that this decrease is not very significant. The results show that by evaluating glass microspheres in gypsum-based mixtures, new gypsum-based products with higher water absorption resistance, acceptable mechanical properties, and improved thermal insulation properties can be produced.

Kaynakça

  • Adesina, A., & Das, S. (2020). Influence of glass powder on the durability properties of engineered cementitious composites. Construction and Building Materials, 242, 118199. https://doi.org/10.1016/j.conbuildmat.2020.118199
  • Aktürk, B., Dayı, M., & Aruntaş, H. Y. (2020). Genleştirilmiş Cam Küre Agrega Katkılı Harçların Bazı Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. https://doi.org/10.29130/dubited.729582
  • Arivalagan, S., & Sethuraman, V. . (2021). Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach. Materials Today: Proceedings, 45, 6035–6041. https://doi.org/10.1016/j.matpr.2020.09.722
  • Belayachi, N., Hoxha, D., & Slaimia, M. (2016). Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Construction and Building Materials, 125, 912–918. https://doi.org/10.1016/j.conbuildmat.2016.08.120
  • Binici, H., & Aksogan, O. (2017). Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum. Materials Today Communications, 10(112), 14–24. https://doi.org/10.1016/j.mtcomm.2016.09.004
  • Braiek, A., Karkri, M., Adili, A., Ibos, L., & Ben Nasrallah, S. (2017). Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy and Buildings, 140, 268–279. https://doi.org/10.1016/j.enbuild.2017.02.001
  • Carsana, M., Frassoni, M., & Bertolini, L. (2014). Comparison of ground waste glass with other supplementary cementitious materials. Cement and Concrete Composites, 45, 39–45. https://doi.org/10.1016/j.cemconcomp.2013.09.005
  • Cerulli, T., Pistolesi, C., Maltese, C., & Salvioni, D. (2003). Durability of traditional plasters with respect to blast furnace slag-based plaster. Cement and Concrete Research, 33(9), 1375–1383. https://doi.org/10.1016/S0008-8846(03)00072-3
  • Chu, S. H., Li, L., Shen, P. L., Lu, J. X., & Poon, C. S. (2022). Recycling of waste glass powder as paste replacement in green UHPFRC. Construction and Building Materials, 316, 125719. https://doi.org/10.1016/j.conbuildmat.2021.125719
  • Chung, D. D. L., & Zheng, Q. J. (1989). Electronic properties of carbon fiber reinforced gypsum plaster. Composites Science and Technology, 36(1), 1–6. https://doi.org/10.1016/0266-3538(89)90012-2
  • Concu, G., & Trulli, N. (2018). Concrete Defects Sizing by Means of Ultrasonic Velocity Maps. Buildings, 8(12), 176. https://doi.org/10.3390/buildings8120176
  • Davraz, M., Gökçe, Y., Koru, M., & Akdağ, A. E. (2020). Çimento Esaslı Köpük Sıvanın Fiziksel, Mekanik ve Termal Özellikleri. Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 42–53. https://doi.org/10.21923/jesd.567408
  • Du, Y., Yang, W., Ge, Y., Wang, S., & Liu, P. (2021). Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. Journal of Cleaner Production, 287, 125018. https://doi.org/10.1016/j.jclepro.2020.125018
  • Durgun, M. Y. (2020). Effect of wetting-drying cycles on gypsum plasters containing ground basaltic pumice and polypropylene fibers. Journal of Building Engineering, 32, 101801. https://doi.org/10.1016/j.jobe.2020.101801
  • Durgun, M. Y. (2021). Experimental research on gypsum-based mixtures containing recycled roofing tile powder at ambient and high temperatures. Construction and Building Materials, 285, 122956. https://doi.org/10.1016/j.conbuildmat.2021.122956
  • Durgun, M. Y., & Sevinç, A. H. (2019). High temperature resistance of concretes with GGBFS, waste glass powder, and colemanite ore wastes after different cooling conditions. Construction and Building Materials, 196. https://doi.org/10.1016/j.conbuildmat.2018.11.087
  • Fındık, S. B. (2007). Yüksek Sıcaklık Eetkisinde Kalan Mineral Katkılı ve Genleşmiş Perlit Agregalı Harçların Bazı Özellikleri. Atatürk Üniversitesi.
  • Gencel, O., Del Coz Diaz, J. J., Sutcu, M., Koksal, F., Álvarez Rabanal, F. P., & Martínez-Barrera, G. (2016). A novel lightweight gypsum composite with diatomite and polypropylene fibers. Construction and Building Materials, 113, 732–740. https://doi.org/10.1016/j.conbuildmat.2016.03.125
  • Gencel, O., Del Coz Diaz, J. J., Sutcu, M., Koksal, F., Alvarez Rabanal, F. P., Martinez-Barrera, G., & Brostow, W. (2014). Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy and Buildings, 70, 135–144. https://doi.org/10.1016/j.enbuild.2013.11.047
  • Iucolano, F., Caputo, D., Leboffe, F., & Liguori, B. (2015). Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials, 99, 184–191. https://doi.org/10.1016/j.conbuildmat.2015.09.020
  • Iucolano, F., Liguori, B., Aprea, P., & Caputo, D. (2018). Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Construction and Building Materials, 185, 256–263. https://doi.org/10.1016/j.conbuildmat.2018.07.036
  • Jiang, X., Xiao, R., Bai, Y., Huang, B., & Ma, Y. (2022). Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Cleaner Production, 340, 130778. https://doi.org/10.1016/j.jclepro.2022.130778
  • Karaipekli, A., & Sari, A. (2016). Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 149, 19–28. https://doi.org/10.1016/j.solmat.2015.12.034
  • Karni, J., & Karni, E. (1995). Gypsum in construction: origin and properties. Materials and Structures, 28(2), 92–100. https://doi.org/10.1007/BF02473176
  • Kittel, C. (1949). Interpretation of the Thermal Conductivity of Glasses. Physical Review, 75(6), 972–974. https://doi.org/10.1103/PhysRev.75.972
  • Kummer, P. E. (1990). Fillers, Glass Beads, Handbook of Plastic Materials and Technology.
  • Li, G., Yu, Y., Zhao, Z., Li, J., & Li, C. (2003). Properties study of cotton stalk fiber/gypsum composite. Cement and Concrete Research, 33(1), 43–46. https://doi.org/10.1016/S0008-8846(02)00915-8
  • Liang, G., Li, H., Zhu, H., Liu, T., Chen, Q., & Guo, H. (2021). Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure. Resources, Conservation and Recycling, 173, 105721. https://doi.org/10.1016/j.resconrec.2021.105721
  • Lushnikova, N., & Dvorkin, L. (2016). Sustainability of gypsum products as a construction material. In Sustainability of Construction Materials (pp. 643–681). Elsevier. https://doi.org/10.1016/B978-0-08-100370-1.00025-1
  • Nguyen, H., Kinnunen, P., Carvelli, V., Mastali, M., & Illikainen, M. (2019). Strain hardening polypropylene fiber reinforced composite from hydrated ladle slag and gypsum. Composites Part B: Engineering, 158, 328–338. https://doi.org/10.1016/j.compositesb.2018.09.056
  • Pan, Z., Tao, Z., Murphy, T., & Wuhrer, R. (2017). High temperature performance of mortars containing fine glass powders. Journal of Cleaner Production, 162, 16–26. https://doi.org/10.1016/j.jclepro.2017.06.003
  • Salama, S. N., Salman, S. M., & Gharib, S. (1987). Thermal conductivity of some silicate glasses and their respective crystalline products. Journal of Non-Crystalline Solids, 93(1), 203–214. https://doi.org/10.1016/S0022-3093(87)80039-X
  • Skibinski, J., Cwieka, K., Haj Ibrahim, S., & Wejrzanowski, T. (2019). Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams. Materials, 12(12), 2017. https://doi.org/10.3390/ma12122017
  • United States Environmental Protection Agency. (2018). Waste and Recycling Report.
  • Westgate, P., Paine, K., & Ball, R. J. (2018). Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Construction and Building Materials, 158, 472–480. https://doi.org/10.1016/j.conbuildmat.2017.09.177
  • Zak, P., Ashour, T., Korjenic, A., Korjenic, S., & Wu, W. (2016). The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials. Construction and Building Materials, 106, 179–188. https://doi.org/10.1016/j.conbuildmat.2015.12.031
  • Zhao, F. Q., Liu, H. J., Hao, L. X., & Li, Q. (2012). Water resistant block from desulfurization gypsum. Construction and Building Materials, 27(1), 531–533. https://doi.org/10.1016/j.conbuildmat.2011.07.011
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Orkun Devrek 0000-0003-4231-561X

Ahmet Hayrullah Sevinç 0000-0003-3338-8366

Muhammed Yasin Durgun 0000-0003-4656-9430

Yusuf Uras 0000-0001-5561-3275

Yayımlanma Tarihi 3 Aralık 2022
Gönderilme Tarihi 7 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Devrek, O., Sevinç, A. H., Durgun, M. Y., Uras, Y. (2022). ALÇI ESASLI KARIŞIMLARDA MİKRONİZE CAM KÜRECİKLERİNİN DEĞERLENDİRİLMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 591-601. https://doi.org/10.17780/ksujes.1142101