Derleme
BibTex RIS Kaynak Göster

SUSTAINABLE MANAGEMENT OF THE MUNICIPAL BIOWASTES

Yıl 2024, , 1557 - 1570, 03.12.2024
https://doi.org/10.17780/ksujes.1497485

Öz

Municipal waste management is a major component of sustainable environment and global climate change. Municipal waste includes in rate of 30-65 biowaste. According to directives of EU, will be allow only 10% of municipal waste go to landfill by 2035. However, municipal biowaste management contains serious social and economic challenges for all country, especially developing country. Biowaste generation may be reduced by training of people about prevent food waste and economical incentives as "pay as you throw". Thus, natural resources can be protected and the greenhouse effect resulting from the food production process can be reduced by 15-22%. Quality and marketable fertilizer is obtained by composting of separately collected biowaste. CH4 emissions generated in the composting are 1-4% of the initial carbon. Anaerobic digestion (AD) is carbon-neutral process and considered a renewable energy source. Methane volume obtained from AD is more 5 times than gas capture landfill. In this study, available information on biowaste management strategies and approaches was compiled from prior studies. Thus, biowaste management alternatives were defined and their advantages and disadvantages were explained. Sustainable biowaste management contributes to the conservation of natural resources and reducing the carbon footprint of biowaste. Moreover, the material cycle is also completed

Kaynakça

  • Allen, S. & Wentworth, J. (2011), Anaerobic digestion. POSTNOTE 387, Parliamentary Office of Science and Technology, London 1-3. https://researchbriefings.files.parliament.uk/documents/POST-PN-387/POST-PN-387.pdf /Accessed 30.08.2023)
  • Amlinger, F., Peyr, S., Cuhls, C. (2008). Green house gas emissions from composting and mechanical biological treatment. Waste Management and Research, 26;1, 47-60. DOI: 10.1177/0734242X07088432
  • Andersen, J.K., Boldrin, A., Christensen, T.H., Scheutz, C. (2011). Mass balances and life cycle inventory of home composting of organic waste. Waste Management, 31, 1934-1942. https://doi.org/10.1016/j.wasman.2011.05.004
  • Andersen, J.K., Boldrin, A., Samuelsson, J., Christensen, T.H., Scheutz, C. (2010). Quantification of greenhouse gas emissions from windrow composting of garden waste. J. Environ. Qual., 39, 713-724. https://doi:10.2134/jeq2009.0329
  • Angnes, G., Nicoloso, R.S., da Silva, M.L.B., de Oliveira, P.A.V., Higarashi, M.M., Mezzari, M.P., Miller, P.R.M. (2013). Correlating denitrifying catabolic genes with N2O and N-2 emissions from swine slurry composting. Bioresource Technology, 140, 368–375. https://doi.org/10.1016/j.biortech.2013.04.112
  • Ardolino, F., Parrillo, F., Arena, U. (2018). Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod., 174, 462-476. https://doi.org/10.1016/j.jclepro.2017.10.320.
  • Ayodele, T.R., Ogunjuyigbe, A.S.O., Alao, M.A. (2018). Economic and environmental assessment of electricity generation using biogas from organic fraction of municipal solid waste for the city of Ibadan, Nigeria. Journal of Cleaner Production, 203, 718-735. https://doi.org/10.1016/j.jclepro.2018.08.282
  • Banks, C., Chesshire, M., Heaven, S. (2011). Biocycle anaerobic digester: performance and benefits. Waste and Resource Management, 164:1, 141-150. https://doi.org/10.1680/warm.2011.164.3.141
  • Beck, A., (2023). How to make compost to feed your plants and reduce waste. Better homes & gardens.Dotdash meredith. https://www.bhg.com/gardening/yard/compost/how-to-compost/Accessed 25.08.2023
  • Bokashi Organko. (2022). How long does it take to convert food in to bokashi compost. Plastika Skaza,EU https://bokashiorganko.com/bokashi-library/convert-food-into-bokashi-compost/Accessed 28.09.2023
  • Bras, I.P., Maia, S., Simoes,L.M., Rabaça, T.,Silva M.E. (2022). Selective collection of biowaste in a non-intensive urban region-Producers’ characterization. Sustainable Chemistry and Pharmacy, 29. https://doi.org/10.1016/j.scp.2022.100738.29,
  • Brown, F. (2021) Electric Composters: Sustainability Win or Another Unnecessary Appliance?. Earth911 More Ideas, Less Waste. https://earth911.com/home-garden/electric-composters-sustainability-win-or-another-unnecessary-appliance/Accessed 15.09.2023
  • Colón, J., Martínez-Blanco, J., Gabarrell, X., Artola, A., Sánchez, A., Rieradevall, J., Font, X. (2010). Environmental assessment of home composting. Resource Conservation and Recycling, 54, 893-904. https://doi.org/10.1016/j.resconrec.2010.01.008
  • Council of the European Communities. (1999). Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031/Accessed 10.08.2023
  • Czajczyńska, D., Nannoub, T., Anguilanoc, L., Krzyżyńskaa, R., Ghazald, H., Spencere, N., Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387-394. DOI: 10.1016/j. egypro.2017.07.275
  • Delzeit, R. & Kellner, U.(2013). The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass Bioenergy, 52, 43-53. DOI:10.1016/j.biombioe.2013.02.029
  • Demichelis, F., Tommasi, T., Deorsola, F.A., Marchisio, D., Mancini, G., Fino, D. (2022). Life cycle assessment and life cycle costing of advanced anaerobic digestion of organic fraction municipal solid waste. Chemosphere, 289. https://doi.org/10.1016/j.chemosphere.2021.133058
  • Di Maria, F., Sisani, F., Contini, S. (2018). Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Applied Energy. 230, 1557-1572. https://doi.org/10.1016/j.apenergy.2018.09.007
  • ECN. (2018). Quality Manual of the European Quality Assurance Scheme for Compost and Digestate. www.compostnetwork.info/download/ecn-qasmanual/Accessed 11.09.2023
  • El-Sayed, K. (2015) Some physical and chemical properties of compost. Int. J. Waste Resour, 5, 1-5. DOI:10.4172/2252-5211.1000172
  • Environmental Protection Agency (EPA). (2013) Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2011. http://epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2013-Main-Text.pdf/Accessed 12.08.2023
  • Esposito, G., Frunzo, L., Giordan, A., Liotta, F., Panico, A., Pirozzi, F. (2012). Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol,11,325-341. https://doi.org/10.1007/s11157-012-9277-8
  • EU, 2008, Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives https://eur-lex.europa.eu/eli/dir/2008/98/oj
  • EU,2018, Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste http://data.europa.eu/eli/dir/2018/851/oj
  • EUR-Lex. (2000). 2000/532/EC: COMMISSION DECISION. An official website of the European Union. http://data.europa.eu/eli/dec/2000/532/oj
  • European Commission. (2015). Assessment of separate collection schemes in the 28 capitals of the EU, , Brussels https://op.europa.eu/en/publication-detail/-/publication/2c93de42-a2fa-11e5-b528-01aa75ed71a1/Accessed 30.11.2023
  • European Environment Agency, (2012). The European environment-state and outlook 2010: consumption and the environment-2012 update, http://www. eea.europa.eu/publications/consumption-and-the-environment-2012/Accessed 12.10.2023.
  • European Environment Agency, 2020, Bio-waste in Europe — turning challenges into opportunities, EEA Report,No 04/2020, ISSN 1977-8449. https://www.eea.europa.eu/publications/bio-waste-in-europe/Accessed 18.08.2023.
  • Fava, F., Totaro, G., Diels L., Reis M., Duarte J., Carioca, O.B., Poggi-Varaldo H.M., Ferreira B.S. (2015). Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnology, 32:1, 100-108. DOI: 10.1016/j. nbt.2013.11.003
  • Hebda, C., Gaustad, G., Williamson, A., Trabold, T., (2016). Determining economically optimal household organic material management pathways. Resources, Conservation and Recycling, 108, 88-96. https://doi.org/10.1016/j.resconrec.2015.12.002
  • Heidenreich, S., Müller M., Foscolo P.U. (2016). Advanced biomass gasification — new concepts for efficiency increase and product flexibility. Elsevier/Academic Press, Amsterdam. https://doi.org/10.1016/B978-0-12-804296-0.00002
  • Hoornweg, D. & Bhada-Tata, P. (2012). What a Waste: a Global Review of Solid Waste Management. World Bank,Washington, DC. https:// www.compostnetwork.info/download/ecn-qasmanual
  • Huang, R., Fang C., Lu, X., Jiang, R., Tang, Y. (2017). Transformation of phosphorus during (hydro)thermal treatments of solid biowastes- reaction mechanisms and implications for reclamation and recycling. Environmental Science & Technology, 51:18, 10284-10298. DOI: 10.1021/acs.est.7b02011
  • Hwang, S.J. & Hanaki, K. (2000). Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology, 71:2, 159-165. https://doi.org/10.1016/S0960-8524(99)90068-8
  • Intergovernmental Panel on Climate Change, (2007). Climate change 2007- The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-frontmatter-1.pdf
  • Jalalipour, H., Jaafarzadeh, N, Morscheck, G., Narra, S., Nelles, M. (2020). Potential of Producing Compost from Source-Separated Municipal Organic Waste (A Case Study in Shiraz, Iran). Sustainability, 12. doi:10.3390/su12229704
  • Jarvis, A., Sundberg, C., Milenkovski, S., Pell, M., Smårs, S., Lindgren, P.E., Hallin, S. (2009). Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste. Journal of Applied Microbiology, 106:5, 1502–1511. doi: 10.1111/j.1365-2672.2008.04111
  • Jiang, T., Schuchardt, F., Li, G., Guo, R., Zhao, Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and green house gase mission during the composting, Journal of Environmental Sciences, 23:10, 1754-1760. https://doi.org/10.1016/S1001-0742(10)60591-8
  • Kulikowska, D., Gusiatin, Z.M., Bułkowska, K., Kierklo, K.(2015). Humic substances from sewage sludge compost as washing agents effectively remove Cu and Cd from soil. Chemosphere, 136, 42-49. https://doi.org/10.1016/j.chemosphere.2015.03.083
  • Lee, K. H., Oh, J., Chu, K.H., Kwon, S.H. and Yoo, S.S., 2017, Comparison and Evaluation of Large-Scale and On-Site Recycling Systems for Food Waste via Life Cycle Cost Analysis, Sustainability, 9, 2186; doi:10.3390/su9122186
  • Li, L., Diederick, R., Flora, J.R.V., Berge, N.D. (2013). Hydrothermal carbonization of food waste and associated packaging materials for energy source generation. Waste Management, 33:11, 2478 2492. DOI: 10.1016/j.wasman.2013.05.025
  • Lim, L.Y., Lee, C.T., Bong, C.P.C., Lim, J.S.,, Klemeš J.J. (2019). Environmental and economic feasibility of an integrated community composting plant and organic farm in Malaysia. Journal of Environmental Management, 244, 431-439. https://doi.org/10.1016/j.jenvman.2019.05.050
  • Liu, H., Han P., Liu, H., Zhou, G., Fu, B., Zheng, Z. (2018). Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresource Technology, 260. 105-114. DOI: 10.1016/j.biortech.2018.03.105).
  • Loan, L.T.T., Takahashib, Y., Nomurac, H., Yabe, M. (2019). Modeling home composting behavior toward sustainable municipal organic waste management at the source in developing countries. Resources, Conservation & Recycling, 140, 65-71. DOI:10.1016/j.resconrec.2018.08.016.
  • Lohri, C. R.,Diener, S., Zabaleta, I., Mertenat, A., Zurbrügg, C.(2017). Treatment technologies for urban solid biowaste to create value products-a review with focus on low- and middle-income settings. Reviews in Environmental Science and Bio/Technology, 16:1, 81-130. DOI: 10.1007/s11157-017-9422-5).
  • Lukehurst, C.T., Frost, P., Al Seadi, T. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA bioenergy.https://energiatalgud.ee/sites/default/files/images_sala/4/46/IEA_Bioenergy._Utilisation_of_digestate_from_biogas_plants_as_biofertiliser._2010.pdf/Accessed 30.11.2023
  • Martínez-Blanco, J., Joan, Colón, J., Gabarrell, X., Font X., Sánchez A., Artola A. and Rieradevall J. (2010). The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Management, 30:6, 983-994. DOI 10.1016/j.wasman.2010.02.023
  • Miranda, M. L., LaPalme, S., & Bynum, D. Z. (1999). Unit based pricing in the United States: a tally of communities. Report submitted to The US Environmental Protection Agency. September. http://www. epa. gov/payt/pdf/jan99sum. pdf.
  • Niskanen, A. & Kemppi, J. (2019). Analysis of separate collection and treatment of biowaste as possibilities to improve sustainability. Project report for the Council of State.
  • Nizami, A.S. 2012, Anaerobic Digestion: Processes, Products and Applications. Nova Science Publishers, Ireland. https://doi.org/10.4324/9780203137697
  • Pandyaswargo, A.H. & Gamaralalage P.J.D. (2014). Financial sustainability of modern composting: the economically optimal scale for municipal waste composting plant in developing Asia. Int. J. Recycl. Waste Agricult., 3, 66. DOI 10.1007/s40093-014-0066-y
  • Peng, W. & Pivato, A. (2017). Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste and Biomass Valorization, 10,465-481. DOI 10.1007/s12649-017-0071-2
  • Pham, T.P.T., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R. (2015). Food waste-to-energy conversion technologies-current status and future directions. Waste Management, 38, 399-408. https://doi.org/10.1016/j.wasman.2014.12.004.
  • Pickin, J. & Randell, P. (2017). Australian National Waste Report 2016. Department of the Environment and Energy & Blue Environment Pty Ltd. https://dcceew.gov.au/system/files/resources/d075c9bc-45b3-4ac0-a8f2-%206494c7d1fa0d/files/national-waste-report-2016.pdf/Accessed 28.10.2023
  • Price, J.L. & Joseph, J.B. (2000). Demand management–a basis for waste policy: a critical review of the applicability of the waste hierarchy in terms of achieving sustainable waste management. Sustainable Development. 8:2, 96-105. https://onlinelibrary.wiley.com/doi/pdf/10.1002/(SICI)1099-1719(200005)8:2%3C96::AID-SD133%3E3.0.CO;2-J/Accessed 20.10.2023.
  • Roberts, D. (2015). Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Management. 41, 12-19. https://doi.org/10.1016/j.wasman.2015.03.039
  • Sabarathinam, S., Sivasubramanian, S., Swaminathan, K., Subramaniam, S. (2016). Biowaste recycling by microbes for hydrogen production-An alternative strategy for greener fuel. Journal of Environment and Biotechnology Research, 3:1.
  • Skumatz, L. A., & Freeman, D. J. (2006). Pay as You Throw (PAYT) in the U.S. update and analysis. Final report Co-Sponsored by: EPA Office of Solid Waste, Jan Canterbury, Washington DC and Skumatz Economic Research Associates, Inc., Superior, CO. https://archive.epa.gov/wastes/conserve/tools/payt/web/pdf/sera06.pdf/Accessed 01.12.2023
  • TOGO.(2022). Compost machine. https://www.togocomposter.com/compost-machine/?gclid UN Environment Programme (UNEP). (2009). Developing Integrated Solid Waste Management Plan,Training Manual, Volume 1: Waste Characterization and Quantification with Projections for Future.Environmental Technology Centre Osaka/Shiga, Japan.
  • Vanderlinden, C. (2022). The Basic of Bokashi Composting. The spruce make your best home.https://www.thespruce.com/basics-of-bokashi-composting-2539742
  • Watson, J., Zhang, Y., Si, B., Chen W.T., Souza, R. (2018). Gasification of biowaste- a critical review and outlooks. Renewable and Sustainable Energy Reviews, 83, 1-17. https://doi.org/10.1016/j.rser.2017.10.003
  • Xevgenos, D.,Papadaskalopoulou, C., Malamis, D. (2015). Success stories for recycling of MSW at municipal level a review. Waste and Biomass Valorization, 6:5, 657-684. http://dx.doi.org/10.1007%2Fs12649-015-9389-9
  • Zhang, J., Zeng, G., Chen, Y., Yu, M. (2011). Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource Technology, 102:3, 2950-2956. doi:10.1016/j.biortech.2010.11.089

SÜRDÜRÜLEBİLİR KENTSEL BİYOATIK YÖNETİMİ

Yıl 2024, , 1557 - 1570, 03.12.2024
https://doi.org/10.17780/ksujes.1497485

Öz

Kentsel atık yönetimi, sürdürülebilir çevre ve küresel iklim değişikliğinin önemli bir bileşenidir. Biyoatıklar, kentsel atıkların %30-65 gibi büyük bir yüzdesini oluşturmaktadır. AB atık çerçeve direktifinde, 2035 yılına kadar belediye atıklarının sadece %10’unun depolandığı atık yönetim planlaması istenmektedir. Ancak, kentsel biyoatık yönetimi gelişmekte olan ülkeler başta olmak üzere tüm ülkeler için ciddi sosyal ve ekonomik zorluklar içermektedir. Halkın gıda israfının önlenmesi hakkında bilinçlendirilmesi veya “attığın kadar öde” gibi maddi teşvikler biyoatığın oluşumunu azaltabilir. Böylece, doğal kaynaklar korunabilir, gıda üretim sürecinden kaynaklanan sera gazı etkisi %15-22 oranında azaltılabilir. Ayrı toplanan biyoatığı kompostlayarak iyi kalitede ve pazarlanabilir gübre üretilir. Kompostlamanın CH4 emisyonu hammadde karbonunun %1-4’ü kadar olduğundan sera gazı oluşumunu önemli oranda engeller. Anaerobik bozunma (AD) süreci, yüksek metan içeren biyogaz üreten, karbon nötr bir süreç olduğundan yenilenebilir bir enerji kaynağı olarak kabul edilir. AD prosesi kullanıldığında oluşan metan hacmi ve elde edilen enerji, gaz yakalamalı deponilere göre yaklaşık 5 kat daha fazladır. Bu çalışmada biyoatık yönetimi stratejileri ve yaklaşımlarına ilişkin mevcut bilgiler daha önce yapılan çalışmalardan derlenmiştir. Böylece belediye biyoatık yönetimi alternatifleri tanımlanarak avantaj ve dezavantajları, uygulama zorlukları, elde edilecek faydalar ortaya konmuştur. Sürdürülebilir biyoatık yönetimi, doğal kaynakların korunmasına katkı sağlar, atığın karbon ayak izi azalır ve madde döngüsü tamamlanır.

Kaynakça

  • Allen, S. & Wentworth, J. (2011), Anaerobic digestion. POSTNOTE 387, Parliamentary Office of Science and Technology, London 1-3. https://researchbriefings.files.parliament.uk/documents/POST-PN-387/POST-PN-387.pdf /Accessed 30.08.2023)
  • Amlinger, F., Peyr, S., Cuhls, C. (2008). Green house gas emissions from composting and mechanical biological treatment. Waste Management and Research, 26;1, 47-60. DOI: 10.1177/0734242X07088432
  • Andersen, J.K., Boldrin, A., Christensen, T.H., Scheutz, C. (2011). Mass balances and life cycle inventory of home composting of organic waste. Waste Management, 31, 1934-1942. https://doi.org/10.1016/j.wasman.2011.05.004
  • Andersen, J.K., Boldrin, A., Samuelsson, J., Christensen, T.H., Scheutz, C. (2010). Quantification of greenhouse gas emissions from windrow composting of garden waste. J. Environ. Qual., 39, 713-724. https://doi:10.2134/jeq2009.0329
  • Angnes, G., Nicoloso, R.S., da Silva, M.L.B., de Oliveira, P.A.V., Higarashi, M.M., Mezzari, M.P., Miller, P.R.M. (2013). Correlating denitrifying catabolic genes with N2O and N-2 emissions from swine slurry composting. Bioresource Technology, 140, 368–375. https://doi.org/10.1016/j.biortech.2013.04.112
  • Ardolino, F., Parrillo, F., Arena, U. (2018). Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod., 174, 462-476. https://doi.org/10.1016/j.jclepro.2017.10.320.
  • Ayodele, T.R., Ogunjuyigbe, A.S.O., Alao, M.A. (2018). Economic and environmental assessment of electricity generation using biogas from organic fraction of municipal solid waste for the city of Ibadan, Nigeria. Journal of Cleaner Production, 203, 718-735. https://doi.org/10.1016/j.jclepro.2018.08.282
  • Banks, C., Chesshire, M., Heaven, S. (2011). Biocycle anaerobic digester: performance and benefits. Waste and Resource Management, 164:1, 141-150. https://doi.org/10.1680/warm.2011.164.3.141
  • Beck, A., (2023). How to make compost to feed your plants and reduce waste. Better homes & gardens.Dotdash meredith. https://www.bhg.com/gardening/yard/compost/how-to-compost/Accessed 25.08.2023
  • Bokashi Organko. (2022). How long does it take to convert food in to bokashi compost. Plastika Skaza,EU https://bokashiorganko.com/bokashi-library/convert-food-into-bokashi-compost/Accessed 28.09.2023
  • Bras, I.P., Maia, S., Simoes,L.M., Rabaça, T.,Silva M.E. (2022). Selective collection of biowaste in a non-intensive urban region-Producers’ characterization. Sustainable Chemistry and Pharmacy, 29. https://doi.org/10.1016/j.scp.2022.100738.29,
  • Brown, F. (2021) Electric Composters: Sustainability Win or Another Unnecessary Appliance?. Earth911 More Ideas, Less Waste. https://earth911.com/home-garden/electric-composters-sustainability-win-or-another-unnecessary-appliance/Accessed 15.09.2023
  • Colón, J., Martínez-Blanco, J., Gabarrell, X., Artola, A., Sánchez, A., Rieradevall, J., Font, X. (2010). Environmental assessment of home composting. Resource Conservation and Recycling, 54, 893-904. https://doi.org/10.1016/j.resconrec.2010.01.008
  • Council of the European Communities. (1999). Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031/Accessed 10.08.2023
  • Czajczyńska, D., Nannoub, T., Anguilanoc, L., Krzyżyńskaa, R., Ghazald, H., Spencere, N., Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387-394. DOI: 10.1016/j. egypro.2017.07.275
  • Delzeit, R. & Kellner, U.(2013). The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass Bioenergy, 52, 43-53. DOI:10.1016/j.biombioe.2013.02.029
  • Demichelis, F., Tommasi, T., Deorsola, F.A., Marchisio, D., Mancini, G., Fino, D. (2022). Life cycle assessment and life cycle costing of advanced anaerobic digestion of organic fraction municipal solid waste. Chemosphere, 289. https://doi.org/10.1016/j.chemosphere.2021.133058
  • Di Maria, F., Sisani, F., Contini, S. (2018). Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Applied Energy. 230, 1557-1572. https://doi.org/10.1016/j.apenergy.2018.09.007
  • ECN. (2018). Quality Manual of the European Quality Assurance Scheme for Compost and Digestate. www.compostnetwork.info/download/ecn-qasmanual/Accessed 11.09.2023
  • El-Sayed, K. (2015) Some physical and chemical properties of compost. Int. J. Waste Resour, 5, 1-5. DOI:10.4172/2252-5211.1000172
  • Environmental Protection Agency (EPA). (2013) Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2011. http://epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2013-Main-Text.pdf/Accessed 12.08.2023
  • Esposito, G., Frunzo, L., Giordan, A., Liotta, F., Panico, A., Pirozzi, F. (2012). Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol,11,325-341. https://doi.org/10.1007/s11157-012-9277-8
  • EU, 2008, Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives https://eur-lex.europa.eu/eli/dir/2008/98/oj
  • EU,2018, Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste http://data.europa.eu/eli/dir/2018/851/oj
  • EUR-Lex. (2000). 2000/532/EC: COMMISSION DECISION. An official website of the European Union. http://data.europa.eu/eli/dec/2000/532/oj
  • European Commission. (2015). Assessment of separate collection schemes in the 28 capitals of the EU, , Brussels https://op.europa.eu/en/publication-detail/-/publication/2c93de42-a2fa-11e5-b528-01aa75ed71a1/Accessed 30.11.2023
  • European Environment Agency, (2012). The European environment-state and outlook 2010: consumption and the environment-2012 update, http://www. eea.europa.eu/publications/consumption-and-the-environment-2012/Accessed 12.10.2023.
  • European Environment Agency, 2020, Bio-waste in Europe — turning challenges into opportunities, EEA Report,No 04/2020, ISSN 1977-8449. https://www.eea.europa.eu/publications/bio-waste-in-europe/Accessed 18.08.2023.
  • Fava, F., Totaro, G., Diels L., Reis M., Duarte J., Carioca, O.B., Poggi-Varaldo H.M., Ferreira B.S. (2015). Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnology, 32:1, 100-108. DOI: 10.1016/j. nbt.2013.11.003
  • Hebda, C., Gaustad, G., Williamson, A., Trabold, T., (2016). Determining economically optimal household organic material management pathways. Resources, Conservation and Recycling, 108, 88-96. https://doi.org/10.1016/j.resconrec.2015.12.002
  • Heidenreich, S., Müller M., Foscolo P.U. (2016). Advanced biomass gasification — new concepts for efficiency increase and product flexibility. Elsevier/Academic Press, Amsterdam. https://doi.org/10.1016/B978-0-12-804296-0.00002
  • Hoornweg, D. & Bhada-Tata, P. (2012). What a Waste: a Global Review of Solid Waste Management. World Bank,Washington, DC. https:// www.compostnetwork.info/download/ecn-qasmanual
  • Huang, R., Fang C., Lu, X., Jiang, R., Tang, Y. (2017). Transformation of phosphorus during (hydro)thermal treatments of solid biowastes- reaction mechanisms and implications for reclamation and recycling. Environmental Science & Technology, 51:18, 10284-10298. DOI: 10.1021/acs.est.7b02011
  • Hwang, S.J. & Hanaki, K. (2000). Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology, 71:2, 159-165. https://doi.org/10.1016/S0960-8524(99)90068-8
  • Intergovernmental Panel on Climate Change, (2007). Climate change 2007- The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-frontmatter-1.pdf
  • Jalalipour, H., Jaafarzadeh, N, Morscheck, G., Narra, S., Nelles, M. (2020). Potential of Producing Compost from Source-Separated Municipal Organic Waste (A Case Study in Shiraz, Iran). Sustainability, 12. doi:10.3390/su12229704
  • Jarvis, A., Sundberg, C., Milenkovski, S., Pell, M., Smårs, S., Lindgren, P.E., Hallin, S. (2009). Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste. Journal of Applied Microbiology, 106:5, 1502–1511. doi: 10.1111/j.1365-2672.2008.04111
  • Jiang, T., Schuchardt, F., Li, G., Guo, R., Zhao, Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and green house gase mission during the composting, Journal of Environmental Sciences, 23:10, 1754-1760. https://doi.org/10.1016/S1001-0742(10)60591-8
  • Kulikowska, D., Gusiatin, Z.M., Bułkowska, K., Kierklo, K.(2015). Humic substances from sewage sludge compost as washing agents effectively remove Cu and Cd from soil. Chemosphere, 136, 42-49. https://doi.org/10.1016/j.chemosphere.2015.03.083
  • Lee, K. H., Oh, J., Chu, K.H., Kwon, S.H. and Yoo, S.S., 2017, Comparison and Evaluation of Large-Scale and On-Site Recycling Systems for Food Waste via Life Cycle Cost Analysis, Sustainability, 9, 2186; doi:10.3390/su9122186
  • Li, L., Diederick, R., Flora, J.R.V., Berge, N.D. (2013). Hydrothermal carbonization of food waste and associated packaging materials for energy source generation. Waste Management, 33:11, 2478 2492. DOI: 10.1016/j.wasman.2013.05.025
  • Lim, L.Y., Lee, C.T., Bong, C.P.C., Lim, J.S.,, Klemeš J.J. (2019). Environmental and economic feasibility of an integrated community composting plant and organic farm in Malaysia. Journal of Environmental Management, 244, 431-439. https://doi.org/10.1016/j.jenvman.2019.05.050
  • Liu, H., Han P., Liu, H., Zhou, G., Fu, B., Zheng, Z. (2018). Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresource Technology, 260. 105-114. DOI: 10.1016/j.biortech.2018.03.105).
  • Loan, L.T.T., Takahashib, Y., Nomurac, H., Yabe, M. (2019). Modeling home composting behavior toward sustainable municipal organic waste management at the source in developing countries. Resources, Conservation & Recycling, 140, 65-71. DOI:10.1016/j.resconrec.2018.08.016.
  • Lohri, C. R.,Diener, S., Zabaleta, I., Mertenat, A., Zurbrügg, C.(2017). Treatment technologies for urban solid biowaste to create value products-a review with focus on low- and middle-income settings. Reviews in Environmental Science and Bio/Technology, 16:1, 81-130. DOI: 10.1007/s11157-017-9422-5).
  • Lukehurst, C.T., Frost, P., Al Seadi, T. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA bioenergy.https://energiatalgud.ee/sites/default/files/images_sala/4/46/IEA_Bioenergy._Utilisation_of_digestate_from_biogas_plants_as_biofertiliser._2010.pdf/Accessed 30.11.2023
  • Martínez-Blanco, J., Joan, Colón, J., Gabarrell, X., Font X., Sánchez A., Artola A. and Rieradevall J. (2010). The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Management, 30:6, 983-994. DOI 10.1016/j.wasman.2010.02.023
  • Miranda, M. L., LaPalme, S., & Bynum, D. Z. (1999). Unit based pricing in the United States: a tally of communities. Report submitted to The US Environmental Protection Agency. September. http://www. epa. gov/payt/pdf/jan99sum. pdf.
  • Niskanen, A. & Kemppi, J. (2019). Analysis of separate collection and treatment of biowaste as possibilities to improve sustainability. Project report for the Council of State.
  • Nizami, A.S. 2012, Anaerobic Digestion: Processes, Products and Applications. Nova Science Publishers, Ireland. https://doi.org/10.4324/9780203137697
  • Pandyaswargo, A.H. & Gamaralalage P.J.D. (2014). Financial sustainability of modern composting: the economically optimal scale for municipal waste composting plant in developing Asia. Int. J. Recycl. Waste Agricult., 3, 66. DOI 10.1007/s40093-014-0066-y
  • Peng, W. & Pivato, A. (2017). Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste and Biomass Valorization, 10,465-481. DOI 10.1007/s12649-017-0071-2
  • Pham, T.P.T., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R. (2015). Food waste-to-energy conversion technologies-current status and future directions. Waste Management, 38, 399-408. https://doi.org/10.1016/j.wasman.2014.12.004.
  • Pickin, J. & Randell, P. (2017). Australian National Waste Report 2016. Department of the Environment and Energy & Blue Environment Pty Ltd. https://dcceew.gov.au/system/files/resources/d075c9bc-45b3-4ac0-a8f2-%206494c7d1fa0d/files/national-waste-report-2016.pdf/Accessed 28.10.2023
  • Price, J.L. & Joseph, J.B. (2000). Demand management–a basis for waste policy: a critical review of the applicability of the waste hierarchy in terms of achieving sustainable waste management. Sustainable Development. 8:2, 96-105. https://onlinelibrary.wiley.com/doi/pdf/10.1002/(SICI)1099-1719(200005)8:2%3C96::AID-SD133%3E3.0.CO;2-J/Accessed 20.10.2023.
  • Roberts, D. (2015). Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Management. 41, 12-19. https://doi.org/10.1016/j.wasman.2015.03.039
  • Sabarathinam, S., Sivasubramanian, S., Swaminathan, K., Subramaniam, S. (2016). Biowaste recycling by microbes for hydrogen production-An alternative strategy for greener fuel. Journal of Environment and Biotechnology Research, 3:1.
  • Skumatz, L. A., & Freeman, D. J. (2006). Pay as You Throw (PAYT) in the U.S. update and analysis. Final report Co-Sponsored by: EPA Office of Solid Waste, Jan Canterbury, Washington DC and Skumatz Economic Research Associates, Inc., Superior, CO. https://archive.epa.gov/wastes/conserve/tools/payt/web/pdf/sera06.pdf/Accessed 01.12.2023
  • TOGO.(2022). Compost machine. https://www.togocomposter.com/compost-machine/?gclid UN Environment Programme (UNEP). (2009). Developing Integrated Solid Waste Management Plan,Training Manual, Volume 1: Waste Characterization and Quantification with Projections for Future.Environmental Technology Centre Osaka/Shiga, Japan.
  • Vanderlinden, C. (2022). The Basic of Bokashi Composting. The spruce make your best home.https://www.thespruce.com/basics-of-bokashi-composting-2539742
  • Watson, J., Zhang, Y., Si, B., Chen W.T., Souza, R. (2018). Gasification of biowaste- a critical review and outlooks. Renewable and Sustainable Energy Reviews, 83, 1-17. https://doi.org/10.1016/j.rser.2017.10.003
  • Xevgenos, D.,Papadaskalopoulou, C., Malamis, D. (2015). Success stories for recycling of MSW at municipal level a review. Waste and Biomass Valorization, 6:5, 657-684. http://dx.doi.org/10.1007%2Fs12649-015-9389-9
  • Zhang, J., Zeng, G., Chen, Y., Yu, M. (2011). Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource Technology, 102:3, 2950-2956. doi:10.1016/j.biortech.2010.11.089
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm
Bölüm Çevre Mühendisliği
Yazarlar

Süreyya Altın 0000-0002-6853-8873

Yayımlanma Tarihi 3 Aralık 2024
Gönderilme Tarihi 7 Haziran 2024
Kabul Tarihi 26 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Altın, S. (2024). SÜRDÜRÜLEBİLİR KENTSEL BİYOATIK YÖNETİMİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1557-1570. https://doi.org/10.17780/ksujes.1497485