Araştırma Makalesi
BibTex RIS Kaynak Göster

ADSORPSİYON PROSESİNİN NANO SIFIR DEĞERLİ DEMİR PARÇACIKLARI (NZVI) YOLUYLA ÇÖP SIZINTI SUYU ARITIMI

Yıl 2024, , 896 - 907, 03.09.2024
https://doi.org/10.17780/ksujes.1435586

Öz

Çöp sızıntı suyu (LFL), kirletici maddelerin karmaşıklığı ve çeşitliliği nedeniyle önemli bir çevresel tehdittir. LFL arıtımı için önerilen çeşitli fiziksel, kimyasal ve biyolojik arıtma yöntemleri bulunmaktadır. Manyetik nanopartiküller, geleneksel adsorbanlarla karşılaştırıldığında başarılı etkiye sahip, yaygın olarak kullanılan adsorbanlardır. Manyetik adsorbanlar, uygun stabiliteye, yüksek adsorpsiyon kapasitesine, yüksek giderim verimliliğine ve yeniden kullanılabilirlik özelliklerine sahip adsorbanlardır. Nano sıfır değerlikli demir (SDD), atık sularda, özellikle de LFL' de bulunan kirletici maddeleri gidermek için etkili bir adsorbandır. Bu çalışmada LFL ön arıtımında nZVI kullanılmıştır. Adsorpsiyon çalışmasında, 50'den 500 mg nZVI/L' ye artan konsantrasyonlarda, 3'ten 8'e pH' larda ve 15'ten 330 dakikaya kadar temas sürelerinde test edilmiştir. Sistem performansı, çöp sızıntı suyunda bulunan Kimyasal Oksijen İhtiyacı (KOİ), Çözünmüş Organik Karbon (ÇOK), Toplam Azot (TN), Nitrat (NO3-) ve Amonyum (NH4+) gibi çeşitli kirletici parametrelerle değerlendirilmiştir. Çalışma sonunda elde edilen giderim verimleri sırasıyla %60, %60, %74, %56 ve %33 olarak belirlenmiştir. Sonuç olarak LFL' nin nZVI kullanılarak adsorpsiyon prosesi ile arıtılması için optimum koşullar 50 mg nZVI/L, pH 8 ve temas süresi 120 dakika olarak belirlenmiştir.

Kaynakça

  • Abdelfatah, A. M., Fawzy, M., El-Khouly, M. E., & Eltaweil, A. S. (2021). Efficient adsorptive removal of tetracycline from aqueous solution using photosynthesized nano-zero valent iron. Journal of Saudi Chemical Society, 25(12), 101365. https://doi.org/10.1016/j.jscs.2021.101365.
  • Amokrane, A. Comel, C. & Veron, J. (1997). Landfill leachates pretreatment by coagulation–flocculation. Water Res. 31. 2775–2782. https://doi.org/10.1016/S0043-1354(97)00147-4.
  • Amor, C., Lucas, M.S., Garcia, J., Dominguez, J.R., De Heredia, J.B., & Peres, J.A. (2015). Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process. Journal of Environmental Science and Health, Part A, 50(2), 161-168. https://doi.org/10.1080/10934529.2015.975065.
  • Aquino, S.F., & Stuckey, D.C. (2004). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water research, 38(2), 255-266.
  • Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. J Hazard Mater, 163(1):109–114. https://doi.org/10.1016/j.jhazmat.2008.06.067.
  • Augusto, P.A., Castelo-Grande, T., Merchan, L., Estevez, A.M., Quintero, X., & Barbosa, D. (2019). Landfill leachate treatment by sorption in magnetic particles: preliminary study. Science of the Total Environment, 648, 636-668. https://doi.org/10.1016/j.scitotenv.2018.08.056.
  • Aziz, H.A., Alias, S., Adlan, M.N., Asaari, A. H., & Zahari, M.S. (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource technology, 98(1), 218-220. https://doi.org/10.1016/j.biortech.2005.11.013.
  • Bashir, M.J., Aziz, H.A., Yusoff, M.S., & Adlan, M.N. (2010). Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination, 254(1-3), 154-161. https://doi.org/10.1016/j.desal.2009.12.002.
  • Bashir, M.J.K., Aziz, H.A., Amr, S.S.A., Sethupathi, S., Ng, C.A., & Lim, J.W. (2015). The competency of various applied strategies in treating tropical municipal landfill leachate. Desalin. Water Treat. 54, 2382–2395. https://doi.org/10.1080/19443994.2014.901189.
  • Bhatt, A.H., Karanjekar, RV., Altouqi, S., Sattler, M.L., Hossain, M.S., & Chen, V.P. (2017). Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environmental Technology & Innovation, 8, 1-16. https://doi.org/10.1016/j.eti.2017.03.003.
  • Brasil, Y.L., Silva, A.F., Gomes, R. F., & Amaral, M.C. (2021). Technical and economic evaluation of the integration of membrane bioreactor and air-stripping/absorption processes in the treatment of landfill leachate. Waste Management, 134, 110-119. https://doi.org/10.1016/j.wasman.2021.08.013.
  • Brennan, R.B., Healy, M.G., Morrison, L., Hynes, S., Norton, D., & Clifford, E. (2016). Management of landfill leachate: The legacy of European Union Directives. Waste management, 55, 355-363. https://doi.org/10.1016/j.wasman.2015.10.010.
  • Chang, Y.C., & Chen, D.H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. Journal of colloid and interface science, 283(2), 446-451. https://doi.org/10.1016/j.jcis.2004.09.010.
  • Chen, Z., Wang, X., Yang, Y., Mirino Jr, M.W., & Yuan, Y. (2016). Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresource technology, 218, 580-588. https://doi.org/10.1016/j.biortech.2016.07.008.
  • Diamadopoulos, E. (1994). Characterization and treatment of recirculation stabilized leachate, Water Res. 28, 2439–2445. https://doi.org/10.1016/0043-1354(94)90062-0.
  • Foo, K.Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of hazardous materials, 171(1-3), 54-60. https://doi.org/10.1016/j.jhazmat.2009.06.038.
  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of hazardous materials, 267, 194-205. https://doi.org/10.1016/j.jhazmat.2013.12.062.
  • Gajski, G., Oreščanin, V & Garaj-Vrhovac, V. (2012). Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and environmental safety, 78, 253-259. https://doi.org/10.1016/j.ecoenv.2011.11.032.
  • Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., & Vilas-Vilela, J.L. (2020). Zero-valent iron nanoparticles for soil and groundwater remediation. International Journal of Environmental Research and Public Health, 17(16), 5817. https://doi.org/10.3390/ijerph17165817.
  • Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M.R., Ahani, M., & Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of environmental science & engineering, 8, 471-482. https://doi.org/10.1007/s11783-014-0654-0.
  • Göçer S., Kozak M., Akgül V., Duyar A., Zaimoğlu Z. &Cırık K. (2019) Synthesıs Of Nanoscale Zero-Valent Iron (nZVI), International Symposium on Advanced Engineering Technologies (ISADET), 02-04 May 2019, p:828-833, Kahramanmaraş/Turkey.
  • Göçer, S., Zaimoğlu, B. Z., & Cırık, K. (2024). Removal of pollutants from landfill leachate by adsorption with nano zero-valent iron particles: adsorption isotherms and kinetic studies. Water Practice & Technology, 19(2), 401-418. https://doi.org/10.2166/wpt.2024.029.
  • Gotvajn AZ, Tisler T. & Zagorc-Koncan J. (2009). Comparison of different treatment strategies for industrial landfill leachate. J Hazard Mater, 162(2–3):1446–1456. https://doi.org/10.1016/j.jhazmat.2008.06.037.
  • Halim, A.A., Aziz, H.A., Johari, M.A.M. & Ariffin, K.S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination, 262(1-3), 31-35. https://doi.org/10.1016/j.desal.2010.05.036.
  • Hu, J., Johnston, K.P., & Williams III, R.O. (2004). Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug development and industrial pharmacy, 30(3), 233-245. https://doi.org/10.1081/DDC-120030422.
  • Ilmasari, D., Kamyab, H., Yuzir, A., Riyadi, F.A., Khademi, T., Al-Qaim, F.F., & Krishnan, S. (2022). A review of the biological treatment of leachate: Available technologies and future requirements for the circular economy implementation. Biochemical Engineering Journal, 187, 108605. https://doi.org/10.1016/j.bej.2022.108605.
  • Jia, Y., Sun, S., Wang, S., Yan, X., Qian, J., & Pan, B. (2023). Phosphorus in water: A review on the speciation analysis and species specific removal strategies. Critical Reviews in Environmental Science and Technology, 53(4), 435-456. https://doi.org/10.1080/10643389.2022.2068362.
  • Jovanov, D., Vujić, B., & Vujić, G. (2018). Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. Journal of environmental management, 216, 32-40. https://doi.org/10.1016/j.jenvman.2017.08.039.
  • Jun D, Yongsheng Z, Weihong Z, Mei H (2009). Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J Hazard Mater 161:224–230. doi:10.1016/j.jhazmat.2008.03.086.
  • Kargi, F. & Pamukoglu, M.Y. (2004). Adsorbent supplemented biological treatment of pretreated landfill leachate by fed-batch operation. Bioresour. Technol. 94, 285–291. https://doi.org/10.1016/j.biortech.2004.01.003.
  • Kassem, A. H., Ayoub, G. M., & Zayyat, R. (2022). Advances in nanomaterials for phosphates removal from water and wastewater: a review. Nanotechnology for environmental engineering, 7(3), 609-634. https://doi.org/10.1007/s41204-022-00258-w.
  • Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., & Christensen, T.H. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical reviews in environmental science and technology, 32(4), 297-336. https://doi.org/10.1080/10643380290813462.
  • Kulikowska, D., Bernat, K., Parszuto, K., & Sułek, P. (2016). Efficiency and kinetics of organics removal from landfill leachate by adsorption onto powdered and granular activated carbon. Desalination and Water Treatment, 57(10), 4458-4468. https://doi.org/10.1080/19443994.2014.991763.
  • Kurniawan, T.A. Lo, W.H. & Chan, G.Y.S. (2006). Physico-chemical treatment for removal of recalcitrant contaminants from landfill leachate. J. Hazard. Mater. B129, 80–100. https://doi.org/10.1016/j.jhazmat.2005.08.010.
  • Lai P, Zhao HZ, Wang C, & Ni, JR (2007). Advanced treatment of coking wastewater by coagulation and zero valent iron process. J Hazard Mater 147:232–239. https://doi.org/10.1016/j.jhazmat.2006.12.075.
  • Li, W., Zhou, Q., & Hua, T. (2010). Removal of organic matter from landfill leachate by advanced oxidation processes: a review. International Journal of Chemical Engineering, 2010. https://doi.org/10.1155/2010/270532.
  • Lou Z, Dong B, Chai X, Song Y, Zhao Y, & Zhu N (2009). Characterization of refuse landfill leachates of three different stages in landfill stabilization process. J Environ Sci, 21(9):1309–1314. https://doi.org/10.1016/S1001-0742(08)62400-6
  • Mukherjee, S., Mukhopadhyay, S., Hashim, M.A., & Sen Gupta, B. (2015). Contemporary environmental issues of landfill leachate: assessment and remedies. Critical reviews in environmental science and technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524.
  • Rahmani, A.R., Ghaffari, H.R., & Samadi, M.T. (2011). A comparative study on arsenic (III) removal from aqueous solution using nano and micro sized zero-valent iron. Journal of Environmental Health Science & Engineering, 8(2), 157-166. https://doi.org/10.1080/19443994.2014.991763.
  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P.J.J.O.H.M. (2008). Landfill leachate treatment: Review and opportunity. Journal of hazardous materials, 150(3), 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077.
  • Shah, A.V., Singh, A., Mohanty, S.S., Srivastava, V.K., & Varjani, S. (2022). Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresource Technology, 349, 126835. https://doi.org/10.1016/j.biortech.2022.126835.
  • Shu, Y., Ji, B., Cui, B., Shi, Y., Wang, J., Hu, M., & Guo, D. (2020). Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: performance and mechanisms. Nanomaterials, 10(2), 198. https://doi.org/10.3390/nano10020198.
  • Spagni, A., & Marsili-Libelli, S. (2009). Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technology, 100(2), 609-614. https://doi.org/10.1016/j.biortech.2008.06.064.
  • Stefaniuk, M., Oleszczuk, P., & Ok, Y.S. (2016). Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287, 618-632. https://doi.org/10.1016/j.cej.2015.11.046.
  • Tsarpali, V., Kamilari, M., & Dailianis, S. (2012). Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions. Journal of hazardous materials, 233, 163-171. https://doi.org/10.1016/j.jhazmat.2012.07.007.
  • Umar, M., Aziz, H.A., & Yusoff, M.S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste management, 30(11), 2113-2121. https://doi.org/10.1016/j.wasman.2010.07.003.
  • Wang KS, Lin CL, Wei MC, Hsui WL, Li HC, Chang CH, Fang YT & Chang SH (2010). Effect of dissolved oxygen on dye removal by zero valent iron. J Hazard Mater 182:886–895. https://doi.org/10.1016/j.jhazmat.2010.07.002.
  • Wang, Z.P., Zhang, Z., Lin, Y.J., Deng, N.S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation–photo oxidation process. Journal of Hazardous Materials, B95, 153–159. https://doi.org/10.1016/S0304-3894(02)00116-4.
  • Wu, J.J., Wu, C.C., Ma, H.W., & Chang, C.C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7), 997-1003. https://doi.org/10.1016/j.chemosphere.2003.10.006.
  • Xu, Z. Y., Zeng, G.M., Yang, Z.H., Xiao, Y., Cao, M., Sun, H.S., & Chen, Y. (2010). Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource technology, 101(1), 79-86. https://doi.org/10.1016/j.biortech.2009.07.082.
  • Yantasee, W., Warner, C.L., Sangvanich, T., Addleman, R.S., Carter, T.G., Wiacek, R. J., & Warner, M. G. (2007). Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environmental science & technology, 41(14), 5114-5119. https://doi.org/10.1021/es0705238.
  • Yuan, P., Liu, D., Fan, M., Yang, D., Zhu, R., Ge, F., & He, H. (2010). Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of hazardous materials, 173(1-3), 614-621. https://doi.org/10.1016/j.jhazmat.2009.08.129.
  • Zhang, C., Jiang, S., Tang, J., Zhang, Y., Cui, Y., Su, C., & Quan, J. (2018). Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents. Process Safety and Environmental Protection, 117, 383-389. https://doi.org/10.1016/j.psep.2018.05.016.
  • Zhang, X.H., Xu, Y.B., He, X.L., Huang, L., Ling, J.Y., Zheng, L., & Du, Q.P. (2016). Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environmental pollution, 218, 1255-1261. https://doi.org/10.1016/j.envpol.2016.08.081.

LANDFILL LEACHATE TREATMENT VIA NANO ZERO VALENT IRON PARTICLES (nZVI) OF ADSORPTION PROCESS

Yıl 2024, , 896 - 907, 03.09.2024
https://doi.org/10.17780/ksujes.1435586

Öz

Landfill leachate (LFL) is a significant environmental threat due to the complexity and diversity of contaminants. There are various physical, chemical, and biological treatment methods recommended for LFL treatment. Magnetic nanoparticles are widely used adsorbents with a successful effect compared to traditional adsorbents. Magnetic adsorbents are adsorbents with suitable stability, high adsorption capacity, high removal efficiency, and reusable capabilities. Nano zero-valent iron (nZVI) is an effective adsorbent to remove contaminants found in wastewater, especially LFL. In this study, nZVI was used in the LFL pretreatment. In the adsorption study, it was tested at increasing concentrations from 50 to 500mg nZVI/L, pHs from 3 to 8, and contact times from 15 to 330 minutes. System performance was evaluated with various pollutant parameters such as chemical oxygen demand (COD), dissolved organic carbon (DOC), total nitrogen (TN), nitrate (NO3-), and ammonium (NH4+) found in garbage leachate. The removal efficiencies obtained at the end of the study were determined as 60%, 60%, 74%, 56% and 33%, respectively. As a result, the optimum conditions for the treatment of LFL by adsorption process using nZVI were determined as 50 mg nZVI/L, pH 8, and contact time 120 minutes.

Kaynakça

  • Abdelfatah, A. M., Fawzy, M., El-Khouly, M. E., & Eltaweil, A. S. (2021). Efficient adsorptive removal of tetracycline from aqueous solution using photosynthesized nano-zero valent iron. Journal of Saudi Chemical Society, 25(12), 101365. https://doi.org/10.1016/j.jscs.2021.101365.
  • Amokrane, A. Comel, C. & Veron, J. (1997). Landfill leachates pretreatment by coagulation–flocculation. Water Res. 31. 2775–2782. https://doi.org/10.1016/S0043-1354(97)00147-4.
  • Amor, C., Lucas, M.S., Garcia, J., Dominguez, J.R., De Heredia, J.B., & Peres, J.A. (2015). Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process. Journal of Environmental Science and Health, Part A, 50(2), 161-168. https://doi.org/10.1080/10934529.2015.975065.
  • Aquino, S.F., & Stuckey, D.C. (2004). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water research, 38(2), 255-266.
  • Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. J Hazard Mater, 163(1):109–114. https://doi.org/10.1016/j.jhazmat.2008.06.067.
  • Augusto, P.A., Castelo-Grande, T., Merchan, L., Estevez, A.M., Quintero, X., & Barbosa, D. (2019). Landfill leachate treatment by sorption in magnetic particles: preliminary study. Science of the Total Environment, 648, 636-668. https://doi.org/10.1016/j.scitotenv.2018.08.056.
  • Aziz, H.A., Alias, S., Adlan, M.N., Asaari, A. H., & Zahari, M.S. (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource technology, 98(1), 218-220. https://doi.org/10.1016/j.biortech.2005.11.013.
  • Bashir, M.J., Aziz, H.A., Yusoff, M.S., & Adlan, M.N. (2010). Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination, 254(1-3), 154-161. https://doi.org/10.1016/j.desal.2009.12.002.
  • Bashir, M.J.K., Aziz, H.A., Amr, S.S.A., Sethupathi, S., Ng, C.A., & Lim, J.W. (2015). The competency of various applied strategies in treating tropical municipal landfill leachate. Desalin. Water Treat. 54, 2382–2395. https://doi.org/10.1080/19443994.2014.901189.
  • Bhatt, A.H., Karanjekar, RV., Altouqi, S., Sattler, M.L., Hossain, M.S., & Chen, V.P. (2017). Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environmental Technology & Innovation, 8, 1-16. https://doi.org/10.1016/j.eti.2017.03.003.
  • Brasil, Y.L., Silva, A.F., Gomes, R. F., & Amaral, M.C. (2021). Technical and economic evaluation of the integration of membrane bioreactor and air-stripping/absorption processes in the treatment of landfill leachate. Waste Management, 134, 110-119. https://doi.org/10.1016/j.wasman.2021.08.013.
  • Brennan, R.B., Healy, M.G., Morrison, L., Hynes, S., Norton, D., & Clifford, E. (2016). Management of landfill leachate: The legacy of European Union Directives. Waste management, 55, 355-363. https://doi.org/10.1016/j.wasman.2015.10.010.
  • Chang, Y.C., & Chen, D.H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. Journal of colloid and interface science, 283(2), 446-451. https://doi.org/10.1016/j.jcis.2004.09.010.
  • Chen, Z., Wang, X., Yang, Y., Mirino Jr, M.W., & Yuan, Y. (2016). Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresource technology, 218, 580-588. https://doi.org/10.1016/j.biortech.2016.07.008.
  • Diamadopoulos, E. (1994). Characterization and treatment of recirculation stabilized leachate, Water Res. 28, 2439–2445. https://doi.org/10.1016/0043-1354(94)90062-0.
  • Foo, K.Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of hazardous materials, 171(1-3), 54-60. https://doi.org/10.1016/j.jhazmat.2009.06.038.
  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of hazardous materials, 267, 194-205. https://doi.org/10.1016/j.jhazmat.2013.12.062.
  • Gajski, G., Oreščanin, V & Garaj-Vrhovac, V. (2012). Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and environmental safety, 78, 253-259. https://doi.org/10.1016/j.ecoenv.2011.11.032.
  • Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., & Vilas-Vilela, J.L. (2020). Zero-valent iron nanoparticles for soil and groundwater remediation. International Journal of Environmental Research and Public Health, 17(16), 5817. https://doi.org/10.3390/ijerph17165817.
  • Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M.R., Ahani, M., & Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of environmental science & engineering, 8, 471-482. https://doi.org/10.1007/s11783-014-0654-0.
  • Göçer S., Kozak M., Akgül V., Duyar A., Zaimoğlu Z. &Cırık K. (2019) Synthesıs Of Nanoscale Zero-Valent Iron (nZVI), International Symposium on Advanced Engineering Technologies (ISADET), 02-04 May 2019, p:828-833, Kahramanmaraş/Turkey.
  • Göçer, S., Zaimoğlu, B. Z., & Cırık, K. (2024). Removal of pollutants from landfill leachate by adsorption with nano zero-valent iron particles: adsorption isotherms and kinetic studies. Water Practice & Technology, 19(2), 401-418. https://doi.org/10.2166/wpt.2024.029.
  • Gotvajn AZ, Tisler T. & Zagorc-Koncan J. (2009). Comparison of different treatment strategies for industrial landfill leachate. J Hazard Mater, 162(2–3):1446–1456. https://doi.org/10.1016/j.jhazmat.2008.06.037.
  • Halim, A.A., Aziz, H.A., Johari, M.A.M. & Ariffin, K.S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination, 262(1-3), 31-35. https://doi.org/10.1016/j.desal.2010.05.036.
  • Hu, J., Johnston, K.P., & Williams III, R.O. (2004). Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug development and industrial pharmacy, 30(3), 233-245. https://doi.org/10.1081/DDC-120030422.
  • Ilmasari, D., Kamyab, H., Yuzir, A., Riyadi, F.A., Khademi, T., Al-Qaim, F.F., & Krishnan, S. (2022). A review of the biological treatment of leachate: Available technologies and future requirements for the circular economy implementation. Biochemical Engineering Journal, 187, 108605. https://doi.org/10.1016/j.bej.2022.108605.
  • Jia, Y., Sun, S., Wang, S., Yan, X., Qian, J., & Pan, B. (2023). Phosphorus in water: A review on the speciation analysis and species specific removal strategies. Critical Reviews in Environmental Science and Technology, 53(4), 435-456. https://doi.org/10.1080/10643389.2022.2068362.
  • Jovanov, D., Vujić, B., & Vujić, G. (2018). Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. Journal of environmental management, 216, 32-40. https://doi.org/10.1016/j.jenvman.2017.08.039.
  • Jun D, Yongsheng Z, Weihong Z, Mei H (2009). Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J Hazard Mater 161:224–230. doi:10.1016/j.jhazmat.2008.03.086.
  • Kargi, F. & Pamukoglu, M.Y. (2004). Adsorbent supplemented biological treatment of pretreated landfill leachate by fed-batch operation. Bioresour. Technol. 94, 285–291. https://doi.org/10.1016/j.biortech.2004.01.003.
  • Kassem, A. H., Ayoub, G. M., & Zayyat, R. (2022). Advances in nanomaterials for phosphates removal from water and wastewater: a review. Nanotechnology for environmental engineering, 7(3), 609-634. https://doi.org/10.1007/s41204-022-00258-w.
  • Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., & Christensen, T.H. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical reviews in environmental science and technology, 32(4), 297-336. https://doi.org/10.1080/10643380290813462.
  • Kulikowska, D., Bernat, K., Parszuto, K., & Sułek, P. (2016). Efficiency and kinetics of organics removal from landfill leachate by adsorption onto powdered and granular activated carbon. Desalination and Water Treatment, 57(10), 4458-4468. https://doi.org/10.1080/19443994.2014.991763.
  • Kurniawan, T.A. Lo, W.H. & Chan, G.Y.S. (2006). Physico-chemical treatment for removal of recalcitrant contaminants from landfill leachate. J. Hazard. Mater. B129, 80–100. https://doi.org/10.1016/j.jhazmat.2005.08.010.
  • Lai P, Zhao HZ, Wang C, & Ni, JR (2007). Advanced treatment of coking wastewater by coagulation and zero valent iron process. J Hazard Mater 147:232–239. https://doi.org/10.1016/j.jhazmat.2006.12.075.
  • Li, W., Zhou, Q., & Hua, T. (2010). Removal of organic matter from landfill leachate by advanced oxidation processes: a review. International Journal of Chemical Engineering, 2010. https://doi.org/10.1155/2010/270532.
  • Lou Z, Dong B, Chai X, Song Y, Zhao Y, & Zhu N (2009). Characterization of refuse landfill leachates of three different stages in landfill stabilization process. J Environ Sci, 21(9):1309–1314. https://doi.org/10.1016/S1001-0742(08)62400-6
  • Mukherjee, S., Mukhopadhyay, S., Hashim, M.A., & Sen Gupta, B. (2015). Contemporary environmental issues of landfill leachate: assessment and remedies. Critical reviews in environmental science and technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524.
  • Rahmani, A.R., Ghaffari, H.R., & Samadi, M.T. (2011). A comparative study on arsenic (III) removal from aqueous solution using nano and micro sized zero-valent iron. Journal of Environmental Health Science & Engineering, 8(2), 157-166. https://doi.org/10.1080/19443994.2014.991763.
  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P.J.J.O.H.M. (2008). Landfill leachate treatment: Review and opportunity. Journal of hazardous materials, 150(3), 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077.
  • Shah, A.V., Singh, A., Mohanty, S.S., Srivastava, V.K., & Varjani, S. (2022). Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresource Technology, 349, 126835. https://doi.org/10.1016/j.biortech.2022.126835.
  • Shu, Y., Ji, B., Cui, B., Shi, Y., Wang, J., Hu, M., & Guo, D. (2020). Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: performance and mechanisms. Nanomaterials, 10(2), 198. https://doi.org/10.3390/nano10020198.
  • Spagni, A., & Marsili-Libelli, S. (2009). Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technology, 100(2), 609-614. https://doi.org/10.1016/j.biortech.2008.06.064.
  • Stefaniuk, M., Oleszczuk, P., & Ok, Y.S. (2016). Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287, 618-632. https://doi.org/10.1016/j.cej.2015.11.046.
  • Tsarpali, V., Kamilari, M., & Dailianis, S. (2012). Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions. Journal of hazardous materials, 233, 163-171. https://doi.org/10.1016/j.jhazmat.2012.07.007.
  • Umar, M., Aziz, H.A., & Yusoff, M.S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste management, 30(11), 2113-2121. https://doi.org/10.1016/j.wasman.2010.07.003.
  • Wang KS, Lin CL, Wei MC, Hsui WL, Li HC, Chang CH, Fang YT & Chang SH (2010). Effect of dissolved oxygen on dye removal by zero valent iron. J Hazard Mater 182:886–895. https://doi.org/10.1016/j.jhazmat.2010.07.002.
  • Wang, Z.P., Zhang, Z., Lin, Y.J., Deng, N.S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation–photo oxidation process. Journal of Hazardous Materials, B95, 153–159. https://doi.org/10.1016/S0304-3894(02)00116-4.
  • Wu, J.J., Wu, C.C., Ma, H.W., & Chang, C.C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7), 997-1003. https://doi.org/10.1016/j.chemosphere.2003.10.006.
  • Xu, Z. Y., Zeng, G.M., Yang, Z.H., Xiao, Y., Cao, M., Sun, H.S., & Chen, Y. (2010). Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource technology, 101(1), 79-86. https://doi.org/10.1016/j.biortech.2009.07.082.
  • Yantasee, W., Warner, C.L., Sangvanich, T., Addleman, R.S., Carter, T.G., Wiacek, R. J., & Warner, M. G. (2007). Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environmental science & technology, 41(14), 5114-5119. https://doi.org/10.1021/es0705238.
  • Yuan, P., Liu, D., Fan, M., Yang, D., Zhu, R., Ge, F., & He, H. (2010). Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of hazardous materials, 173(1-3), 614-621. https://doi.org/10.1016/j.jhazmat.2009.08.129.
  • Zhang, C., Jiang, S., Tang, J., Zhang, Y., Cui, Y., Su, C., & Quan, J. (2018). Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents. Process Safety and Environmental Protection, 117, 383-389. https://doi.org/10.1016/j.psep.2018.05.016.
  • Zhang, X.H., Xu, Y.B., He, X.L., Huang, L., Ling, J.Y., Zheng, L., & Du, Q.P. (2016). Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environmental pollution, 218, 1255-1261. https://doi.org/10.1016/j.envpol.2016.08.081.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Çevre Mühendisliği
Yazarlar

Serdar Göçer 0000-0003-0443-8045

Zeynep Zaimoğlu 0000-0002-9573-4781

Kevser Cırık 0000-0002-1756-553X

Yayımlanma Tarihi 3 Eylül 2024
Gönderilme Tarihi 12 Şubat 2024
Kabul Tarihi 15 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Göçer, S., Zaimoğlu, Z., & Cırık, K. (2024). LANDFILL LEACHATE TREATMENT VIA NANO ZERO VALENT IRON PARTICLES (nZVI) OF ADSORPTION PROCESS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 896-907. https://doi.org/10.17780/ksujes.1435586